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Abstract

This paper proposes a new framework for the design of evolutionary multi-objective optimization (EMO) algorithms. The main

characteristic feature of the proposed framework is that the optimization result of an EMO algorithm is not the final population

but a subset of the examined solutions during its execution. As a post-processing procedure, a pre-specified number of solutions

are selected from an unbounded external archive where all the examined solutions are stored. In the proposed framework, the

final population does not have to be a good solution set. The point of the algorithm design is to examine a wide variety of

solutions over the entire Pareto front and to select well-distributed solutions from the archive. In this paper, first we explain

difficulties in the design of EMO algorithms in the existing two frameworks: non-elitist and elitist. Next, we propose the new

framework of EMO algorithms. Then we demonstrate advantages of the proposed framework over the existing ones through

computational experiments. Finally we suggest some interesting and promising future research topics.
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A New Framework of Evolutionary Multi-Objective 
Algorithms with an Unbounded External Archive 

Hisao Ishibuchi1 and Lie Meng Pang1 and Ke Shang1 
 
Abstract.1 This paper proposes a new framework for the design of 
evolutionary multi-objective optimization (EMO) algorithms. The 
main characteristic feature of the proposed framework is that the 
optimization result of an EMO algorithm is not the final population 
but a subset of the examined solutions during its execution. As a 
post-processing procedure, a pre-specified number of solutions are 
selected from an unbounded external archive where all the 
examined solutions are stored. In the proposed framework, the final 
population does not have to be a good solution set. The point of the 
algorithm design is to examine a wide variety of solutions over the 
entire Pareto front and to select well-distributed solutions from the 
archive. In this paper, first we explain difficulties in the design of 
EMO algorithms in the existing two frameworks: non-elitist and 
elitist. Next, we propose the new framework of EMO algorithms. 
Then we demonstrate advantages of the proposed framework over 
the existing ones through computational experiments. Finally we 
suggest some interesting and promising future research topics. 

1 INTRODUCTION 
Evolutionary multi-objective optimization (EMO) has been an 
active research area in the last three decades [1]. An m-objective 
minimization problem is written as follows:  

 
Minimize  f1(x),  f2(x),  ...,  fm(x), (1) 

subject to x S n , (2) 
 
where fi(x) is the ith objective function to be minimized (i = 1, 2, ..., 
m), x is an n-dimensional decision vector (x = (x1, x2, ..., xn)T), and 
S is the feasible region of x. This problem has an n-dimensional 
decision space and an m-dimensional objective space.  

A solution x in the n-dimensional decision space is mapped by 
the objective functions to a point f(x) = (f1(x),  f2(x),  ...,  fm(x))T in 
the m-dimensional objective space. Objective functions are usually 
conflicting with each other. That is, any single solution cannot 
simultaneously optimize all objective functions. Good solutions for 
some objective functions are not good for others. In multi-objective 
optimization, solutions are compared using the Pareto dominance 
relation defined as follows: A solution a is referred to as being 
dominated by another solution b when the following two relations 
hold: fi(b)   fi(a) for i = 1, 2, ..., m and fj(b) < fj(a) for at least one j. 
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Using this relation, some basic concepts of optimality are defined 
for multi-objective optimization as follows:  

Definition 1 (Pareto Optimal Solution): If a solution a is not 
dominated by any other feasible solutions in S of the multi-
objective problem, a is a Pareto optimal solution. 

Definition 2 (Pareto Optimal Solution Set): The Pareto optimal 
solution set of the multi-objective problem is the set of all Pareto 
optimal solutions.  

Definition 3 (Pareto Front): The Pareto front of the multi-
objective problem is the set of points f(x) in the objective space 
corresponding to all Pareto optimal solutions. That is, the Pareto 
front is the projection of the Pareto optimal solution set to the 
objective space by f(x).  

When m = 2 (i.e., two-objective problem), the Pareto front is the 
tradeoff curve between the two objective functions in the two-
dimensional objective space. When m = 3 (i.e., three-objective 
problem), the Pareto front is the tradeoff surface among the three 
objective functions in the three-dimensional objective space. 

Various EMO algorithms have been proposed to approximate 
the entire Pareto front of the multi-objective problem using a finite 
number of solutions (e.g., 100 solutions). One clear advantage of 
using population-based search (including EMO algorithms) over 
other approaches is that a set of solutions can be obtained by a 
single run. Moreover, we can obtain an arbitrary number of 
solutions since the population size is a user-defined parameter in 
population-based search. The final population is presented to 
human users as the result of multi-objective optimization. In the 
EMO community, it is assumed that the selection of a single final 
solution is performed by a decision maker. Thus, the task of EMO 
algorithms is to present a pre-specified number of well-distributed 
solutions over the entire Pareto front to the decision maker. 

EMO algorithms are usually classified into two categories based 
on their generation update mechanisms: non-elitist and elitist [1]. 
In the non-elitist framework, the current population is entirely 
replaced by a newly generated offspring population as shown in 
Fig. 1. Even if a good solution is included in the current population, 
it cannot survive to the next population.  

 

 
Figure 1. Generation update in non-elitist EMO algorithms. 

 
This framework is inefficient since any good solutions cannot 

be used to generate offspring solutions over multiple generations. 



Moreover, any good solutions generated in the middle of evolution 
are not included in the final population unless they are generated 
again at the end of evolution. The main difficulty of the non-elitist 
framework is that the final offspring population is used as the final 
solution set. Thus, all solutions in the final offspring population 
should be good and well-distributed over the entire Pareto front.  

In early 1990s, some well-known non-elitist algorithms were 
proposed such as MOGA [2] (Multi-Objective Genetic Algorithm), 
NSGA [3] (Non-dominated Sorting Genetic Algorithm), and 
NPGA [4] (Niched-Pareto Genetic Algorithm). Then, in late 1990s, 
Zitzler and Thiele [5] demonstrated that their elitist algorithm 
called SPEA (Strength Pareto Evolutionary Algorithm) clearly 
outperformed non-elitist algorithms. In the elitist framework, good 
solutions can survive to the next generation as shown in Fig. 2. 
They can be used to generate offspring solutions over multiple 
generations. Since the next population is selected from the current 
and offspring populations, the offspring population does not have 
to be a good solution set. It may be enough to include a few better 
solutions than the current ones. The elitist framework is clearly 
more efficient than the non-elitist framework. Since the proposal of 
SPEA [5], a number of elitist EMO algorithms have been proposed 
in the literature, which will be explained later in Section 2.  

 

 
Figure 2. Generation update in elitist EMO algorithms. 

 
Whereas the elitist framework is more efficient than the non-

elitist framework, it still has a difficulty related to the selection of 
the next population from the current and offspring populations. In 
single-objective optimization, if a solution x is better than another 
solution y in one generation, x is always better than y. However, 
when x and y are non-dominated in multi-objective optimization, 
the following situation can happen: x has a higher fitness than y in 
some generations, and y has a higher fitness in other generations. 
Let us consider an elitist EMO algorithm with the population size 5 
for a two-objective minimization problem with a linear Pareto front 
shown by the red line in Fig. 3 (a). We assume that the algorithm 
needs to choose five solutions from six solutions A-F as the next 
population. Of course, the true Pareto front is unknown. 

 

   
                   (a) Six solutions.                       (b) Ideal set of five solutions. 

Figure 3. Difficulty of selecting five good solutions from six solutions. 

In Fig. 3 (a), almost all elitist EMO algorithms delete solution E. 
This is because all solutions are non-dominated and E is closely 
located to its two neighbors D and F. Fig. 3 (b) shows an ideal set 
of five solutions to approximate the entire Pareto front. Solution E 
is one of the five ideal solutions in Fig. 3 (b) whereas it looks the 
worst in Fig. 3 (a). As shown in this simple example, solution 
evaluation in multi-objective optimization is very difficult. Good 
solutions can be deleted in the generation update phase even in the 
elitist framework. Some elitist algorithms such as SPEA [4] have a 
bounded external archive to store good solutions separately from 
the current population. In those algorithms, the external archive is 
used as the final result of multi-objective optimization. However, 
the same difficulty as in Fig. 3 exists in the archive update phase 
since the archive size is bounded (e.g., 100 solutions).  

To overcome this difficulty, we propose a new framework for 
the design of EMO algorithms. The proposed framework uses an 
unbounded external archive where all the examined solutions are 
stored. The final solution set is selected from the archive as shown 
in Fig. 4. The use of an unbounded external archive is not a new 
idea as we will explain later in Section 3. The new idea in this 
paper is to proposed the framework with an unbounded external 
archive for the design of new EMO algorithms. The proposed 
framework increases the flexibility of EMO algorithms since the 
final population does not have to be a good solution set (i.e., since 
it is not the final solution set). The proposed framework also 
improves the performance of existing algorithms since the final 
solution set is selected from all the examined solutions.  

 

 
Figure 4. Generation update in the proposed framework. 

 
The remainder of this paper is organized as follows. In Section 

2, we explain some well-known and frequently-used elitist EMO 
algorithms. We also explain why it is difficult for those algorithms 
to find well-distributed solutions over the entire Pareto front. In 
Section 3, we demonstrate that the proposed framework clearly 
improves the performance of the elitist EMO algorithms explained 
in Section 2. In Section 4, we suggest some interesting and 
promising future research directions in the proposed framework. 
Finally, we conclude this paper in Section 5. 

2 ELITIST EMO ALGORITHMS 
In the last two decades, various elitist EMO algorithms have 

been developed since the proposal of SPEA [5]. Those EMO 
algorithms are often categorized into three classes based on their 
fitness evaluation mechanisms. One is Pareto dominance-based 
algorithms such as SPEA [5] and NSGA-II [6] (the second version 
of NSGA). In this class, the Pareto dominance relation among 



solutions is used as the primary fitness evaluation criterion together 
with a diversity measure as a secondary criterion.  

Another class is indicator-based algorithms such as SMS-
EMOA [7] (S-Metric Selection Evolutionary Multi-objective 
Optimization Algorithm) and HypE [8] (Hypervolume Estimation 
algorithm). In this class, a multi-objective problem is handled as a 
single-objective problem to optimize a performance indicator 
which is used to evaluate a solution set (i.e., population). Fitness 
evaluation of each solution is based on its individual contribution 
to the performance indicator.  

The other class is decomposition-based algorithms where a 
multi-objective problem is decomposed into a number of single-
objective problems. Each single-objective problem has the same 
scalarizing function with a different weight vector. A wide variety 
of solutions are searched for by solving those single-objective 
problems in a cooperative manner. A representative of this class is 
MOEA/D [9] (Multi-Objective Evolutionary Algorithm based on 
Decomposition). Recently, a number of EMO algorithms in this 
class have been proposed such as NSGA-III [10] (the third version 
of NSGA) and MOEA/DD [11] (Multi-Objective Evolutionary 
Algorithm based on Dominance and Decomposition).  

Whereas the above-mentioned elitist algorithms outperform 
non-elitist algorithms, they also have their own disadvantages. In 
Pareto dominance-based algorithms, a diversity-related secondary 
criterion is used to choose the next population when the number of 
non-dominated solutions in the current and offspring populations is 
larger than the population size (since the Pareto dominance-based 
primary criterion gives the same fitness to all the non-dominated 
solutions). However, it is very difficult to appropriately specify the 
secondary criterion in a high-dimensional objective space. For 
example, NSGA-II uses the projection of solutions to each axis of 
the objective space to calculate the crowding distance. However, 
the importance of each solution in a high-dimensional objective 
space cannot be precisely measured by such a projection-based 
distance calculation. Fig. 5 shows experimental results by NSGA-II 
on the three-objective DTLZ2 [12] and Minus-DTLZ2 [13] test 
problems. The DTLZ2 test problem has been frequently used to 
evaluate recently-proposed EMO algorithms in the literature (e.g., 
[7]-[11]). The Minus-DTLZ2 test problem is a modified version of 
DTLZ2 where a minus sign “” is assigned to all objective 
functions to invert the shape of the Pareto front.  

 

                
        (a) NSGA-II on DTLZ2.                      (b) NSGA-II on Minus-DTLZ2. 

Figure 5.  Experimental results by NSGA-II (the final population). 
 
Our computational experiments are performed in the standard 

setting which has been commonly used in many other studies (e.g., 
[10], [11], [13]). The population size and the maximum number of 
generations are specified as 92 and 250, respectively. NSGA-II is 
applied to each test problem 21 times. A typical single run with the 
median evaluation is selected from the 21 runs. The hypervolume 
[14] of the final population is calculated to evaluate each run. In 

hypervolume calculation, the reference point (1.1, 1.1, 1.1)T is used 
in the normalized objective space with the ideal point (0, 0, 0)T and 
the nadir point (1, 1, 1)T. Fig. 5 shows the final population of the 
selected single run with the median hypervolume value for each 
test problem. We can observe that the obtained solutions are not 
well-distributed over the entire Pareto front of each test problem.  

Another difficulty of Pareto dominance-based algorithms is 
their poor scalability to many-objective problems [15], [16]. When 
a multi-objective problem has many objectives, almost all solutions 
in the current population become non-dominated with each other in 
early generations. In this situation, the Pareto dominance relation 
cannot generate strong selection pressure to push the population 
towards the Pareto front since it gives the same fitness value to 
almost all solutions. Thus the fitness of each solution is evaluated 
only by a diversity measure, which simply increases the diversity 
of solutions with almost no progress towards the Pareto front. For 
example, it was demonstrated through computational experiments 
in [17] that NSGA-II was outperformed by a random search-based 
method on DTLZ2 with 10, 15 and 20 objectives. 

In indicator-based algorithms such as SMS-EMOA [7] and 
HypE [8], the hypervolume indicator [14] has been frequently used. 
This is because no other unary indicator with the strictly Pareto 
compliant property is known [18]. The hypervolume indicator can 
generate a strong selection pressure towards the Pareto front even 
in the case of many objectives. At the same time, the diversity of 
solutions can be increased by the hypervolume indicator. It was 
reported in Wagner et al. [19] that SMS-EMOA outperformed 
NSGA-II (and some other EMO algorithms) in their applications to 
frequently-used test problems DTLZ1 [12] and DTLZ2 [12] with 
five and six objectives. One difficulty of indicator-based 
algorithms is their large computation load when they are applied to 
many-objective problems. This difficulty has been tackled from 
two directions: One is to increase the speed of exact hypervolume 
calculation [20], [21], and the other is to improve the accuracy of 
approximate hypervolume calculation [22], [23]. 

Another difficulty of hypervolume-based algorithms such as 
SMS-EMOA and HypE is that uniformly distributed solutions are 
not obtained for non-linear Pareto fronts. This is because a set of 
uniformly distributed solutions is not optimal for hypervolume 
maximization [24], [25]. In the same manner as Fig. 5, we perform 
computational experiments using SMS-EMOA. Experimental 
results are shown in Fig. 6. It is known that the obtained solution 
sets by SMS-EMOA depend on the reference point specification 
for hypervolume calculation [26], [27]. Especially when the Pareto 
front is inverted triangular, totally different solution sets can be 
obtained depending on the reference point specification. In Fig. 6, 
the same specification mechanism as in the original SMS-EMOA 
paper [7] is used (i.e., the reference point is the worst value of each 
objective in the current population plus 1.0).  

 

                 
    (a) SMS-EMOA on DTLZ2.               (b) SMS-EMOA on Minus-DTLZ2. 

Figure 6.  Experimental results by SMS-EMOA (the final population). 



We can observe that uniformly distributed solutions are not 
obtained in Fig. 6. In Fig. 6 (a), solutions are biased along the sides 
and around the center of the Pareto front. Similar distributions of 
solutions are always obtained independent of the location of the 
reference point for DTLZ2 unless the reference point is too close to 
the Pareto front [25]-[27]. In Fig. 6 (b), no solutions are obtained 
on the sides of the Pareto front of Minus-DTLZ2. When the 
reference point is far away from the Pareto front, many solutions 
are close to the sides of the Pareto front of Minus-DTLZ2 [25]-[27]. 
However, in this case, no solutions are obtained around the center 
of the Pareto front. This issue will be further discussed in Section 4. 

As shown in Fig. 6, uniformly distributed solutions cannot be 
obtained by hypervolume-based algorithms for non-linear Pareto 
fronts. This is because a uniform distribution of solutions is not 
optimal for hypervolume maximization. Some modifications of the 
hypervolume indicator (e.g., cone-based calculation [28]) have 
been proposed to search for a set of uniformly distributed solutions. 

In decomposition-based algorithms such as MOEA/D [9], a set 
of uniformly distributed weight vectors is generated using the Das 
and Dennis method [29]. More specifically, all weight vectors w = 
(w1, w2, ..., wm)T satisfying the following conditions are generated:   

 
w1 + w2 +  ...  + wm = 1, (3) 

wi








H
H

HH
...,,2,1,0 , (4) 

 
where H is an integer parameter which defines the number of 
weight vectors. The weight vectors are uniformly located on the 
region specified by the following relations: w1 + w2 +  ...  + wm = 1 
and 0 wi  1 for i = 1, 2, ..., m. The basic idea of decomposition-
based algorithms is to find well-distributed solutions by single-
objective optimization of a scalarizing function with each weight 
vector. The point is to perform single-objective optimization for all 
weight vectors in a cooperative manner, which leads to efficient 
population-based search for multi-objective optimization. Since a 
single solution is assigned to each weight vector (i.e., since each 
single-objective problem has a single solution), the population size 
is the same as the number of the weight vectors.  

We perform computational experiments using MOEA/D on the 
three-objective DTLZ2 and Minus-DTLZ2 test problems in the 
same manner as in Figs. 5 and 6. As in the original MOEA/D paper 
[9], the PBI (Penalty-based Boundary Intersection) function with 
the penalty parameter  = 5 is used as a scalarizing function. The 
integer parameter H is specified as H = 12 (i.e., the population size 
is 91). The total number of generations is 250 as in Figs. 5 and 6. 
Experimental results are shown in Fig. 7. The obtained solution set 
in Fig. 7 (a) on DTLZ2 is much better than those in Fig. 5 (a) and 
Fig. 6 (a) with respect to the uniformity of solutions. However, 
well-distributed solutions are not obtained in Fig. 7 (b) on Minus-
DTLZ2 where many solutions are around the sides of the Pareto 
front (but no solutions on the three corners). Since the distribution 
of the weight vectors in (3)-(4) is triangular, good results are not 
obtained for test problems with inverted triangular Pareto fronts 
such as Minus-DTLZ2 in Fig. 7 (b).  

As shown in Fig. 7, the performance of decomposition-based 
algorithms strongly depends on the shape of the Pareto front [13]. 
When the weight vector distribution in (3)-(4) is consistent with the 
Pareto front shape as in Fig. 7 (a), well-distributed solutions are 
obtained. However, when the weight vector distribution and the 
Pareto front shape are inconsistent as in Fig. 7 (b), solutions are 

biased towards some regions of the Pareto front. Currently, weight 
vector adaptation is a hot research topic to obtain well-distributed 
solutions for various shapes of Pareto fronts [30]-[32]. However, 
complicated mechanisms are needed to adjust the weight vectors 
(i.e., weight vector adjustment is not easy).  

 

                
   (a) MOEA/D-PBI on DTLZ2.            (b) MOEA/D-PBI on Minus-DTLZ2. 

Figure 7.  Experimental results by MOEA/D (the final population). 

3 PROPOSED EMO FRAMEWORK 
As we have already explained, it is not easy for EMO algorithms to 
obtain a well-distributed solution set over the entire Pareto front, 
especially for nonlinear inverted triangular Pareto fronts. One clear 
reason for this difficulty is that the final population is used as the 
final result of multi-objective optimization. As explained in Section 
1 using Fig. 3, good solutions may be obtained in the middle of 
evolution. However, they are not necessarily included in the final 
population. As a remedy of this difficulty, we propose a new EMO 
framework with an unbounded external archive where all the 
examined solutions during the execution of an EMO algorithm are 
stored. As a post-processing procedure, a pre-specified number of 
solutions are selected from the archive. The selected solutions are 
used as the final result of multi-objective optimization. In this 
manner, we can choose good solutions which are not included in 
the final population.  

The use of an unbounded external archive is not a new idea. For 
example, MOGLS (Multi-Objective Genetic Local Search [33]) 
proposed for multi-objective scheduling in late 1990s has an 
unbounded external archive where all non-dominated solutions are 
stored. Since multi-objective scheduling problems in [33] have a 
small number of Pareto optimal solutions, many non-dominated 
solutions are not obtained even when all non-dominated solutions 
are stored in the unbounded external archive. Thus, all the non-
dominated solutions among the examined ones are used as the final 
result of multi-objective optimization without worrying about the 
archive size. However, this framework has not been used in the 
mainstream of the EMO community where the focus has always 
been placed on continuous multi-objective optimization. In general, 
a continuous multi-objective optimization problem has an infinitely 
large number of Pareto optimal solutions. This is the main reason 
why an unbounded external archive has not been used in the 
mainstream of the EMO community. 

In some studies [34]-[36], an unbounded external archive was 
used to evaluate existing EMO algorithms. In Bringmann et al. [34], 
it was demonstrated that the performance of EMO algorithms was 
improved by solution selection where a pre-specified number of 
solutions were selected from stored non-dominated solutions. Their 
computational experiments were performed only for two-objective 
problems due to high computational complexity of indicator-based 
solution selection. In Ishibuchi et al. [35], an unbounded external 
archive was used for fair comparison of different EMO algorithms 



with different population size. By selecting the same number of 
non-dominated solutions from the archive as the final result of each 
algorithm, different EMO algorithms with different population size 
were fairly compared. In Tanabe et al. [36], EMO algorithms were 
compared in two performance comparison scenarios: One is based 
on the final population and the other is based on the selected 
solutions from the archive.  

Whereas an unbounded external archive was used in [34]-[36] 
for continuous multi-objective optimization, its purpose was for 
performance evaluation/comparison of existing EMO algorithms. 
In this paper, we propose the use of an unbounded external archive 
for the design of new EMO algorithms. That is, we propose a new 
framework for EMO algorithm design. 

In an EMO algorithm with the proposed framework, all the 
examined solutions are stored in an unbounded external archive. 
The final result of multi-objective optimization is a pre-specified 
number of solutions selected from the archive. Solution selection is 
a post-processing procedure after the execution of the EMO 
algorithm. In this section, we demonstrate how this framework can 
improve the performance of existing EMO algorithms using the 
experimental results in Section 2. 

Our experiments are performed using the selected run of each 
algorithm for each test problem in Section 2. In the selected run, all 
the examined solutions are stored in an unbounded external archive. 
After the execution of the selected run, all non-dominated solutions 
are selected from the stored solutions. Then, a pre-specified 
number of non-dominated solutions are selected using a distance-
based solution selection method of Singh et al. [37]. In order to 
compare the selected solution sets with the results in Section 2, the 
number of solutions to be selected is specified as the population 
size in each EMO algorithm. The solution selection method in [37] 
chooses one extreme non-dominated solution as the first solution, 
which has the best objective value for a randomly selected one 
objective function. The non-dominated solution with the largest 
distance from the first solution is selected as the second solution. 
The third solution is the non-dominated solution with the largest 
distance from the selected solution set including the first two 
solutions. In this manner, a pre-specified number of solutions are 
selected. This solution selection is similar to the method of Tanabe 
et al. [36] where m extreme non-dominated solutions are first 
selected for an m-objective problem. Each extreme solution has the 
best objective value for one of the m-objective functions. 

In Figs. 8-10, the selected solution sets are shown. It is clear 
from the comparison between Figs. 8-10 and Figs. 5-7 that the 
solution selection from all the examined solutions improves the 
uniformity of solutions in the final solution sets (i.e., the final 
results of multi-objective optimization). These experimental results 
support the usefulness of the proposed framework. 

 

                         
        (a) NSGA-II on DTLZ2.                      (b) NSGA-II on Minus-DTLZ2. 

Figure 8.  Experimental results by NSGA-II (the selected solutions). 

                
 (a) SMS-EMOA on DTLZ2.                  (b) SMS-EMOA on Minus-DTLZ2. 

Figure 9.  Experimental results by SMS-EMOA (the selected solutions). 
 

                
   (a) MOEA/D-PBI on DTLZ2.            (b) MOEA/D-PBI on Minus-DTLZ2. 

Figure 10.  Experimental results by MOEA/D (the selected solutions). 

4 FUTURE RESEARCH TOPICS 

4.1 New Algorithm Design 
In this paper, we proposed the use of the new framework for the 
design of EMO algorithms. The main future research topic is the 
design of new EMO algorithms using the proposed framework. In 
the proposed framework, the final population does not have to be a 
good solution set. Thus, we have much higher flexibility in the 
design of EMO algorithms than the case of the existing two 
frameworks: non-elitist and elitist. For demonstrating the high 
flexibility of algorithm design in the proposed framework, we 
show two examples in this subsection.  

One is the use of a dynamically changing reference point for 
hypervolume calculation in SMS-EMOA. Ishibuchi et al. [38] 
proposed an idea of gradually changing a reference point r = (r, 
r, ..., r)T in the normalized objective space from r = 10 at the initial 
population to r = 1 + 1/H at the final population (where H is the 
integer parameter in MOEA/D and can be calculated from the 
population size). The normalization of the objective space is 
performed in each generation so that the estimated ideal and nadir 
points by non-dominated solutions are (0, 0, ..., 0)T and (1, 1, ..., 
1)T, respectively. The specification of r as r = 1 + 1/H is to obtain a 
good final population. In the proposed framework, we do not have 
to worry about the distribution of solutions in the final population. 
The point of the algorithm design in the proposed framework is to 
examine a wide variety of solutions over the entire Pareto front 
during the execution of an EMO algorithm. As an example, we 
apply SMS-EMOA to the three-objective Minus-DTLZ2 problem 
in the same manner as in Fig. 6 (b) by changing the reference point 
r = (r, r, ..., r)T in the normalized objective space from r = 10 at the 
initial population to r = 1 at the final population. The large initial 
value and the small final value of r are to focus the search around 
the boundary and the center of the Pareto front, respectively. 
Experimental results are shown in Fig. 11. 



                
           (a) Final population.                                (b) Selected solutions. 

Figure 11.  Experimental results by SMS-EMOA with a dynamically 
changing reference point from r = 10 to r = 1.  

 
In Fig. 11 (a), many solutions are around the center of the 

Pareto front. However, well-distributed solutions are selected in 
Fig. 11 (b). This example clearly shows that the final population 
does not have to be a good solution set. As explained in Section 2, 
it is difficult to obtain a well-distributed solution set as the final 
population of SMS-EMOA for Minus-DTLZ2. For comparison, we 
also show experimental results of SMS-EMOA with two different 
settings of a dynamically changing reference point. In one setting, 
the reference point r = (r, r, r)T is changed from r = 10 to r = 2. In 
the other setting, it is changed from r = 1 to r = 10. Experimental 
results are shown in Fig. 12 and Fig. 13, respectively. The final 
population in Fig. 12 (a) is better than that in Fig. 11 (a) since r = 2 
is a better setting than r = 1 as the final location of the reference 
point. However, the uniformity of the obtained solutions in Fig. 12 
(a) is not very good if compared with the selected solutions in Fig. 
12 (b). In Fig. 13 (a), many solutions are close to the sides of the 
Pareto front. This is because r = 10 is too large as the final location 
of the reference point (i.e., the reference point is too far away from 
the Pareto front). Even in this case, a good solution set is obtained 
in Fig. 13 (b) by the solution selection from all the examined 
solutions. This is because many solutions around the center of the 
Pareto front were examined during the execution of SMS-EMOA 
whereas they are not included in the final population in Fig. 13 (a). 

                
           (a) Final population.                                (b) Selected solutions. 

Figure 12.  Experimental results by SMS-EMOA with a dynamically 
changing reference point from r = 10 to r = 2.  

                
           (a) Final population.                                (b) Selected solutions. 

Figure 13.  Experimental results by SMS-EMOA with a dynamically 
changing reference point from r = 1 to r = 10. 

The idea of a dynamically changing reference point can also be 
used in decomposition-based algorithms. Most decomposition-
based algorithms need to specify the origin of weight vectors in the 
objective space (which is called the reference point in the original 
MOEA/D paper [9]). In MOEA/D, the estimated nadir point zNad is 
used as the origin of weight vectors. We examine a variant of 
MOEA/D with the PBI function ( = 5) where the origin of weight 
vectors is gradually changed from the standard specification (i.e., 
zNad) in MOEA/D at the initial population to the standard 
specification minus 10 (i.e., zNad  (10, 10, 10)T) at the final 
population. Since the objective space is not normalized in the 
original MOEA/D algorithm, we do not used the normalized 
objective space for computational experiments using MOEA/D. 
Experimental results are shown in Fig. 14. Since the origin of 
weight vectors is far away from the Pareto front at the final 
population, only a single solution is obtained around the center of 
the Pareto front in Fig. 14 (a). However, well-distributed solutions 
are obtained in Fig. 14 (b) by the solution selection from the 
examined solution. For comparison, we perform computational 
experiments by changing the reference point in the opposite way 
from zNad  (10, 10, 10)T to zNad. Experimental results are shown in 
Fig. 15. Whereas the final population in Fig. 15 (a) is totally 
different from that in Fig. 14 (a), similar solution sets are selected 
in Fig. 14 (b) and Fig. 15 (b). This observation suggests that the 
point of algorithm design in the proposed framework is not to find 
a good final population but to examine a wide variety of solutions 
over the entire Pareto front during the execution of the algorithm.  

 

                
           (a) Final population.                                  (b) Selected solutions. 

Figure 14.  Experimental results by MOEA/D with a dynamically changing 
reference point from zNad to zNad  (10, 10, 10)T.  

 

                
           (a) Final population.                                  (b) Selected solutions. 

Figure 15.  Experimental results by MOEA/D with a dynamically changing 
reference point from zNad  (10, 10, 10)T to zNad.  

 
These two examples suggest the possibility of the proposed 

framework to develop new high-performance EMO algorithms, 
which are not necessarily suitable for the existing two frameworks. 
Figs. 11-15 (b) also suggest robust performance of the proposed 
framework in comparison with the elitist framework in Figs. 11-15 
(a). Design and evaluation of new EMO algorithms in the proposed 
framework are the main future research topics. 



It should be noted here that all computational experiments are 
performed in the same manner as in Section 2 and Section 3. That 
is, each algorithm is applied to the test problem 21 times. A single 
run with the median hypervolume value (calculated for the final 
population) is selected from the 21 runs as a typical run. Then, the 
final population and the selected solutions are compared for the 
selected run in each figure.  

4.2 Maintenance of External Archive 
In our computational experiments in this paper, all the examined 
solutions are simply stored in an unbounded external archive. After 
the execution of each EMO algorithm, non-dominated solutions are 
selected from the archive. Then, a pre-specified number of non-
dominated solutions are selected as the final solution set. Since the 
final solution set is always selected from non-dominated solutions, 
the archive can be maintained periodically by removing dominated 
solutions. However, the archive maintenance at every generation is 
not likely to be a good idea since it leads to a huge computational 
overhead. Analysis of optimal archive maintenance (e.g., optimal 
archive maintenance frequency) is an interesting future research 
topic. Development of an efficient method to select non-dominated 
solutions from all the examined solutions is also an important 
future research issue since non-dominated sorting has usually been 
discussed for a relatively small solution set for generation update 
and bounded external archive maintenance in the literature.  

In the proposed framework, we assume that an unbounded 
external archive is used simply to store all the examined solutions. 
That is, we do not assume any utilization of the stored solutions. 
However, it is possible to utilize the stored solutions to evaluate 
current solutions and/or to generate new solutions. For example, 
the stored solutions can be used as a kind of reference points for 
evaluating the fitness of each solution in the current population. 
The distribution of the stored solutions can be used to navigate 
population-based multi-objective search towards less explored 
regions in the decision or objective space. Some stored solutions 
close to those less-explored regions can be used as parents to 
increase the diversity of offspring solutions.  

4.3 Solution Selection 
In our computational experiments in this paper, we used the 
distance-based solution selection method in [37]. Whereas it is 
efficient (i.e., it is fast even for a large solution set), it is not 
necessarily the best solution selection method with respect to the 
quality of selected solutions. As in Bringmann et al. [34], we can 
use a performance indicator for solution selection. A wide variety 
of performance indicators have been proposed in the literature [39]. 
Most performance indicators can be used for solution selection. 
This is because they have been proposed to evaluate a solution set. 
In principle, we can use any performance indicator as an objective 
function to search for the best solution set with respect to the used 
indicator. For example, by using the IGD (inverted generational 
distance) indicator [40], we may be able to obtain more uniformly 
distributed solutions than distance-based solution selection. This is 
because IGD minimization leads to higher uniformity of solutions 
than the use of other performance indicators as objective functions 
such as hypervolume maximization [26], [41]. Proposal of new 
solution selection methods is a promising future research direction. 
This is because solution selection from a large solution set in a 

high-dimensional objective space has not been discussed in many 
studies in the literature. 

A related important future research topic is to discuss the 
following fundamental question: “What is a good solution set?” In 
this paper, we implicitly assume that a well-distributed solution set 
over the entire Pareto front is a good solution set. However, the 
answer to this question depends on the request from the decision 
maker in a multi-objective problem at hand. If the decision maker 
wants to understand the shape of the entire Pareto front, a well-
distributed solution set over the entire Pareto front may be a good 
solution set. A large number of non-dominated solutions may be 
needed in this case. However, if the decision maker wants to 
choose a single final solution after quickly examining only a small 
number of promising or representative solutions, it is unclear 
whether a well-distributed solution set over the entire Pareto front 
including boundary solutions is a good solution set or not. This is 
because solutions on the boundary of the Pareto front usually show 
imbalanced tradeoff where some objectives are very good but 
others are very bad. 

5 CONCLUSION 
In this paper, we proposed a new framework for the design of 
EMO algorithms. In the proposed framework, all the examined 
solutions are stored in an unbounded external archive. The final 
solution set is selected from the archive. The proposed framework 
has at least two advantages over the existing non-elitist and elitist 
frameworks. One is its high performance. In principle, the selected 
solution set is better than or at least the same as the final population 
since good solutions are selected from all the examined solutions 
(if a good solution selection method is used). Another advantage is 
its high flexibility. Since the final population does not have to be a 
good solution set, we have a large variety of possible choices in the 
design of EMO algorithms as demonstrated in Subsection 4.1. One 
disadvantage is the computation overhead of post-processing for 
solution selection. This computation overhead can be negligible in 
real-world applications where solution evaluation is expensive (e.g., 
a few minutes is needed to evaluate a single solution). Another 
disadvantage is an additional memory requirement for storing all 
the examined solutions. This may be also negligible except for the 
case of very large-scale multi-objective problems with millions of 
decision variables. Moreover, the total number of examined 
solutions is usually limited in real-world applications since solution 
evaluation is expensive. The main future research topics are the 
design of new high-performance EMO algorithms in the proposed 
framework and their performance evaluation for multi-objective 
and many-objective problems. Archive maintenance and solution 
selection are also promising future research topics. 
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