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Abstract

This paper proposes a new method for interpreting and simplifying a black box model of a deep random forest (RF) using a

proposed rule elimination. In deep RF, a large number of decision trees are connected to multiple layers, thereby making an

analysis difficult. It has a high performance similar to that of a deep neural network (DNN), but achieves a better generalizability.

Therefore, in this study, we consider quantifying the feature contributions and frequency of the fully trained deep RF in the form

of a decision rule set. The feature contributions provide a basis for determining how features affect the decision process in a rule

set. Model simplification is achieved by eliminating unnecessary rules by measuring the feature contributions. Consequently,

the simplified model has fewer parameters and rules than before. Experiment results have shown that a feature contribution

analysis allows a black box model to be decomposed for quantitatively interpreting a rule set. The proposed method was

successfully applied to various deep RF models and benchmark datasets while maintaining a robust performance despite the

elimination of a large number of rules.
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Abstract 

 

This paper proposes a new method for interpreting and 

simplifying a black box model of a deep random forest (RF) 

using a proposed rule elimination. In deep RF, a large 

number of decision trees are connected to multiple layers, 

thereby making an analysis difficult. It has a high 

performance similar to that of a deep neural network 

(DNN), but achieves a better generalizability. Therefore, in 

this study, we consider quantifying the feature 

contributions and frequency of the fully trained deep RF in 

the form of a decision rule set. The feature contributions 

provide a basis for determining how features affect the 

decision process in a rule set. Model simplification is 

achieved by eliminating unnecessary rules by measuring 

the feature contributions. Consequently, the simplified 

model has fewer parameters and rules than before. 

Experiment results have shown that a feature contribution 

analysis allows a black box model to be decomposed for 

quantitatively interpreting a rule set. The proposed method 

was successfully applied to various deep RF models and 

benchmark datasets while maintaining a robust 

performance despite the elimination of a large number of 

rules. 

1. Introduction 

Although the structures of recent deep neural networks 

(DNNs) continue to deepen and widen, resulting in 

improved recognition rates, several challenges remain: 1) 

When a DNN encounters a scenario that differs from the 

scenario used during the training phase, an instability 

occurs in that the structure cannot be modified based on the 

scenario. 2) A DNN is programmed on the basis of a small 

amount of knowledge and is superficial in that it does not 

have common sense regarding the world and human 

psychology [1]. 3) Recent DNN models continue to 

become wider and deeper to achieve a better performance, 

and may not be suitable for a variety of applications with  

limited memory or computational times. 4) A DNN system 

is greedy because it requires numerous training data. 

Finally, 5) because the output of a DNN is calculated 

through a black box, it cannot be accurately explained. 

The first and second issues require more research to 

reduce the structural gap between a DNN and the actual 

human brain in terms of neuroscience, whereas the 

remaining issues can be solved by changing the current 

structure of the DNN. To reduce the size of the DNN 

network (issue 3), some studies have focused on 

compressing a DNN with a similar performance as the 

original models while reducing the size and width of the 

DNN network, e.g., using a knowledge distillation [2] [3], 

transferred/compact convolutional filters [4], low-rank 

factorization, and parameter tuning and sharing [5]. 

However, a compressed DNN model still requires a large 

number of parameters and a large amount of memory for 

processing the resources required for multiplication [6]. In 

addition, to create a deep model that can be trained using a 

small number of training data (issue 4) without a 

backpropagation, new approaches have been attempted for 

linking random forests  (RFs) [7] [8] or random ferns [9] to 

layers instead of neurons in a deep model. These deep 

random classifier-based models link several ensemble 

algorithms to multiple layers with non-differentiable  

components and do not use backpropagation during 

training. 

Recently, studies on explainable or interpretable AI  

(XAI) have been actively conducted to improve the 

limitations of a black box model regarding the learning  

process (issue 5 above), which is an issue of deep learning. 
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Figure 1. Overall architecture of interpretation using a deep 
random forest: (a) After a deep random forest is generated, each 

random forest consists of a large number of decision trees, and (b) 

a random forest can be explained and interpreted by decomposing 

rules based on the feature contribution.  
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XAI is a technology that allows humans to understand and 

correctly interpret the behavior and end result of an AI 

model to explain how the result is generated [10]. Therefore, 

unlike a black box model, users can check whether the 

decision made by an AI model is the best decision before 

making the final determination through a white box model. 
Studies on the development and testing of an XAI 

learning model have been conducted to improve the 

explainability while maintaining a high-level learning  

ability by modifying the existing machine learning  

technologies or developing new ones. The technical 

approach for XAI can be divided into the following: (a) 

explaining a decision of the learning model (ELM)   

[11]–[15] and (b) interpreting the learning model 

(ILM)[16]–[18]. 

The ELM does not have full control over the model’s  

structure, and focuses on explaining the model’s decision 

by identifying the relevant input variable. Interpretation 

techniques are applied to the output of nonlinear machine 

learning models to produce a heat map (e.g., a highlighted 

image or text) of the interpretable input variables [11]. The 

ELM method gives users an extremely intuitive result by 

emphasizing the input variables through a prediction and 

redistribution of the learning model to determine which part 

of the input feature influenced the outcome. Bach et al. [12] 

proposed a way to visualize the contribution of a single 

pixel to kernel-based classifiers and multi-layer neural 

networks over the Bag of Words feature. These pixel 

contributions can be visualized through a heat map and 

provided to the users to intuitively verify the effectiveness 

of the classification decision. Montavon et al. [13] 

proposed a deep Taylor decomposition for interpreting 

generic multilayer neural networks by decomposing the 

network classification decision into contributions of its 

input elements. This method efficiently utilizes the 

structure of the network by backpropagating the 

explanations from the output to the input layer. Anders et 

al. [14] applied a deep Taylor/Layer-wise relevance 

propagation (LRP) technique to video data to understand 

the classification decisions of a deep network trained using 

this strategy. This method also identifies the tendency of the 

classifier to look mainly at frames that are close to the 

temporal boundaries of the input clip. Shi et al. [15] 

proposed the eXplainable and eXplicit neural modules that 

allow visual reasoning over scene graphs, as represented by 

different detection qualities. This method can insulate the 

“low-level” visual perception achieved by the modules, and 

can thus prevent a shortcut in reasoning of both the 

language and vision counterparts. 

However, because ELM-based methods still depend on a 

complex black box model, it is difficult to explain what 

rules are used in the deep network to actually reach such a 

decision. 

ILM aims to produce models that are inherently 

interpretable in a different way from a black box-based 

ELM approach. The representative model of an ILM is a 

rule-based algorithm, such as stochastic AND/OR graphs 

(AOGs), decision lists, and decision trees , because users 

can easily understand simple rules [16]. An AOG [17] 

generates an AND-OR relationship graph of the 

characteristics of the input data (e.g., sketch, color, texture, 

and position of an object in an image) and confirms the 

classification based on the node connected to the 

classification result. Liu et al. [18] proposed a rule-based 

regression algorithm that uses 1-norm regularized RFs. 

This approach simultaneously extracts a small number of 

rules from the generated RF and eliminates unimportant 

features. However, if the rules of the trees are excessively  

reduced to increase the analysis capability of the model, an 

issue occurs in that the performance is significantly 

reduced. 

Bayesian rule lists (BRLs) [19] are based on a decision 

tree as a preliminary interpretable model providing a 

concise and convincing capability to gain the trust of 

domain experts. A BRL employs a prior structure to 

encourage sparsity and yield a posterior distribution over 

the possible decision lists. Lakkaraju et al. [20] proposed 

interpretable decision sets , which are sets of independent 

if-then rules, and a framework for building predictive 

models that are highly accurate and yet highly interpretable. 

Because each rule can be applied independently, decision 

sets are simple, concise, and easily interpretable. A scalable 

Bayesian rule list (SBRL) [21] was proposed as a faster 

variant of a BRL. An SBRL is used to build probabilistic  

rule lists that are two orders of magnitude faster than the 

previous BRL. Rule list algorithms are competitors to 

decision tree algorithms and are associative classifiers in 

that they are built from pre-mined association rules. 

However, such methods have an issue in that their 

performance is significantly degraded when excessively  

reducing the rules of the tree to improve the interpreting 

power of the model. 

By contrast, other researches have tried to improve the 

interpretability by changing the structure of the NN. Yang 

et al. [22] proposed the use of an explainable NN subject to 

interpretability constraints in terms of the additivity, 

sparsity, orthogonality, and smoothness. A complex 

function is decomposed into sparse additive subnetworks 

and the projection indexes are forced to be mutually  

orthogonal such that the resulting subnetworks tend to be 

less confounded with each other. However, a NN-based 

method still depends on the backpropagation, which  

requires the use of a black box model during the learning  

process. In addition, in terms of transparency in a machine 

learning approach, the choice of hyper-parameters such as 

the learning rate and batch size has a more heuristic,   

non-transparent algorithmic nature [23]. 

In this study, we focus on the development of a new ILM-

based interpreting method instead of an ELM-based  

approach to interpret and simplify a deep method, which  



 

8 

can maintain the important properties of the model structure 

and redefine the rules without sacrificing the performance. 

Unlike an ELM-based approach that focuses on a heat map  

of the input variables when using a DNN, we wish to 

understand why particular decisions were made and 

generate models explaining such decisions  while 

maintaining the same predictive performance.  

A new type of deep model, a deep RF, has been proposed 

to achieve an interpretable deep model and maintain a 

DNN-like performance. It links several RFs to multip le 

layers with non-differentiable components and does not use 

backpropagation during training [7] [8], as mentioned in  

the Introduction. Although deep RF generally achieves a 

high performance similar to that of a DNN, it generates a 

large number of rules because it is also composed of black 

box RFs. Therefore, a large number of rules are a  

significant obstacle to interpreting the results of the deep 

RF. 

After a deep RF is trained and multi-layer networks are 

generated using several RFs (see, Fig 1 (a)), we first  

decompose the predictions of each decision tree in the RF 

into mathematically exact feature contributions. Individual 

predictions of the decision tree can be explained by 

breaking down the decision path into a single component 

per feature. This procedure is iteratively applied to find all 

rules of the entire RF layer by layer and saved to decision 

sets, which are sets of classification rules of an RF, (see the 

example in Fig. 1). Sequential covering then repeatedly 

maintains and eliminates rules of the decision set of an RF 

based on a combination of the rule contribution and feature 

pattern (frequency of feature). This regularization keeps 

only a small number of refined rules that are the most 

discriminative. After the sequential covering, we have the 

same number of decision sets per layer, but the numbers of 

rules and features are significantly reduced without 

decreasing the performance. Herein, we provide the 

qualitative and quantitative results demonstrating that our 

proposed interpreting method is highly reasonable and 

effective for improving the interpretability. 

2. Related Works 

As described in the Introduction, the purpose of this 

study is to propose a new interpreting algorithm based on 

ILM using a deep RF that shows a performance similar to 

that of a DNN but does not rely on a backpropagation. 

Therefore, this section introduces the related research 

focusing on a deep RF. Apart from the high recognition rate 

of a DNN, certain limitations such as an overly large 

number of hyper-parameters requiring parameter tuning, a 

black box model created through a gradient 

backpropagation, high processing costs, and the amount of 

training data are a significant burden to explain a DNN [24]. 

As an alternative approach, a deep ensemble classifier 

consisting of several RFs or ferns has been researched. 

A multi-grained cascade forest called gcForest [7] was 

the initial trial to generate a deep forest ensemble with a 

cascade structure. To avoid a gradient backpropagation, the 

cascade levels are adaptively determined using an N-fold  

cross validation, which provides a performance similar to 

that of a DNN, although it was trained using only a small 

amount of data. A forward thinking deep random forest 

(FTDRF) [8] replaces the neurons of deep neural nets with  

decision trees instead of RFs. Input data are mapped 

forward through the layers to create a new learning problem. 

This process is repeated to convert the data of a single layer 

into multiple layers at a time. Multilayered gradient 

boosting decision trees (mGBDTs) [25] build blocks for 

each layer with an explicit emphasis on representation 

learning to learn hierarchical distributed representations 

through the stacking of several layers of a regression  

GBDT.  

As the application of a deep RF, a Siamese deep forest 

[26] was proposed. This method defines the class 

distributions in a deep forest as the weighted sum of the tree 

class probabilities such that the weights are determined to 

reduce the distances between similar pairs of images and 

increase them between dissimilar points .  

The lightweight multilayered random forest (LMRF) 

model [24] consists of a layer-to-layer RF. Each neuron of 

a DNN layer is replaced with an RF, and each layer consists 

of several types of RFs. Each layer consists of randomly 

generated heterogeneous RFs  instead of uniform RFs to 

encourage diversity and maintain the generality, similar to 

the method used by gcForest [7]. In this study, a model was 

designed that uses only the output features of the previous 

layer as the new input features of the next layer without 

combining the transformed feature vector. As a  

replacement for deeper and wider networks, the LMRF 

model is applied to an embedded system in low-power and 

low-memory in-vehicle systems for the monitoring of 

driver emotions. 

The deep random ferns (d-RFern) model [9] connects 

extremely randomized ferns to multiple layers to allow a 

high classification performance and a lightweight and fast 

structure. The input vector is first encoded as a transformed 

feature vector in the feature encoder layer and is then input 

to the cascade layers. The feature encoding process is 

similar to the DNN convolution and helps improve the 

performance of the final output layer. The cascade layer 

adjusts the number of ferns and layers required for the   

d-RFern adaptively, using only a small amount of data.  

Additional approaches exist in which convolutional 

neural networks (CNNs) and decision trees [27]–[29] are 

combined to integrate the DNN architecture with a 

supervised forest feature detector. However, these differ 

from ensemble-based approaches that use ensemble trees as 

a layer-by-layer connection without the use of 

backpropagation during learning. 

Although a deep ensemble classifier based deep model 

achieves a good performance similar to that of a DNN, one 
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RF must consist of a few hundred trees, and several RFs  

must form a single layer. FTDRF, however, consists of only 

two layers consisting of 2,000 decision trees per layer 

without the use of several RFs. However, this method also 

has a disadvantage in that the operation speed is slow  

owing to an excessive number of trees. In addition, they 

must be connected to multiple layers and have a similar 

length and parameter numbers similar to those of a DNN.  

Among the numerous deep ensemble models  available, 

in this study, the proposed rule elimination algorithm is 

applied to the LMRF, which is applicable to a real-time 

system because the numbers of RF neurons and layers are 

smaller than those of the other methods. This interpreted 

and simplified LMRF (iLMRF) is applied to various 

databases to prove that the performance is maintained even 

when the number of rules is drastically reduced. 

3. Interpreting Deep Random Forest 

Simplification of iLMRF is achieved through an 

elimination of weak rules based on an analysis of the feature 

contributions. The primary contribution of this study is to 

make the iLMRF interpretable/simple by creating a new 

contribution metric for interpreting the classifiers based on 

the feature contribution and frequency. This process is 

conducted from the second cascading layer except for the 

first feature encoding layer in the network, as shown in Fig. 

1 (a). We demonstrate herein how the decision making  

processes of iLMRF consisting of a black box structure can 

be made explicable through two processes, namely, an 

estimation of the feature contribution and an elimination of 

unimportant rules. 

3.1. Growth phase: Training of deep RF 

As the first step, a non-NN style deep model, LMRF, 

based on an ensemble of RFs is trained. The LMRF consists 

of multiple layers 𝐿𝑙(𝑙 ∈ {1, … ,𝑁 })  of RF 𝐹𝑣
𝑙 (𝜈 ∈

{1, … , 𝑉}), as depicted in Fig. 1 (a), where each 𝐹𝑣
𝑙  consists 

of numerous decision trees 𝑡, and a 𝑡-th decision tree in a 

𝐹𝑣
𝑙  at layer 𝑙 is denoted as 𝑑𝑡𝑣,𝑡

𝑙 . In the first layer, the input 

vector is encoded as a transformed feature vector 𝛷 𝑙 by 

combining the output of an individual RF, 𝛷 1 =
[ 𝑃(𝛷1

1|𝐹1
1), 𝑃(𝛷2

1|𝐹2
1), … , 𝑃(𝛷𝑉

1|𝐹𝑉
1) ] . From the second 

layer, each layer 𝐿𝑙 (𝑙 > 1)  is trained using the encoded 

feature vector of layer 𝑙 − 1, and is also used to generate a 

new feature vector 𝛷 𝑙 for the next layer or to predict the 

final class at the final layer. With the LMRF, each neuron 

of a DNN layer is replaced with the RF, and each layer 

consists of several types of RFs. Each layer consists of 

randomly generated heterogeneous RFs instead of uniform 

RFs to encourage diversity and maintain the generality  [24]. 

To determine whether to expand a layer, LMRF uses a K-

fold validation to automatically determine the numbers of 

layers and parameters while reducing the risk of an 

overfitting. When the LMRF is converged through a K-fold 

cross-validation, the final class probability is determined by 

averaging the class probabilities predicted from each RF 

[ 𝑃(𝛷1
𝑁|𝐹1

𝑁 ) , … , 𝑃(𝛷𝑉
𝑁|𝐹𝑉

𝑁) ], and predicting the final class 

label with the highest probability. 

3.2. Sequential covering based on rule contribution 

Sequential covering is a common rule induction 

procedure that iteratively learns a single rule individually to 

create a decision set that includes  the entire dataset [30]. 

After a densely coupled black box LMRF model is 

constructed, the rules of an individual RF should be 

iteratively saved in a decision set based on a sequential 

covering procedure.  

The basic unit of an LMRF, i.e., a decision tree, is 

regarded as a rule-based model because the decision 

procedures that determine the final value depend on if-then 

conditions represented by the trained node. Each path from 

the root of the tree to a leaf is a rule that classifies a set of 

examples. When an instance Χ𝑛  and its label Y𝑛  (part of 

dataset 𝒟 = {(X1 , Y1
), … , (XN , YN)}) falls into a root node, 

X𝑛  will be passed to a right or left child node that satisfies 

the split function with a threshold for a specific feature 

determined during the training step. These steps are 

repeated until the given data reach a leaf node that creates 

an optimal feature space. The node consists of pairs of 

specific feature indexes, a split function with a threshold, 

and a class distribution, and the chain of overall nodes 

(decision path or rule) per decision tree is stored in the 

decision set.  

In this study, we modified the sequential covering 

algorithm to select the optimal rules from each tree and RF. 

In the classification problem, the feature contribution 

(importance) represents changes in the feature-specific 

distribution when instances are split up for a particular 

feature. To calculate the feature contribution, a decision tree 

traverses downward until it reaches a leaf. At every specific 

split, the feature contribution of the feature variable that 

determines the split is defined as the difference in class 

probability between a parent and child node. To obtain the 

final rule contribution, we follow the path from the root 

node to the leaf node of the data instance and sum all feature 

contributions of each node. This algorithm extracts the 

paths (rules) sequentially by looking for the best rule that 

has a high contribution score. 

The rule contribution for the i-th rule r𝑖
𝑡  consisting of P 

depth on a t-th tree is then calculated as follows: 

r𝑖
𝑡 =

∑ 𝑓𝑒𝑎𝑡 .𝑐𝑜𝑛𝑡𝑟𝑖𝑏(𝑖,𝑗)𝑗 ∈𝑃

∑ #𝑐𝑙𝑎𝑠𝑠 𝑜𝑓  𝑡−𝑡ℎ 𝑡𝑟𝑒𝑒
   ,                     (1) 

where the feature contribution of the j-th node 

𝑓𝑒𝑎𝑡 . 𝑐𝑜𝑛𝑡𝑟𝑖𝑏(𝑖, 𝑗) of the i-th rule is calculated using the 

difference in class probability 𝐏𝐫 = {𝑝𝑟1 … 𝑝𝑟#𝑐𝑙𝑎𝑠𝑠 } 

between a parent (j-1) and child (j) node. 

                𝑓𝑒𝑎𝑡. 𝑐𝑜𝑛𝑡𝑟𝑖𝑏(𝑖, 𝑗) = (𝐏𝐫𝑗−1 − 𝐏𝐫𝑗 )               (2) 

These rule contributions can then be normalized to a 
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value of between zero and one by dividing by the sum of all 

rule contributions of the t-th tree. A large positive or 

negative value of r𝑖  means that a rule consisting of several 

features contributes strongly to the decision class. By 

contrast, a small positive or negative value of r𝑖  means that 

a rule contributes weakly to the decision class. Values of 

zero in a contribution means that the feature does not 

contribute to the decision-making process.  

A pre-mining of the feature pattern inspired by [19] is 

also used for the weight of the rule contribution. A feature 

pattern is the frequent occurrence of feature values (e.g., x 

= A). We extract frequently occurring feature patterns from 

all rules in a decision set dSet (𝑣, 𝑙) of the v-th RF and 𝑙-th 

layer. The frequency of a feature pattern is measured based 

on its support in the decision set: 

𝑓𝑟𝑒𝑣
𝑙 (𝑥𝑗 = 𝐴) =

1

|dSet(𝑣,𝑙) |
∑ 𝐼(𝑥𝑗

(𝑘)
= 𝐴)𝑖𝜖dSet (𝑣,𝑙)    (3) 

where |dSet|  is the cardinality of features in dSet (𝑣, 𝑙) , 

𝑓𝑟𝑒 (𝑥𝑗 = 𝐴) quantifies the frequency of feature patterns in 

the rules of dSet(𝑣, 𝑙), and 𝐼 is an indicator function that 

returns a value of 1 if the feature 𝑥𝑗 of the instance k  is of 

level 𝐴; otherwise, a value of zero is returned. The feature 

pattern is a normalization of the number of overlapping 

features among all features included in dSet(𝑣, 𝑙). 

At the RF level, the final rule contribution r∗
𝑖  in a 

decision set dSet (𝑣, 𝑙)  is estimated through a weighted 

combination of the feature contribution and feature pattern. 

                            r∗
𝑖 = r𝒊 ∙ ∑ 𝑓𝑟𝑒𝑣

𝑙 (𝑥𝑗)𝑗𝜖 𝐫𝒊
                       (4) 

In the equation, if the feature patterns included in each 

rule 𝐫𝒊 have high frequencies, the final rule contribution r∗
𝑖 

increases in proportion to the feature contribution. The rules 

indSet(𝑣, 𝑙) for each RF, 𝐹𝑣
𝑙 , are sorted and rearranged in  

ascending order according to the final rule contribution. 

This procedure can be iterated until we extract all rules 

that cover the RFs of the l-th layer. Table 1 shows the 

reordering of learned rules  in a decision set. The initial rules 

consist of the feature rule of the IF clause and the class 

probability pairs of the THEN clause. However, through the 

proposed sequential covering process, the rules are 

reordered according to the final contribution of each rule. 

3.3. Rule elimination phase: Simplifying LMDF 

We employed a feature contribution with a feature 

pattern for a rule contribution to represent the correlation  

between a trained feature and changes in the class 

probability. This approach helps with understanding which 

features, rules, and RFs affect the prediction results of an 

LMRF. However, an LMRF generates a large number of 

rules because it is also composed of several black box RFs. 

Therefore, the decision making processes of an LMRF can 

be made explicable through the elimination process of 

unimportant rules. 

Weak rules in dSet (𝑣, 𝑙) are eliminated according to the 

given final rule contribution r∗
𝑖 and only the rules with a 

high contribution value remain. Rules included in 

ListdSet [𝑙] can be removed at the same rate for each RF 

according to the user input, or it can be adjusted for each 

RF depending on the required accuracy. 

Algorithm 1 shows the overall rule elimination  

procedures based on the feature contribution and patterns 

for constructing an interpretable iLMRF. After completing  

the training of the iLMRF, test data are input into the first 

feature encoder layer. The outputs of the first layer are 

concatenated, and these transformed feature vectors, 

augmented with the class vector generated by the first layer, 

are input into the list dSet  (ListdSet) of the l-th layer until 

the data are mapped to the final layer. The final layer 

averages the probability values of each class and determines 

the class with the highest probability value as the final class. 

Algorithm 1: Rule elimination based on feature contribution 
and feature pattern 

Input: The number of layers 𝑁, the number of RFs 
𝑉, the number of trees T, random forest 𝑅𝐹 , 
list of dSets ListdSet 

Start with an empty list of dSets ,  ListdSet =  ∅ 
Learn LMRF 
For each l layer: 

For each v RF: 
For each t tree: 

-Split a i-th rule from a decision tree  
-Calculate feature contribution of a i-th rule 
 𝑓𝑒𝑎𝑡 . 𝑐𝑜𝑛𝑡𝑟𝑖𝑏 (𝑖,∗) 
-Calculate rule contribution for i-th rule r𝑖

𝑡   
-Add rule and its r𝑖

𝑡  to dSet (𝑣, 𝑙) 
       End 
       -Compute feature pattern 𝑓𝑟𝑒𝑣

𝑙 (𝑥𝑗 = 𝐴)  by splitting 
rules in dSet (𝑣, 𝑙) 

        -Re-compute a new rule contribution r∗
𝑖 

        -Sort rules in dSet (𝑣, 𝑙) according to r∗
𝑖 

-Add dSet(𝑣, 𝑙) to ListdSetof l-th layer 
ListdSet [𝑙] =  ListdSet [𝑙] + dSet(𝑣) 

End 
End  
Output: The ListdSet [𝑙] consists of l layers 

 

 Table 1. One example of decision set reordering. The first three 

rules are extracted from the v-th RF and are rearranged based on the 

final contribution. Each rule has a pair of contributions and 

probabilities of a class. 

In itial Rules of 𝐝𝐒𝐞𝐭(𝒗, 𝒍) 
𝑅𝑢𝑙𝑒 1: (𝑥2 > 2.59) and  (𝑥2 > 4.75) and  (𝑥0 <= 6.04) and (𝑥3 >
1.84) ⇒ {0} [0, 0, 1] 
𝑅𝑢𝑙𝑒 2: (𝑥2 > 2.59) and  (𝑥2 > 4.75) and  (𝑥0 <= 6.04) and (𝑥3 <
= 1.84) ⇒ {-0.277} [0, 0.5, 0.5] 
𝑅𝑢𝑙𝑒 3: (𝑥3 <= 1.75)  and  (𝑥3 > 0.7)  and  (𝑥3 <= 1.55)  ⇒ {0.55} 
[0, 1, 0] 
. . . . .  
Reordered Rules of 𝐝𝐒𝐞𝐭(𝒗, 𝒍) 
𝑅𝑢𝑙𝑒 1: (𝑥3 > 0.7) and  (𝑥3 > 1.55) and (𝑥2 <= 4.95) ⇒ {0.83} [0, 
0.6, 0.4] 
𝑅𝑢𝑙𝑒 2: (𝑥3 <= 1.75)  and  (𝑥3 > 0.7)  and  (𝑥3 <= 1.55)  ⇒ {0.55} 
[0, 1, 0] 
𝑅𝑢𝑙𝑒 3: (𝑥2 > 2.59) and  (𝑥2 > 4.75) and  (𝑥0 <= 6.04) and (𝑥3 <
= 1.84) ⇒ {-0.277} [0, 0.5, 0.5]  
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4. Experiments 

In this section, we check the interpretability and 

simplification of the iLMRF model and compare the 

performance when the same rule elimination is applied to 

other deep RF- and DNN-based approaches. From the 

experiment, we prove that the compressed iLMRF 

maintains a similar performance, not only the original 

LMRF, but also DNN-based algorithms, although the 

iLMRF removes a significant percentage of the rules. To 

prove the coherence of the performance and examine the 

interpretability of the compressed iLMRF, we conducted a 

test using the following five datasets.   

4.1. Databases 

CK+ dataset [31]: The expanded Cohn–Kanade (CK+) 

dataset is a public benchmark dataset for facial expression 

recognition (FER) and has 327 image sequences from 118 

subjects and seven facial expression labels based on FACS. 

The feature vector consists of 84 dimensional distance 

ratios and 88 dimensional angles that are extracted from the 

facial landmarks [32].  

MNIST dataset [33]: The Modified National Institute of 

Standards and Technology (MNIST) dataset contains 

images of handwritten digits and is also widely used for an 

evaluation in the field of machine learning. The images  

were normalized to a 28 pixel × 28 pixel resolution with  

grayscale values. The MNIST dataset includes 60,000 

training samples and 10,000 testing samples. 

IRIS dataset [34]: The IRIS dataset includes three iris  

species (setosa, versicolor, and virginica) and four 

dimensional feature vectors (sepal length, sepal width, petal 

length, and petal width) and consists of 150 samples.  

WDBC dataset [35]: The Wisconsin Diagnostic Breast 

Cancer (WDBC) dataset provides the diagnosis results of 

the Wisconsin University Hospital. It is composed of two 

category labels, malignant and benign, with 212 and 357 

images, respectively. The feature vectors of the WDBC 

dataset consist of 32 variables, including the patient id, 

diagnosis, radius, texture, perimeter, area, smoothness, 

compactness, concavity, and symmetry.  

ORL dataset [36]: The Orivetti Research Lab (ORL) 

dataset contains a set of facial images taken at AT&T 

Laboratories Cambridge. It offers 400 grayscale images  

with a pixel resolution of 64 × 64 captured from 40 distinct 

subjects. Some images were taken at different times, with  

varying lighting and facial emotions (open/closed eyes, 

smiling/not smiling) and facial details (glasses /no glasses).  

During the experiments, CK+, IRIS, and WDBC dataset 

use different type of feature vectors without the feature 

encoder layer (first layer). In other two datasets, image is 

inputted into a feature encoder layer for feature extraction. 

4.2. Evaluation of deep RF models  

One way to prove the interpretability of a model is to 

show its simplicity. Therefore, during this experiment, we 

first compared the numbers of rules, parameters, and 

operations used in the model, and the accuracy, while 

reducing the model size for the deep RF based methods. 

To verify the effectiveness of the rule elimination  

scheme, we compared its performance with that of two 

representative deep RF based methods by varying the ratios 

of the rules from 1.0 to 0.6: (1) iLMRF, (2) gcForest [7], 

and (3) FTDRF [8]. Tables 2 and 3 demonstrate the 

performance according to the rule ratios using the CK+ and 

MNIST datasets, respectively. As we can see from Table 2, 

when iLMRF is trained using fully connected rules with  

CK+ facial landmark features , the accuracy is somewhat 

higher than that of gcForest (3.89%) and FTDRF (1.19% )  

despite using a slightly smaller number of trees (rules) and 

RFs. The numbers of parameters and operations of iLMRF 

are also 5.5- and 6.4-times lower than those of gcForest, and 

1.9-and 3.9-times lower than those of FTDRF, respectively. 

However, when we reduced the rule ratio by 40%, the 

Table 2. Comparison of accuracy, number of rules, number of parameters (#Param.), and number of operations (#Op.) between DF models 

according to the rule ratios using the CK+ dataset  

Rule 

ratio 

Accuracy (%) Rules (M) # Param. (M) # Op. (M) 

iLMRF gcForest FTDRF iLMRF gcForest FTDRF iLMRF gcForest FTDRF iLMRF gcForest FTDRF 

1.0 93.60 89.71 92.41 0.12 0.16 0.13 0.53 2.90 2.51 0.0060 0.0381 0.0233 

0.9 92.86 90.00 92.15 0.11 0.15 0.12 0.51 2.78 2.39 0.0060 0.0381 0.0232 

0.8 92.50 89.92 92.24 0.09 0.13 0.10 0.47 2.59 2.22 0.0059 0.0380 0.0231 

0.7 91.87 89.92 92.18 0.08 0.12 0.09 0.44 2.38 2.03 0.0059 0.0379 0.0230 

0.6 91.05 89.73 92.04 0.07 0.10 0.08 0.39 2.16 1.83 0.0058 0.0377 0.0228 
 

Table 3. Comparison of accuracy, number of rules, number of parameters (#Param.), and number of operations (#Op.) between DF models 

according to the rule ratios using the MNIST dataset  

Rule 

ratio 

Accuracy (%) Rules (M) # Param. (M) # Op. (M) 

iLMRF gcForest FTDRF iLMRF gcForest FTDRF iLMRF gcForest FTDRF iLMRF gcForest FTDRF 

1.0 97.98 98.77 98.57 0.08 0.94 0.26 2.12 26.42 7.17 0.0089 0.0852 0.0296 

0.9 97.77 98.73 98.57 0.08 0.85 0.23 2.00 24.79 6.76 0.0088 0.0851 0.0294 

0.8 97.41 98.74 98.57 0.07 0.76 0.21 1.86 22.98 6.28 0.0087 0.0850 0.0293 

0.7 96.86 98.76 98.47 0.06 0.66 0.18 1.71 20.98 5.75 0.0087 0.0849 0.0292 

0.6 96.00 98.75 98.39 0.05 0.57 0.16 1.54 18.86 5.19 0.0086 0.0850 0.0291 

 



 

12 

accuracy of iLMRF decreased by 2.1% compared with the 

fully connected rules, although the relative accuracy is still 

higher than that of gcForest and FTDRF. Because iLMRF 

originally used fewer rules, the more rules that are removed,  

the lower the performance compared to the other methods. 

However, the required numbers of parameters  and 

operations for a compressed iLMRF are 5.4- and 6.4-times  

smaller than those of gcForest, and 4.6- and 3.9-times  

smaller than those of FTDRF.  

As shown in Table 3, the three algorithms used a feature 

encoder layer to transform the MNIST images into a new 

input vector. The original iLMRF using fully connected 

rules has a slightly lower accuracy than that of gcForest and 

FTDRF because it uses a smaller number of trees (rules) 

and RFs. For example, gcForest and FTDRF use 3.25- and 

11.8-times more rules than iLMRF, respectively. In 

addition, iLMRF also has 12.5- and 9.6-times fewer 

parameters and operations  than gcForest, and 3.4- and 3.3-

times fewer parameters and operations  than FTDRF. When 

we reduce the rule ratio by 40%, the accuracy of iLMRF is 

only 1.9% lower than that of gcForest and FTDRF. 

However, the number of rules learned by iLMRF is 

approximately 11-times lower than that of gcForest and 3-

times lower than that of FTDRF. In addition, the numbers 

of parameters and operations of iLMRF are 12.3- and 9.7-

times lower than those of gcForest, and 3.4- and 3.4-times  

lower than those of FTDRF, respectively. From the results, 

we can see that the proposed rule elimination effectively  

reduces the number of parameters  and operations, and a 

finer gap in the accuracy of iLMRF may be sufficiently  

acceptable for a real-time embedded system.  

To evaluate the performance of the algorithm on more 

diverse datasets, we conducted the same experiment on the 

IRIS, WDBC, and ORL datasets. As shown in Tables 4, 5, 

and 6, although iLMRF uses much fewer parameters and 

operations, it demonstrates a similar accuracy as gcForest 

and FTDRF. Based on the experiment results , we confirmed  

that iLMRF achieves an efficient rule compression among 

deep RF models in terms of both memory and the number 

of computations. Exceptionally, our approach has slightly 

less maintainability in terms of accuracy than gcForest and 

FTDRF according to the changing rule elimination ratio for 

the ORL dataset. The reason for this is that the original 

iLMRF consists of small networks with only a few core 

rules, although gcForest and FTDRF models have a higher 

rule redundancy in the network. Therefore, although the 

rules of the two comparison methods are reduced, most of 

the duplicated rules are removed, and thus the performance 

is not significantly reduced. 
Overall, although the three methods commonly remove 

numerous rules compared to their original model, gcForest 

and FTDRF still contain larger rules from a minimum of 

1.6- (gcForest of ORL) to a maximum of 7.5-times  

(gcForest of IRIS) those of iLMRF, although the accuracies 

remain similar. 

4.3. Comparison with state-of-the-art methods 

An additional experiment was conducted on the CK+ 

dataset to test whether the proposed algorithm effectively  

recognizes the facial expressions, and the performance was 

compared with other state-of-the-art-methods, namely, an 

AlexNets-based FER approach [37]; a 3D CNN-based FER 

approach with deformable facial action parts constrained 

(3DCNN-DAP) [38]; a DNN-based approach that uses 

multiple inception layers [39]; a 3D Inception-ResNet 

(3DIR) with LSTM for the FER [40]; a fast FER based on 

a hierarchical weighted RF (H-WRF) [27]; three DRF-

based methods, i.e., gcForest [7], FTDRF [8], and LMRF 

[24]; and the proposed iLMRF. The deep RF based methods, 

gcForest, FTDRF, and iLMRF, exploited a feature vector 

consisting of an 84-dimensional distance ratio and an 88-

dimensional angle ratio [27] without using the entire image.  

As shown in Table 7, although 30% of the rules are 

removed through a rule elimination from the original 

iLMRF model, the resulting accuracy is only 1.3% less than 

that of the approaches described in [39] and [40]. However, 

the overall numbers of parameters and operations are 

significantly reduced compared to the two DNN-based  

algorithms. In the second comparison, we conducted a test 

on the MNIST dataset and compared the performance 

Table 4. Comparison of accuracy and numbers of rules among three 
deep RF models according to changes in rule elimination using 
IRIS dataset 

Rule 

ratio 

Accuracy (%) # Rules (M) 

iLMRF gcForest FTDRF iLMRF gcForest FTDRF 

1.0 100.00 98.00 100.00 0.0046 0.0362 0.0137 

0.9 100.00 98.00 100.00 0.0046 0.0362 0.0137 

0.8 100.00 98.00 100.00 0.0046 0.0329 0.0136 

0.7 98.00 98.00 100.00 0.0039 0.0287 0.0120 

0.6 100.00 98.00 100.00 0.0033 0.0248 0.0096 

Table 5. Comparison of accuracy and numbers of rules among three 
deep RF models according to changes in rule elimination using 
WDBC dataset 

Rule 

ratio 

Accuracy (%) # Rules (M) 

iLMRF gcForest FTDRF iLMRF gcForest FTDRF 

1.0 96.49 95.21 97.34 0.0063 0.0450 0.0256 

0.9 96.49 95.21 97.34 0.0063 0.0450 0.0247 

0.8 96.49 95.21 97.34 0.0057 0.0385 0.0227 

0.7 96.49 95.74 97.34 0.0050 0.0350 0.0199 

0.6 96.49 95.74 96.81 0.0044 0.0298 0.0168 

Table 6. Comparison of accuracy and numbers of rules among three 
deep RF models according to changes in rule elimination using 
ORL dataset 

Rule 

ratio 

Accuracy (%) # Rules (M) 

iLMRF gcForest FTDRF iLMRF gcForest FTDRF 

1.0 97.50 97.50 90.00 0.0595 0.0957 0.1133 

0.9 97.50 97.50 90.00 0.0543 0.0893 0.1045 

0.8 97.50 97.50 90.00 0.0481 0.0786 0.0925 

0.7 87.50 97.50 90.00 0.0422 0.0702 0.0809 

0.6 87.50 97.50 90.00 0.0362 0.0594 0.0696 
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between the three state-of-the-art CNN-based methods and 

two deep RF methods, namely, ResNet-101 [41] and two 

CNN compression networks, shuffleNetV2 [42] and 

MovileNetV2 [43]; deep RF-based methods, i.e., gcForest 

[7], FTDRF [8], and LMRF [24]; and the proposed iLMRF. 

Table 8 shows that the accuracy of the original iLMRF is 

similar to that of the state-of-the-art methods. When 40% of 

the rules of the iLMRF are removed, only a 2% decrease in 

the existing accuracy occurs. The reduced accuracy can be 

overcome when considering the effectiveness of the 

numbers of parameters and operations of the iLMRF when 

compared against other CNN-based compression 

algorithms [42] [43]. For example, in the case of 

MobileNetV3, the accuracy is 2.6% higher than that of 

iLMRF (0.6), although the number of operations of iLMRF 

is 1,929-times higher.  

Through the two experiments, we know that the proposed 

method can derive outstanding compression performances 

in terms of the numbers of parameters and operations while 

maintaining the level of accuracy, and will be an 

opportunity to extend the range of iLMRF applications to 

low-end systems. 

4.4. Feature interpretability  

As another example indicating that the proposed iLMRF 

is interpretable, we graphically presented the contributions 

of the features used to classify the classes in the two RF 

nodes in the first layer. As shown in Fig. 2, when using the 

IRIS dataset for classification, petal length and petal width 

are indicated as important features in the first RF, whereas 

only petal length is marked as an important feature in the 

second RF. 

We also analyzed the interpretability of the feature 

contribution using the ORL dataset. The iLMRF 

redistributes the class prediction backwards using the local 

feature contribution until it assigns a relevance score to 

each input variable, similar to a heat map [14]. In Fig. 3, we 

can see which feature variables (pixels) are valuable for 

classifying objects from the input image. From the results, 

we can confirm that the feature contribution used for the 

rule elimination also provides a heat map for intuitively  

verifying the results along with the interpretation. 

5. Conclusion 

In this paper, an interpretation and simplification method 

for a black box deep RF model using rule elimination based 

on the feature contribution and pattern was proposed. The 

model interpretation and simplification are achieved by 

analyzing the importance of the features on the sub-optimal 

space of each node from a fully trained iLMRF and 

eliminating the low contribution rules. Although DNN-

based model compression methods should consider the 

trade-off regarding the number of parameters and the 

performance, the experimental results proved that the 

proposed method effectively reduces the number of rules, 

parameters, and operations without a decrease in 

performance. In addition, unlike a black box model, we can 

interpret which features contribute most to the decision 

making of the iLMRF before making the final decision 

through the rule elimination process. However, the 

proposed iLMRF interpretation method is not a fully white 

model because it still contains numerous rules and feature 

parameters. A future study will focus on the design of a 

fully interpretable model that is human understandable 

through a depth-wise analysis of the rules. 

Table 7. Comparison of accuracy (Acc.), numbers of parameters 
(# Param.), and numbers of operations (#Op.) with the state-of-
the-art methods using the CK+ dataset 

Methods Acc. (%)  # Param.(M)    # Op. (M) 

AlexNets [37] 92.2 62.3 720 

3DCNN-DAP [38] 92.4 70 174 

Multiple Inception [39] 93.2 12.36 23.7 

3DIR with LSTM [40] 93.2 10.90 18.9 

H-WRF [27] 92.6 0.25 0.0067 

gcForest [7] 89.7 2.90 0.0381 

FTDRF[8] 92.4 2.51 0.0233 

LMRF (1.0)[24] 93.6 0.53 0.0060 

iLMRF (0.8) 92.5 0.47 0.0059 

iLMRF (0.7) 91.9 0.44 0.0059 

Table 8. Comparison of accuracy (Acc.), numbers of parameters 
(# Param.), and numbers of operations (#Op.) with the state-of-
the-art methods using the MNIST dataset 

Methods Acc. (%)  # Param. (M) # Op.(M) 

ResNet-101[41] 98.3 42 212 

ShuffleNetV2[42] 97.0 1.3 2.7 

MobileNetV2[43] 98.5 2.24 11.02 

MobileNetV3[44] 98.6 1.66 16.59 

gcForest [7] 98.8 26.42 0.085 

FTDRF[8] 98.6 7.17 0.029 

iLMRF (1.0)  98.0 2.12 0.0089 

iLMRF (0.8) 97.4 1.86 0.0087 

iLMRF (0.6) 96.0 1.54 0.0086 

 

 
Figure 2. Feature contribution in classifying IRIS dataset using 
iLMRF: (a), (b) feature contributions of two RFs in the first layer.  

 

 

 
Figure 3. Visual attention heat map based on feature contributions 

in the ORL dataset. A heat map identifies pixels that are pivotal for 

the classification of an individual person. 
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