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Abstract

The Kalman filter requires knowledge of the noise statistics; however, the noise covariances are generally unknown. Although

this problem has a long history, reliable algorithms for their estimation are scant, and necessary and sufficient conditions for

identifiability of the covariances are in dispute. We address both of these issues in this paper. We first present the necessary

and sufficient condition for unknown noise covariance estimation; these conditions are related to the rank of a matrix involving

the auto and cross-covariances of a weighted sum of innovations, where the weights are the coefficients of the the minimal

polynomial of the closed-loop system transition matrix of a stable, but not necessarily optimal, Kalman filter. We present an

optimization criterion and a novel six-step approach based on a successive approximation, coupled with a gradient algorithm

with adaptive step sizes, to estimate the steady-state Kalman filter gain, the unknown noise covariance matrices, as well as

the state prediction (and updated) error covariance matrix. Our approach enforces the structural assumptions on unknown

noise covariances and ensures symmetry and positive definiteness of the estimated covariance matrices. We provide several

approaches to estimate the unknown measurement noise covariance R via post-fit residuals, an approach not yet exploited in

the literature. The validation of the proposed method on five different test cases from the literature demonstrates that the

proposed method significantly outperforms previous state-of-the-art methods. It also offers a number of novel machine learning

motivated approaches, such as sequential (one sample at a time) and mini-batch-based methods, to speed up the computations.
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ABSTRACT The Kalman filter requires knowledge of the noise statistics; however, the noise covariances
are generally unknown. Although this problem has a long history, reliable algorithms for their estimation
are scant, and necessary and sufficient conditions for identifiability of the covariances are in dispute. We
address both of these issues in this paper. We first present the necessary and sufficient condition for unknown
noise covariance estimation; these conditions are related to the rank of a matrix involving the auto and
cross-covariances of a weighted sum of innovations, where the weights are the coefficients of the the minimal
polynomial of the closed-loop system transition matrix of a stable, but not necessarily optimal, Kalman filter.
We present an optimization criterion and a novel six-step approach based on a successive approximation,
coupled with a gradient algorithm with adaptive step sizes, to estimate the steady-state Kalman filter gain,
the unknown noise covariance matrices, as well as the state prediction (and updated) error covariance matrix.
Our approach enforces the structural assumptions on unknown noise covariances and ensures symmetry and
positive definiteness of the estimated covariance matrices. We provide several approaches to estimate the
unknown measurement noise covarianceR via post-fit residuals, an approach not yet exploited in the literature.
The validation of the proposed method on five different test cases from the literature demonstrates that the
proposed method significantly outperforms previous state-of-the-art methods. It also offers a number of novel
machine learning motivated approaches, such as sequential (one sample at a time) and mini-batch-based
methods, to speed up the computations.

INDEX TERMS adaptive filtering, Kalman filter, minimal polynomial, noise covariance estimation, adaptive
gradient descent.

I INTRODUCTION
The Kalman filter (KF) [23] is the optimal state
estimator for linear dynamic systems driven by
Gaussian white noise with measurements corrupted
by Gaussian white noise 1. In the classical design of

1The KF is also the best linear estimation algorithm when
the noises are non-Gaussian with known covariances [2].

a Kalman filter, the noise covariance matrices are
assumed known and they, along with the system dy-
namics, determine the achievable filter’s accuracy.
However, in many practical situations, including
noisy feature data in machine learning, the statistics
of the noise covariances are often unknown or
only partially known. Thus, noise identification
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is an essential part of adaptive filtering. Adaptive
filtering has numerous applications in engineering
[36], machine learning [9], econometrics [11],
weather forecasting [10], [20], [35], [44], to name
a few.

We were motivated by the following learning
problem: Given a vector time series and a library
of models of system dynamics for the data (e.g., a
Wiener process, a white noise acceleration model,
also called nearly constant velocity model, or a
white noise jerk model, also called nearly constant
acceleration model), find a suitable process noise
and measurement noise model and the best system
dynamics for the time series. The problem we
consider in this paper is limited to finding a suitable
process noise and measurement noise covaraiance
for a given dynamic model.

I-A PREVIOUS WORK
The approaches for estimating the noise covariance
matrices for a Kalman filter can be broadly clas-
sified into four general categories: Bayesian infer-
ence, maximum likelihood estimation, covariance-
matching, and correlation methods. The first two
categories pose the noise covariance estimation
problem as a parameter estimation problem.

In the Bayesian inference approach [19], the
covariance estimation problem is solved by ob-
taining the posterior probability density function
(pdf) of the unknown parameters (in this case,
the noise covariance matrix elements) from their
prior pdf and the observed measurements using the
Bayes’ formula recursively. Recently, Matisko and
Havlena [32] proposed a new Bayesian method to
estimate the unknown covariance matrices. They
first use a Monte Carlo method to generate a
grid of possible unknown covariance matrix pairs
(Q, R) with more density near the highest prior
probability. Then, they compute the likelihood
and posterior probability after performing state
estimation for each pair using a Kalman filter. In
general, the Bayesian approach suffers from the
curse of dimensionality and is computationally
intractable due to the fact that it involves numerical
integration or Monte Carlo simulations over a very
large parameter space.

In the maximum likelihood estimation [25], [46],
the noise statistics are obtained by maximizing
the probability density function of the measure-
ment residuals generated by the filter, which is
the likelihood of the filter parameters [2]. These
filter-based maximum likelihood methods require

nonlinear programming based optimization and
are computationally intractable. Shumway and
Stoffer [45] utilize the expectation maximization
(EM) algorithm [12], which requires the smoothed
estimates of the system state. This approach starts
with the smoothed estimation of the system state
given an estimate of the initial state and noise co-
variance matrices. Then, the unknown parameters
are estimated via maximum likelihood estimation
using the smoothed state estimates obtained from
the expectation step. Later, Ghahramani and Hinton
[17] present an extension of [45] that can account
for an unknown observation matrix in linear dy-
namic systems. They then go on to use forward
and backward recursions to estimate the noise
covariance matrices. This process is repeated until
the estimated parameters converge. In addition
to computational complexity, this method suffers
from convergence to a local optimum.

The basic idea of the covariance-matching tech-
niques [38] is that the sample covariance of the
innovations should be consistent with its theoretical
value. In [38], the unknown noise covariances are
estimated from the sample covariance computed
from the innovation sequences accumulated over
the entire historical data (or in a moving time
window). In this method, if the estimated inno-
vation covariance value is much larger than the
theoretical value, then the process noise covariance
is increased. The convergence has never been
proved for this method.

With regard to correlation methods, Heffes [18]
derived an expression for the covariance of the state
error and of the innovations of any suboptimal filter
as a function of noise covariances. This expression
serves as a fundamental building block in the
correlation methods. The first innovation-based
technique to estimate the optimal Kalman filter
gain and the unknown noise covariance matrices
via the correlations of innovations from an arbitrary
initial stabilizing filter gain was introduced by
Mehra [33]. Another procedure to carry out the
identification of unknowgn optimal Kalman filter
gain and the noise covariance matrices is by Carew
and Bélanger [7]. Their strategy calculates the
Kalman filter gain based on the estimation error
that is defined as the discrepancy between the
optimal state estimates obtained from the optimal
Kalman filter gain and the state estimates obtained
from an arbitrary suboptimal Kalman filter gain.
There is a question as to whether the correlation
method is sensitive to the initial Kalman filter
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gain selection. Mehra suggested to repeat the noise
covariance estimation steps with the obtained gain
from the first attempt to improve the estimation.
However, Carew and Bélanger [7] claim that if the
optimal Kalman filter gain is used as the initial
condition, then the approximations in Mehra’s
approach are such that the correctness of the
optimal gain will not be confirmed.

Later, Neethling and Young [39] suggested to
combine the noise covariance matrices in a vec-
tor and solve a single least squares or weighted
least squares problem to improve the performance
of Mehra and Carew–Bélanger’s approaches. Re-
cently, Odelson et al. [41], [42] developed the
autocovariance least squares method to estimate
the noise covariance matrices by applying the
suggestions of [39] on Mehra’s approach and using
the Kronecker operator. The algorithm defines
a multistep autocovariance function between the
measurements, which is used to develop a linear
least squares formulation to estimate the noise
covariance matrices. Dunik et al. [14] compared
the method presented by Odelson, Rajamani, and
Rawlings [42] to a combined state and parameter
estimation approach.

An interesting variant of the correlation methods
is to utilize the output correlations. In 1972, Mehra
[34] proposed an output correlation technique to
directly estimate the optimal Kalman filter gain.
This method has the advantage of being non-
recursive compared to the innovation correlation
techniques. However, the poor estimates of sample
output correlation functions can lead to an ill-
conditioned Riccati equation.

The contributions of the present paper are as
follows:

1) A necessary and sufficient condition for the
identifiability of unknown noise covariances
is provided. This involves the rank of the
auto and cross-covariances of the weighted
sum of innovations of a suboptimal filter,
where the weights are the coefficients of the
minimal polynomial of the state transition
matrix.

2) A novel six-step solution approach via a suc-
cessive approximation and adaptive gradient
descent scheme with a new objective func-
tion to obtain the unknown noise covariance
matrices Q and R, as well as the steady-
state Kalman filter gain W , and the steady-
state state prediction covariance matrix P̄
or the updated state covariance matrix P , is

proposed. They ensure positive definite Q
and positive definite R, as well as P̄ and P .

3) Several novel approaches to estimate the
unknown noise covariance matrix R are
derived via utilization of the post-fit residual,
which has not yet been discussed in the
literature.

4) Convergence proofs in [7] assumed that time
averages are the same as ensemble averages.
This is only approximate with finite data.
Consequently, these methods either diverge
or result in largely inaccurate estimates of
unknown covariances.

5) Our approach can enforce the structural as-
sumptions onQ andR (e.g., diagonality ofQ
and R, symmetry and positive definiteness).

The paper is organized as follows. In Section II,
we provide an overview of the Kalman filter and
derive a new Riccati equation for the updated state
covariance. Then, in Section III, we discuss the
necessary and sufficient condition for the unknown
noise covariances’ estimation. We briefly discuss
different approaches to obtaining the unknown
covariance parameters in Section IV. Then, in
Section V, we discuss a convergent version of
Mehra’s method to estimate the optimal Kalman
filter gain. In Section VI, we derive five different
ways to obtain R. Section VII provides a method
to estimate the process noise covariance matrix
Q and the steady-state updated state covariance
P , iteratively. All these methods are combined
in Section VIII, where we present a systematic
process to find the optimal filter gain W , the
innovation covariance S, the measurement noise
covariance R, the steady-state state prediction (or
updated state) covariance P̄ (P ) and the process
noise covariance Q. In Section IX, we specialize
the approach to estimate W , R, Q and P for a
process, where all the states are observed and for
a Wiener process. Lastly, we apply our approach
to five numerical examples from the literature in
Section X, and conclude the paper in Section XI. In
this paper, all the subscripts denote matrix indexes.
The iteration variable is superscript with (·) to
differentiate the notation from exponents.

II PLANT AND MEASUREMENTS MODEL
FOR THE KALMAN FILTER
Consider the discrete-time linear dynamic system

x(k + 1) = Fx(k) + Γv(k) (1)
z(k) = Hx(k) + w(k) (2)
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where x(k) is an nx -dimensional state vector, F
is the state transition matrix of the system, H is the
nz×nx measurement matrix, and Γ is the nx×nv
dimensional noise gain matrix. The sequences
v(k), k = 0, 1, . . . , and w(k), k = 0, 1, . . . , are
zero-mean white Gaussian noises with covariance
matrices Q and R, respectively. The two noise
sequences and the initial state are assumed to be
mutually independent. The matrices Q and R are
assumed to be positive definite. Note that even if
Q is positive definite, ΓQΓ′ need not be; it can be
positive semi-definite. We assume that the system
is observable and (F , ΓQ1/2) is controllable 2.

Given the estimate x̂(k|k), the Kalman filter [2],
[23] estimates the state at the next time instant k+1
as

x̂(k + 1|k) = Fx̂(k|k) (3)
ν(k + 1) = z(k + 1)−Hx̂(k + 1|k)

(4)
x̂(k + 1|k + 1) = x̂(k + 1|k)

+W (k + 1)ν(k + 1) (5)
P (k + 1|k) = FP (k|k)F ′ + ΓQΓ′ (6)
S(k + 1) = HP (k + 1|k)H ′ +R (7)

W (k + 1) = P (k + 1|k)H ′S(k + 1)−1

(8)
P (k + 1|k + 1) = P (k + 1|k)

−W (k + 1)S(k + 1)W (k + 1)′

(9)

where the estimate x̂(k + 1|k) is the one-step
extrapolated estimate of the state vector x(k) based
on the measurements up to k,W (k), k = 1, . . . , N
is the sequence of Kalman filter gains, ν(k), k =
1, . . . , N is the innovation sequence, P (k + 1|k)
is the state prediction covariance, S(k + 1) is the
measurement prediction (or innovation) covariance,
and P (k + 1|k + 1) is the updated state error
covariance.

The six-step approach in this paper is designed
specifically for a steady-state Kalman filter. The
steady-state state prediction covariance matrix P̄
satisfies the Riccati equation.

P̄ = F [P̄ − P̄H ′(HP̄H ′+R)−1HP̄ ]F ′+ ΓQΓ′

(10)

2Detectability and stabilizability are all that are needed for a
stable Kalman filter.

The steady-state updated state covariance, denoted
as P , can also be computed via a Riccati equation
(see Appendix A)

P = FPF ′ − PH ′(R−HPH ′)−1HP ′ + ΓQΓ′

(11)

Evidently,

P = P̄ −WSW ′ (12)
= (Inx

−WH)P̄ (Inx
−WH)′ +WRW ′

(13)

where (13) is known as the Joseph form; W and S
are the steady-state optimal gain, and the steady-
state innovation covariance, respectively, and are
given by

(14)
W = P̄H ′S−1

= P̄H ′(HP̄H ′ +R)−1

= PH ′R−1

S = E[ν(k)ν(k)′] = HP̄H ′ +R (15)

Note that (Inx −WH) is invertible, but need not
be stable (i.e., eigenvalues need not be inside the
unit circle).

III IDENTIFIABILITY OF Q AND R

One major issue in the previous literature involves
the necessary conditions to estimate the unknown
covariance matrices. Mehra [33] claimed that the
system must be observable and controllable; how-
ever, Odelson [42] provided a counter-example
wherein the system was observable and control-
lable, but the full Q matrix was not estimable.
Following the ideas in [47], we prove that the
necessary and sufficient condition to estimate
the unknown covariance matrices in a system is
directly related to its minimal polynomial of F̄ ,
and a transformation of the innovations based on
the coefficients of the minimal polynomial. Let us
define x̃(k+1|k) to be the predicted error between
the state x(k+1) and its predicted state x̂(k+1|k),
that is,

x̃(k + 1|k) = x(k + 1)− x̂(k + 1|k) (16)

We can rewrite x̂(k + 1|k) in terms of x̃, that is,

(17)x̂(k + 1|k) = Fx̂(k|k − 1)

+ FWHx̃(k|k − 1) + FWw(k)

Then, substituting (17) into (16) and using (1), we
have
x̃(k + 1|k) = F̄ x̃(k|k − 1) + Γv(k)− FWw(k)

(18)
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where F̄ is the stable closed-loop filter matrix

F̄ = F (Inx −WH) (19)

We can also write ν(k) in terms of x̃, that is

ν(k) = Hx̃(k|k − 1) + w(k) (20)

Let us define the mth order minimal polynomial of
F̄ as

m∑
i=0

aiF̄
m−i = 0; a0 = 1 (21)

Then, ν(k) can be written as

ν(k) = HF̄mx̃(k−m|k−m− 1) +

H
m−1∑
j=0

F̄m−1−j [Γv(k−m+ j)−FWw(k−m+ j)]

+w(k)

(22)

and let us define ξ(k) as

ξ(k) =

m∑
i=0

aiν(k − i) (23)

=

m∑
i=0

ai

H

m−i−1∑
j=0

F̄m−i−1−j [Γv(k −m+ j)− FWw(k −m+ j)]

+ w(k − i)

 (24)

=

m∑
i=0

ai

[
H

{
m∑

l=i+1

F̄ l−i−1 [Γv(k − l)− FWw(k − l)]

}
+ w(k − i)

]
(25)

=

m∑
l=1

H

(
l−1∑
i=0

aiF̄
l−i−1

)
[Γv(k − l)− FWw(k − l)] +

m∑
l=0

alw(k − l) (26)

=

m∑
l=1

Blv(k − l) +

m∑
l=0

Glw(k − l) (27)

where Bl and Gl are the sum of two moving
average processes driven by the process noise and
the measurement noise, that is,

Bl = H

(
l−1∑
i=0

aiF̄
l−i−1

)
Γ (28)

Gl =

[
alInz −H

(
l−1∑
i=0

aiF̄
l−i−1

)
FW

]
(29)

G0 = Inz
(30)

Denoting Lj = E [ξ(k)ξ(k − j)′], for j =
0, 1, 2, . . . ,m, we have

(31)Lj =

m∑
i=j+1

BiQB′i−j +

m∑
i=j

GiRG′i−j

We know thatQ = [qij ] is an nv×nv positive semi-
definite and symmetric matrix, and R = [rij ] is an
nz × nz positive definite and symmetric matrix.
Utilizing the symmetry of Q and R, and letting
bi,l and gi,l denote the l-th column of Bi and Gi,
respectively, we can rewrite (31) as

(32)Lj =

nv∑
l=1

nv∑
p=1

qlp

 m∑
i=j+1

bi,lb
′
i−j,p

+

nz∑
l=1

nz∑
p=1

rlp

 m∑
i=j

gi,lg
′
i−j,p


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(33)

=

nv∑
l=1


l∑

p=1

qlp

 m∑
i=j+1

bi,lb
′
i−j,p

+

m∑
p=l+1

qlp

 m∑
i=j+1

bi,lb
′
i−j,p


+

nz∑
l=1


l∑

p=1

rlp

 m∑
i=j

gi,lg
′
i−j,p

+

m∑
p=l+1

rlp

 m∑
i=j

gi,lg
′
i−j,p



(34)

=

nv∑
l=1

qll
 m∑
i=j+1

bi,lb
′
i−j,l

+

l−1∑
p=1

qlp

 m∑
i=j+1

bi,lb
′
i−j,p + bi,pb

′
i−j,l


+

nz∑
l=1

rll
 m∑
i=j

gi,lg
′
i−j,p

+

l−1∑
p=1

rlp

 m∑
i=j

gi,lg
′
i−j,p + gi,pg

′
i−j,l


From (34), we can form a matrix Ξ of dimen-

sion (m+1)n2
z× 1

2 [nv(nv + 1) + nz(nz + 1)] to
estimate the unknowns in Q and R, that is,

(35)Ξ

[
vec(Q)
vec(R)

]
=


L0

L1

...
Lm


The vec(A) function converts a matrix A into a
column vector. For a p× n matrix A,

vec(A) , [a11, . . . ,ap1, a12, . . . , ap2,

. . . , a1n, . . . , apn]′ (36)

Since R is always estimable because Gm (recall
that m is the order of minimal polynomial) is
invertible, the maximum number of unknowns
in Q that can be estimated must be less than or
equal to the minimum number of independent
measurements minus the number of unknowns in
R. That is

rank(Ξ)− nR > nQ (37)

where nR is the number of unknowns inR, and nQ
is the number of unknowns in Q

To illustrate the necessity and sufficiency of this
condition, consider an example system from [42],

x(k) =

0.9 0 0
1 0.9 0
0 0 0.9

x(k − 1) + v(k − 1)

(38)

z(k) =

[
0 1 0
0 0 1

]
x(k) + w(k) (39)

with Q being a full 3-by-3 positive definite sym-
metric matrix and R being a full 2-by-2 positive
definite symmetric matrix. Since the rank of Ξ is

not affected by W , one can examine the rank of
Ξ for W = 0 for convenience. In this case, the
minimal polynomial coefficients are[

a0 a1 a2

]′
=
[
1 −1.8 0.81

]′
(40)

The B and Gmatrices are

B1 =

[
1 1 0
0 0 1

]
B2 =

[
1 −0.9 0
0 0 −0.9

]
(41)

G0 =

[
1 0
0 1

]
G1 =

[
−1.8 0

0 −1.8

]
(42)

G2 =

[
0.81 0

0 0.81

]
(43)

Here, Ξ is a 12-by-9 matrix with a rank of 8.
Since there are 9 unknown variables (6 qs and
3 rs), the covariance matrix elements are not
identifiable. However, if E[v(k)v(k)′] is diagonal,
as is typically the case, then the covariance matrix
elements are identifiable because there are only
6 unknown variables (full R matrix and three
diagonal elements of Q).

Note that the minimal polynomial can be used
to estimate the unknown covariances R and Q via
quadratic programming techniques. Furthermore,
it can be used to estimate the optimal gain W , as
in [47] and Appendix B; however, reliable and
accurate estimation of the parameters of vector
moving average processes is still an unresolved
problem [16], [24], [31], [43].

IV APPROACHES TO OBTAIN FILTER
PARAMETERS
There are two competing approaches for the estima-
tion of the filter parameters W , R, Q, and P̄ . The
first approach is to estimate the noise covariance
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matrices first and subsequently the Kalman filter
gain W and the predicted state covariance P̄ are
computed given the estimated noise covariance
matrices [32], [46]. This method has an underlying
problem in that it involves the sum of two moving
average processes. Additionally, the autoregressive
moving average (ARMA) approach, pioneered
in the econometric literature, does not extend
naturally to sums of moving average processes and
we have found the resulting algorithms [16], [24],
[31], [43] to have erratic computational behavior.

The second approach is to estimate the Kalman
filter gain W from the measured data first [7], [33].
Given the optimal W , we can compute R, Q and
P̄ (this approach is applied in this paper). The pro-
posed R, Q and P̄ estimates in this paper are valid
as long as an optimal gainW is provided. There are
many ways to obtain the optimal Kalman filter gain
W . The techniques listed in this paper to obtain
the optimal W , that is, Section V and Appendix
B are by no means all-inclusive, and several such
methods may be suitable for a given problem. For
example, the optimal gain W can be obtained from
the suboptimal Kalman filter residual [8], solving
the minimal polynomial problem [47], and utilizing
the least squares method on the observable form
[6], to name a few.

V ESTIMATION OF W

This section includes the discussion of two differ-
ent approaches to estimate the optimal Kalman
filter gain W , namely, the minimal polynomial
approach and the successive approximation, cou-
pled with an adaptive gradient descent scheme, on
a criterion based on innovation correlations. The
derivation of the minimal polynomial approach is
detailed in Appendix B. This approach assumes
the system to be purely driven by the optimal
innovation. In doing so, the estimation of the
optimal Kalman gain can be achieved via a vector
auto-regressive model approximation of a vector
moving average process. However, from limited
testing on examples chosen in this paper, this ap-
proach was found to be numerically unstable, only
performing well on systems with no eigenvalues
close to unity. In fact, the vector auto-regressive
model has various numerical problems and an ac-
curate and reliable algorithm to obtain the solution
still remains to be developed [24]. Therefore, we
omit this approach from the paper and focus on
minimization of the innovation correlations using
a successive approximation and adaptive gradient

descent method.
In the sequel, we describe in detail the approach

of our paper using the correlation-based criterion.
If the Kalman filter gain W is not optimal, the
innovation sequence {ν(k)}Nk=1 is correlated. We
can use the innovation sequence of any stable
suboptimal Kalman filter and compute M sample
covariance matrices, as in [33]:

Ĉ(i) =
1

N −M

N−M∑
j=1

ν(j)ν(j + i)′ (44)

i = 0, 1, 2, . . . ,M − 1

We know that the optimal Kalman filter gain
W makes the autocorrelation function Ĉ(i), i =
0, 1, 2, . . . ,M − 1 vanish for all i 6= 0. Given the
correlation matrix for i ≥ 1 as in [33], that is

(45)C(i) = E[ν(k)ν(k − i)′]
= HF̄ i−1F

[
P̄H ′ −WC(0)

]
where F̄ is as in (19). We define the objective
function J as

J =
1

2

M−1∑
i=1

[
diag

(
Ĉ(0)

)]− 1
2

Ĉ(i)′
[
diag

(
Ĉ(0)

)]−1

Ĉ(i)
[
diag

(
Ĉ(0)

)]− 1
2

(46)

where diag(C) is the Hadamard product of an
identity matrix, of same dimension as C, with C

diag(C) = I � C (47)

The optimal J becomes 0 as the sample size N
tends to ∞ because the time averages are the
same as ensemble averages given infinite data.
Substituting (45) into (46) and utilizing the cyclic
property of trace, we have

J =
1

2
tr

{
M−1∑
i=1

Θ(i)XE2X ′

}
(48)

where

Θ(i) = Φ(i)′E2Φ(i) (49)

Φ(i) = HF̄ i−1F (50)
X = Ψ−WC(0) (51)
Ψ = P̄H ′ (52)

E = [diag (C(0))]
− 1

2 (53)
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For ill-conditioned systems, a regularization term
λW tr(WW ′) can be added to convexify the ob-
jective function. Taking the gradient3 of (48) with
respect to W , we get

∇WJ = −
M−1∑
i=1

Φ(i)′E2C(i)E2C(0)− F ′ZFX

−
i−2∑
`=0

[
C(`+ 1)E2C(i)′E2HF̄ i−`−2

] ′
(54)

and Z is given by the Lyapunov equation

(55)
Z = F̄ ′ZF̄ +

1

2

M−1∑
i

Φ(i)′E2Ĉ(i)E2H

+
(

Φ(i)′E2Ĉ(i)E2H
)
′

and X is obtained by rewriting (45) as
HF
HF̄F

...
HF̄M−1F

X =


Ĉ(1)

Ĉ(2)
...

Ĉ(M − 1)

 (56)

Then, we can obtain X as

X =


HF
HF̄F

...
HF̄M−1F


† 

Ĉ(1)

Ĉ(2)
...

Ĉ(M − 1)

 (57)

where A† is the pseudoinverse of A, defined by

A† = (A′A)−1A′ (58)

which exists, since we assume the system to be
completely observable and M ≥ nx. The gradient
direction can be used to obtain the optimal Kalman
filter gain W iteratively through the bold driver
method in [3], [29], [50]. Details of this application
can be found in Section VIII-C2

VI ESTIMATION OF R

VI-A GENERAL R

Given the steady-state optimal gain W and the
innovation covariance S, whose estimation is
explained later in Section VIII, let u(k), k =

3Detailed steps on the gradient computation are provided in
Appendix E.

1, . . . , N be the sequence of post-fit residuals of
the Kalman filter, that is,

u(k) = z(k)−Hx̂(k|k) (59)
= (Inz

−HW )ν(k) (60)

Note that (Inz
− HW ) is invertible (rank nz)

because (Inz
−HW ) = RS−1 (proven below) and

due to the assumption that R is positive definite.
PROPOSITION 1: Given the optimal steady-

state Kalman filter gain W , the post-fit residual
sequence u(k), and the innovation sequence ν(k),
the joint covariance of these two sequences is

Cov

([
v(k)
u(k)

])
=

[
S R
R R−HPH ′

]
(61)

PROOF: On the right hand side of (61), the (1,1)
block is simply the definition of the innovation
covariance matrix in (15). Using (60), the (1,2)
block in (61) is, given by

(62)E[u(k)ν(k)′] = (Inz
−HW )E[ν(k)ν(k)′]

= (Inz −HW )S

Using (7) and (8),

E[u(k)ν(k)′] = (I −HP̄H ′S−1)S (63a)
= S −HP̄H ′ = R (63b)

Equations (63a)-(63b) were derived by Heffes [18]
and Kailath [22].

The (2,2) block of (61) is obtained as follows.

G = E[u(k)u(k)′] (64)
= E {[(Inz −HW ) ν(k)]

[(Inz −HW ) ν(k)]
′} (65)

= (Inz −HW )S(Inz −HW )′ (66)
= R(Inz −HW )′ = R−RW ′H ′ (67)

which, given (14), simplifies to

G = R−HPH ′ (68)

Note that the determinant of (61) is∣∣∣∣S R
R R−HPH ′

∣∣∣∣ = |G−RS−1R|= 0 (69)

where the relationship G = RS−1R is proved in
Proposition 2 below.

PROPOSITION 2: Given the optimal steady-
state Kalman filter gain W and the corresponding
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post-fit residual u(k) and innovation ν(k) se-
quences, the covariance matrix R can be computed
in the following five ways:

R1 : R = (Inz
−HW )S (70)

R2 : R =
1

2
{E[u(k)ν(k)′ + E[ν(k)u(k)′]}

(71)
R3 : Exploiting the fact that

G = RS−1R (72)

R4 : R =
1

2
[G+ S −HWSW ′H ′] (73)

R5 : R =
1

2

{
G(Inz

−W ′H ′)−1

+(Inz
−HW )−1G

}
(74)

PROOF: R1 is proven in (62). Method R2 to
estimate R is by symmetrizing (62). For method
R3 to estimate R, we can substitute (8) in (68) and
rewrite G as

G = R−HP̄H ′ +HWSW ′H ′ (75)

Then, by substituting (14) into (75)

G = R−HP̄H ′ +HP̄H ′S−1HP̄H ′ (76)

We also know from (15)

(S −R) = HP̄H ′ (77)

By substituting (77) into (76), we can write G,
defined in (65), as

G = R− (S −R) + (S −R)S−1(S −R)
(78)

= RS−1R (79)

which is a continuous-time algebraic Riccati equa-
tion. Therefore, we can estimate R by solving
the continuous-time Riccati equation, as in [1], or
Kleinman’s method [27]. Some additional methods
to solve the continuous-time algebraic Riccati equa-
tion can be found in [30]. We can also interpret (72)
in terms of a Linear Quadratic Regulator (LQR)
optimal control problem, where we can obtain R
as the solution of the continuous-time algebraic
Riccati equation associated with the optimal gain
in the LQR problem. The computation of R is also
related to the simultaneous diagonalization prob-
lem4 in linear algebra [49]. Note that, in the scalar
case, R is the geometric mean of the covariance of

4The solution via Cholesky decomposition and eigen de-
composition or simultaneous diagonalization can be found in
Appendix C and Appendix D, respectively.

the post-fit residual and the innovation, as in the
(1,2) block of (61).

For R4, we substitute (77) into (75) and rewrite
G as

G = R− (S −R) +HWSW ′H ′ (80)
= 2R− S +HWSW ′H ′ (81)

Solving for R, we obtain

R =
1

2
{G+ S −HWSW ′H ′} (82)

thus, proving R4.
For R5, recall (62). We can rewrite (66) as

G = (Inz
−HW )S(Inz

−HW )′ (83)
= R(Inz

−HW )′ = (Inz
−HW )R (84)

Thus, we can compute R as

R̂ = (Inz
−HW )

−1
G (85)

= G (Inz −W ′H ′)
−1 (86)

We can symmetrize the estimate of R by

ˆ̂
R=

1

2

{
G (Inz−W ′H ′)

−1
+(Inz−HW )

−1
G
}

(87)

proving R5.
Note that R1–R5 are theoretically the same;

however, they are numerically different. We recom-
mend R3, since it ensures the positive definiteness
of R.

VI-B DIAGONAL R

When R is diagonal, we want to solve the least
squares problem of

min
X≥0
||X −R||2F (88)

where F, indicates the Frobenius norm. The positive
definite R can be estimated from R3, given in
Proposition 2. The solution is simply the diagonal
elements of the estimated R from R3.

VI-C USE OF SMOOTHED STATE ESTIMATE
WITH ONE-STEP-LAG POST-FIT RESIDUALS
Note that R can also be estimated using one-step-
lag smoothing on the post-fit residuals. Let us
define the one-step-lag smoothed residual s(k) as
in [37], that is,

s(k) = z(k)−Hx̂(k|k + 1) (89)
= z(k)−Hx̂(k|k)−HW1ν(k + 1) (90)

W1 = P̄ F̃ ′P̄−1W (91)
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where F̃ is defined as

F̃ = (Inx
−WH)F = F−1F̄F (92)

From (59), we can also write s(k) as a one-step
moving average process

s(k) = u(k)−HW1ν(k + 1) (93)
= (Inz

−HW )ν(k)−HW1ν(k + 1)
(94)

Therefore,

E[s(k)ν(k)′] = (Inz −HW )C(0)−HW1C(1)′

(95)
and for the optimal Kalman filter gain W , we can
write (95) as

E[s(k)ν(k)′] = (Inz −HW )S = R (96)

A similar expression can be derived for
E[s(k)u(k)′], that is,

E[s(k)u(k)′] = (Inz
−HW )C(0)(Inz

−HW )′

−HW1C(1)′(Inz
−HW )′

(97)

and for the optimal Kalman filter gain W , we have

E[s(k)u(k)′] = (Inz −HW )S(Inz −HW )′

= RS−1R = G (98)

Lastly, the expression for E[s(k)s(k)′] is

E[s(k)s(k)′] = (Inz
−HW )C(0)(Inz

−HW )′

+HW1C(0)W ′1H
′

− (Inz
−HW )C(1)(W1)′H ′

−HW1C(1)′(Inz
−HW )′

(99)

and with the optimal Kalman filter gain W , com-
bined with (14), we get

E[s(k)s(k)′] = RS−1R+HP̄ F̃ ′P̄−1WSW ′P̄−1WSW ′P̄−1F̃ P̄H ′ (100)

= RS−1R+RW ′F ′(Inx
−H ′W ′)H ′R−1SR−1H(Inx

−WH)FWR (101)

= RS−1R+RW ′F ′H ′S−1SS−1HFWR (102)

= R(S−1 +W ′F ′H ′S−1HFW )R (103)

Note that E[s(k)s(k)′] can be used in a manner
similar to the algorithm in Section V to obtain the
optimal Kalman filter gain W . More investigation
is needed into this approach.

VII ESTIMATION OF Q, P AND P̄

In this section, we discuss a method to estimate the
process noise covariance Q and the state prediction
(updated) covariance P̄ (P ). Unlike the case of
a Wiener process and for a process with H = I ,
where both Q and P̄ can be estimated separately
and without iteration, as shown in Section IX-A3,
Q and P̄ (P ) are coupled in the general case,
requiring multiple iterations for the estimation to
converge. The relationship between the steady-state
state prediction covariance matrix P̄ and the steady-
state updated state covariance matrix P with the
process noise covariance matrix Q is

P̄ = FPF ′ + ΓQΓ′ (104)

= F
(
P̄−1 +H ′R−1H

)−1
F ′ + ΓQΓ′

(105)
= F̄ P̄ F̄ ′ + FWRW ′F ′ + ΓQΓ′ (106)

Similarly, the steady-state updated state covariance
matrix can be written as

P = F̃P F̃ ′ +WRW ′

+ (Inx −WH)ΓQΓ′(Inx −WH)′ (107)

=
(
P̄−1 +H ′R−1H

)−1
(108)

=
[
(FPF ′ + ΓQΓ′)

−1
+H ′R−1H

]−1

(109)

where F̃ is defined as in (92) and (108) is derived
utilizing (14) and the fact (from [2]) that

P = (Inx
−WH)P̄ (110)

Note that we can also define P̃ as

P̃ = FPF ′ = F̄ P̃ F̄ ′+FWRW ′F ′+ F̄ΓQΓ′F̄ ′

(111)
Given P̃ and S, or P and S, or P̄ and S, we can
compute ΓQΓ′ in the following ways:
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Q1 : ΓQΓ′ = F−1P̃ (F−1)′ +WSW ′ − P̃
(112)

Q2 : ΓQΓ′ = P +WSW ′ − FPF ′ (113)
Q3 : ΓQΓ′ = P̄ − FP̄F ′ + FWSW ′F ′

(114)

where Q1 – Q3 are derived from (6).
In this paper, we utilize the updated state co-

variance matrix to estimate Q and P , iteratively.
Let t = 0, 1, . . . and ` = 0, 1, . . . denote the
iteration indices, and let us assume the initial
estimate ΓQ(0)Γ′ = WSW ′ (this is the Wiener
process solution for the estimation of Q, as shown
in Section IX). Let us initialize P by solving the
Lyapunov equation (starting with t = 0 and ` = 0)

(115)P (0) = F̃P (0)F̃ ′ +WRW ′ + (Inx

−WH) ΓQ(t)Γ′(Inx −WH)′

for P (0). We compute P (`+1) utilizing (109) until
the value converges, that is,

P (`+1)

=

[(
FP (`)F ′ + ΓQ(t)Γ′

)−1

+H ′R−1H

]−1

(116)

Given the converged P , let us denote D(t+1) as

D(t+1) = P +WSW ′ − FPF ′ (117)

Then, we can update Q(t+1) from (113)

Q(t+1) = Γ†D(t+1)(Γ′)† (118)

A mask matrixA can shapeQ into a corresponding
structure. The mask matrix comprises binary ma-
trix elements with a 1 in the desired positions and
0, elsewhere, for example, as in an identity matrix.
Then Q is structured by

Q(t+1) = A�Q(t+1) (119)

where � is the Hadamard product. We subse-
quently set ` = 0 and recompute P usingQ(t+1) in
(116), and this process repeats until the estimate of
Q converges. For ill-conditioned systems, a tuning
(regularization) parameter λQ can be used in (118),
that is

Q(t+1) = Γ†
[
D(t+1) + λQInx

]
(Γ′)† (120)

After the estimate of Q converges, we can estimate
P̄ using either (104), (105) or (106).

VIII ITERATIVE ALGORITHM TO ESTIMATE
STEADY-STATE W , S, P (P̄ ), Q AND R

Given the methods to obtain estimates of R and Q
in Sections VI and VII, we summarize our method
into a six-step solution approach to obtain the
optimal steady-state W , S, P (P̄ ), Q, and R.

VIII-A STEP 1

Start with iteration r = 0 and initialize a W0 to
stabilize the system as in [28]. We execute the
Kalman filter for samples k = 1, 2, . . . , N as

x̂(r)(k + 1|k) = Fx̂(r)(k|k) (121)

ν(r)(k + 1) = z(k + 1)

−Hx̂(r)(k + 1|k) (122)

x̂(r)(k + 1|k + 1) = x̂(r)(k + 1|k)

+W (r)ν(r)(k + 1) (123)

u(r)(k + 1) = z(k + 1)

−Hx̂(r)(k + 1|k + 1) (124)

VIII-B STEP 2

Compute M sample covariance matrices, as in
(44).

VIII-C STEP 3

In this step, we check whether any of the termi-
nation conditions given below are met. If none
of the termination conditions are met, we update
the Kalman filter gain via the proposed method,
detailed later in Section VIII-C2.

VIII-C1 Termination Conditions

There are four conditions that result in algorithm
termination, subsequently yielding a Kalman filter
gain W for R, Q and P̄ estimates in later steps:

Condition 1: The converged Kalman filter gain is
within a specified threshold ζW .

Condition 2: The gradient of Kalman filter gain
(54) is within a specified threshold ζ∆.

Condition 3: The objective function value in (46)
is within a specified threshold ζJ from zero.

Condition 4: The objective function value stops
improving, given a specified “patience” (num-
ber of epochs, detailed in Section VIII-C2) for
the adaptive gradient method.

Condition 5: The maximum number of iterations
is reached.
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VIII-C1a Condition 1:
Let ∆W be the change in the Kalman filter gain
from iteration r to r + 1, that is

∆W = W (r+1) −W (r) (125)

then

δW = ||∆W./(W (r) + εW )|| (126)

where ./ indicates element-wise division and ||·||
is a matrix norm (In this paper, the authors use the
Euclidean norm) and εW is a very small value to
protect against zeros in the denominator. When δW
is less than a specified threshold ζW , the Kalman
filter gain is assumed to have converged and we
terminate the algorithm; otherwise, we update the
Kalman filter gain W for the next iteration.

VIII-C1b Condition 2:
We also examine the gradient of the Kalman
filter gain ∇WJ for convergence. We assume
the Kalman filter gain to be converged when the
Euclidean norm of ∇WJ is less than a sufficiently
small threshold ζ∆, that is,

‖∇WJ‖2 < ζ∆ (127)

VIII-C1c Condition 3:
Similar to W , we can compute the change in the
objective function J from iteration r to r + 1. The
Kalman filter gain is assumed to have converged
when J (r) is less than a specified threshold ζJ ;
otherwise, we update the Kalman filter gain for the
next iteration.

VIII-C1d Condition 4:
The fourth termination condition is related to the
step size for the proposed approximation method.
We adapt the bold driver method in [3], [29], [50]
and the method considers a “patience” parameter to
indicate that the objective function value J (r) has
stopped improving (detailed in Section VIII-C2).
The algorithm is terminated with the Kalman filter
gain corresponding to minimum J (r).

VIII-C1e Condition 5:
This condition is implemented to ensure that the
algorithm terminates within a reasonable number
of iterations, denoted by nL. Typically, the number
of iterations required to reach the optimal Kalman
filter gain W increases proportionally with nx.

VIII-C2 Kalman Filter Gain Update
When any of the above conditions are met, we
terminate the algorithm. Otherwise, we update the
Kalman filter gainW for the next iteration r+1 via
the gradient direction in (54). Given the gradient
direction, the Kalman filter gain at iteration r + 1
is updated by

W (r+1) = W (r) − α(r)∇WJ (128)

where α(r) is the step size for the proposed method.
The step size is initialized as

α(0) = min

(
c

(
N

Ns

)β
, c

)
(129)

where c is a positive constant and is used to update
the Kalman filter gain in the first iteration, Ns is
a hyperparameter on the number of observations,
and β is a positive constant to adapt the initial step
size to the number of observations.

Subsequently, α(r) is computed using the bold
driver method in [3], [29], [50]. That is, after each
iteration, we compare the J (r) to its previous value,
J (r−1), and set

α(r) =

{
0.5α(r−1), if J (r) > J (r−1)

max(1.1α(r−1), c̄), otherwise
(130)

where c̄ is the maximum step size defined as,

c̄ = min

((
N

Ns

)β
, cmax

)
(131)

and cmax is a positive constant between 0 and 1.
Once we update the Kalman filter gain W , we

go back to Step 1 by setting r = r + 1 and repeat
the same process until any of the five termination
conditions are met.

Note that each time J (r) ≤ J (r−1), we save
the corresponding Kalman filter gain W (r) and
J (r), and we halve the step size each time J (r) >
J (r−1) in the hope of observing a decrease in J (r).
If the value of J (r) has consecutively increased
for a specified number of iterations (i.e., given a
“patience” factor), we select the best Kalman filter
gain W by

W = arg min
r
J (r) (132)

We then terminate the iteration and move onto
Step 4 after repeating Steps 1 and 2 with the corre-
spondingW . Note that adaptive stochastic gradient
descent methods can be applied to compute the
optimal Kalman filter gain W as in [21], [26], [40],
[48], [51].
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VIII-D STEP 4
Once we obtain the optimal steady-state Kalman
filter gain W and the corresponding innovation
covariance S, we can compute the unknown R, as
in Section VI.

VIII-E STEP 5
Given the covariance matrix R, computed in Step
4, we can compute the covariance matrix Q and
steady-state state prediction covariance matrix P̄ ,
as detailed in Section VII.

VIII-F STEP 6
We implement a successive approximation as fol-
lows: an outer-loop is used to reinitialize with
the R and Q obtained from Step 5 and then
reinvoke Steps 1-5. We keep track of the best
J (r) among the outer-loop iterations. The Kalman
filter gain associated with the minimum J (r) is
selected to be the optimal Kalman filter gain. The
algorithm terminates when the difference between
the best J (r) from each outer-loop is less than ζJ
or the maximum number of outer-loop iterations is
reached.

IX SPECIAL CASES: WIENER PROCESS
AND H = InxCASES
In this section, we consider two special cases
below. The first case is when the state transition
matrix F and the measurement matrix H are both
identity matrices, Inx

and Inz
, respectively. This

considerably simplifies our method to estimate R
and Q. The second special case is when only the
measurement matrixH is the identity matrix, while
the state transition matrix F remains general.

IX-A CASE 1: WIENER PROCESS
For a Wiener process, we have F = Inx

and H =
Inz .

IX-A1 Kalman Filter Gain Update for a Wiener
Process
To get the optimal Kalman filter gain, for k =
1, 2, . . . , N ,

x̂(k|k − 1) = x̂(k − 1|k − 2) +Wν(k − 1)
(133)

ẑ(k|k − 1) = x̂(k|k − 1) (134)
z(k) = ẑ(k|k − 1) + ν(k)

= x̂(k|k − 1) + ν(k) (135)

Define

ξ(k) = z(k)− z(k − 1) (136)
= x̂(k|k − 1) + ν(k)− x̂(k − 1|k − 2)

− ν(k − 1) (137)
= ν(k) + (W − Inx

)ν(k − 1) (138)

Then, let us define L0 and L1 as

L0 = E [ξ(k)ξ(k)′]

= S + (W − Inx
)S(W − Inx

)′ (139)
L1 = E [ξ(k)ξ(k − 1)′] = (W − Inx

)S (140)

Note that both L0 and L1 can be computed from
samples. Additionally, we can obtain the optimal
W from L1 as

W = Inx
+ L1S

−1 (141)

Substituting W in (141) into (139), we can write
the relationship between L0 and L1 as

L0 = S + L1S
−1SS−1L′1 (142)

= S + L1S
−1L′1 (143)

Note that (143) is in a form related to the discrete
algebraic Riccati equation and has a positive defi-
nite solution [15].

IX-A2 Estimation of R for a Wiener Process
PROPOSITION 3: For a Wiener process where
both the state transition matrix F and the measure-
ment matrix H are both the identity matrices, Inx

and Inz
, respectively, and given the optimal steady-

state Kalman filter gain W , and the concomitant
post-fit residual sequence u(k) and innovation
sequence ν(k), the covariance matrix R can be
computed in the following ways:

SR1 : R = (Inz
−W )S (144)

SR2 : R =
1

2
{E[u(k)ν(k)′ + E[ν(k)u(k)′]}

(145)

SR3 : G = RS−1R (146)

SR4 : R =
1

2
[G+ S −WSW ′] (147)

SR5 : R = G−WSW ′ +
1

2
(WS + S′W ′)

(148)

PROOF: SR1-SR4 are directly proven by sub-
stituting H = Inz

into R1–R4. For SR5, we know
from (8) that

WS = P̄ (149)
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and we also know from (15) that,

S = P̄ +R (150)

Then,

G = (Inx
−W )S(Inx

−W )′ (151)
= (Inx

−W )S − (Inx
−W )SW ′ (152)

= S −WS − SW ′ +WSW (153)
= R− SW ′ +WSW ′ (154)

Then, we can compute R as

R = G+WS −WSW ′ (155)

Symmetrizing (155),

R = G−WSW ′ +
1

2
(WS + S′W ′) (156)

hence, SR5 is proven.

IX-A3 Estimation of P̄ and Q for a Wiener
Process
Unlike the general case, where multiple iterations
are needed to estimate both Q and P̄ , in the case
of a Wiener process, we can estimate them with no
iteration.

PROPOSITION 4: For a Wiener process, where
the state transition matrix F and the measurement
matrix H are both identity matrices, Inx and
Inz , respectively, and given the optimal steady-
state Kalman filter gain W , and the corresponding
innovation sequence ν(k), the steady-state state
prediction covariance and the process noise covari-
ance Q can be computed as:

P̄ = WS (157)
Q = WSW ′ (158)

PROOF: Given the relationship in (8) and know-
ing that, for a Wiener process H = Inz , using (8),
we have (157).

For a Wiener process, we can rewrite the Riccati
equation (10) as

P̄ = P̄ − P̄ (P̄ +R)−1P̄ +Q (159)

Using the relationship of (15) and (157) in (159)
yields

P̄ = P̄ −WSW ′ +Q (160)

Thus, for a Wiener process, Q can be estimated as

Q = WSW ′ (161)

Hence, (158) is proven. Note that (158) is used as
Q(0) in the general case for iteratively computing
Q.

IX-B CASE 2: H = Inx

In the second case, only H is the identity matrix,
but F is not necessarily so.

IX-B1 Kalman filter Gain Update for the H = Inx

Case
To get the optimal Kalman filter gain, for k =
1, 2, . . . , N ,

x̂(k + 1|k) = Fx̂(k|k − 1) + FWν(k) (162)
z(k) = x(k) + w(k)

= x̂(k|k − 1) + ν(k) (163)

Let ξ(k) be

ξ(k) = z(k)− Fz(k − 1) (164)

Define

ξ(k) = x̂(k|k − 1) + ν(k)

− Fx̂(k − 1|k − 2)− Fν(k − 1) (165)
= ν(k)− F̄ ν(k − 1) (166)

where
F̄ = F (Inx

−W ) (167)

We can write L0 = E{ξ(k)ξ(k)′} as

L0 = S + F̄SF̄ ′ (168)

Similarly, L1 = E{ξ(k)ξ(k − 1)′} can be com-
puted based on (166) as,

L1 = −F̄S (169)

From the right hand side of (168), we can find S
by solving

S + L1S
−1L′1 = L0 (170)

Upon calculating S, we can find the optimal
Kalman filter gain W as

W = Inz
+ F−1L1S

−1 (171)

and we can calculate R from R3, in (79). G can
be obtained by running the filter given the optimal
Kalman filter gain. Note that, we can also write
ξ(k) as

ξ(k) = x(k)− Fx(k − 1)

+ w(k)− Fw(k − 1) (172)
= Γv(k − 1) + w(k)− Fw(k − 1) (173)

Then, L0 is

L0 = ΓQΓ′ +R+ FRF ′ (174)
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Equating (168) and (174), we can compute ΓQΓ′

as

ΓQΓ′ = S + F̄SF̄ ′ − (R+ FRF ′) (175)
= S + FGF ′ − (R+ FRF ′) (176)

Equation (176) follows from

G = (Inz −W )S(Inz −W )′ (177)

X NUMERICAL EXAMPLES
In this section, we illustrate our method on the
following five cases:

1) A second-order kinematic system (a white
noise acceleration or nearly constant velocity
model) by varying the lags M in the correla-
tion.

2) A system described in Neethling [39].
3) A five-state system from [33] and [4] with

diagonal Q and R.
4) A detectable, but not completely observable,

system from [42].
5) A three-state system from [42].

Each case is simulated with 100 Monte Carlo (MC)
runs with an assumed “patience” of 5, ζJ = 10−6,
ζW = 10−6, ζ∆ = 10−6, c = 0.01, cmax = 0.2,
β = 2 and the maximum outer-loop iteration limit
is set to 20. Case 5 is simulated with 200 MC runs
to be compatible with the results in [42].

For each test case, we examine the condition
number of the system’s observability and controlla-
bility matrices, as well as matrix Ξ. The condition
number of matrix A is computed as

κ(A) = ‖A‖‖A†‖ (178)

where A† is the pseudoinverse of A and ||·|| is
a Euclidean norm. The rank of matrix Ξ is also
examined for each test case. For each test case
result, we compute the 95% probability interval
(PI) and denote by r and r the corresponding lower
and upper limits, respectively. We also provide the
mean and the root mean squared error (RMSE) of
each distribution. The averaged normalized innova-
tion squared (NIS) is also provided to measure the
consistency of the Kalman filter,

ε̄(k) =
1

nMC

nMC∑
i=1

ν(k)′S−1ν(k) (179)

where nMC is the number of MC runs. The
elements of each matrix A are denoted as aij ,
representing the element in the ith row and the
jth column of A.

X-A CASE 1
We simulated a second-order kinematic system
described by

x(k) =

[
1 T
0 1

]
x(k − 1) +

[
1
2T

2

T

]
v(k − 1)

(180)

z(k) =
[
1 0

]
x(k) + w(k) (181)

(182)

with sampling period T = 0.1, where

E[v(k)v(j)′] = 0.0025 (183)
E[w(k)w(j)′] = 0.01 (184)

The mean of the process and the measurement
noises are assumed to be zero and the corre-
sponding variances are given in (183) and (184),
respectively. Note that the system has the condition
number of 20.1 for its observability matrix and 20.2
for its controllability matrix. The matrix Ξ, given
the initial Kalman filter gain in (186), is

Ξ =

 5 · 10−5 6
2.5 · 10−5 −4

0 1

 (185)

which has a rank of 2, and we have 2 unknown
variables to estimate, implying that Q and R are
identifiable. The condition number for Ξ is 1.5 ·
105. The least squares problem using the minimal
polynomial approach is ill-conditioned.

X-A1 Varying the Number of Lags in the
Correlations
We performed 100 MC runs, where each run
contained N = 1000 sample observations. We
set nL = 100, Ns = 1000, and vary the
lags, M = 10, 20, 30, 40, 50, 100, with an initial
Kalman Filter gain

W (0) =

[
0.1319
0.0932

]
, (186)

obtained by solving the Riccati equation with
Q(0) = 0.1 and R(0) = 0.1. Figs.1 and 2 show
the box plots of the estimated R using R35 and Q
of 100 MC runs, respectively, with varying M .

The bottom and top of each “box” are the first
(denoted Q1) and third (denoted Q3) quartiles of
the estimate, respectively. The line in the middle
of each box is the median estimate. The distances
between the tops and bottoms are the interquartile
ranges (IQR= Q3 − Q1). The whiskers are lines

5All (R1–R5) obtain the same values.
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FIGURE 1: 100 Monte Carlo runs for the Kalman
filter R estimation using method R3 with various
M .
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FIGURE 2: 100 Monte Carlo runs for the Kalman
filter Q estimation with various M .

extending above and below each box and are drawn
from each end of the interquartile ranges to the the
upper (Q3 + 1.5IQR) and lower (Q1 − 1.5IQR)
adjacent values. Estimates beyond the whisker
length are marked as outliers (indicated by the “+”
symbols). The accuracies of the estimates of both
R and Q increase with an increase in M . Table
1 shows the mean value of the estimates of both
R and Q. The smallest error of the median of the
estimates of R and the variability of the estimates
of Q are obtained with M ≥ 100.

X-A2 Estimation of W and P̄

Given M = 100, for 100 MC runs with the initial
Kalman Filter gain as in (186), we found that R1–
R5 estimate the same R values. The true values
of R all lie within the 95% PI associated with the
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FIGURE 3: Q and R estimation for Case 1.

0 100 200 300 400 500 600 700 800 900 1,000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Samples

A
ve

ra
ge

N
IS

FIGURE 4: Averaged NIS for Case 1.

distribution of estimates. Fig.3 shows the Q versus
R plot of each estimate. The true values are marked
by “+” symbols. The reason the estimated Q varies
so much is that its value is very small compared to
the measurement noise. Fig.4 shows the averaged
NIS and its 95% probability region, which proves
that the filter is consistent.

X-B CASE 2
We simulated the system described in Neethling
[39],

x(k) =

[
0.8 1
−0.4 0

]
x(k − 1) +

[
1

0.5

]
v(k − 1)

(187)

z(k) =
[
1 0

]
x(k) + w(k) (188)

where

E[v(k)v(j)′] = 1 (189)
E[w(k)w(j)′] = 1 (190)
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TABLE 1: Monte Carlo Simulation for Case 1 Varying the Number of Lags M (Method R3)

M

10 20 30 40 50 100

R 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

Q 0.0048 0.0030 0.0027 0.0026 0.0025 0.0025

TABLE 2: Monte Carlo Simulation for Case 1 with M = 100 and PI= 2σ (100 Runs)

R Q

R1 R2 R3 R4 R5

Truth 0.01 0.01 0.01 0.01 0.01 0.0025

r 0.0092 0.0092 0.0092 0.0092 0.0092 6.49 · 10−4

Mean 0.0100 0.0100 0.0100 0.0100 0.0100 0.0025

r 0.0109 0.0109 0.0109 0.0109 0.0109 0.0046

RMSE 4.41 · 10−4 4.41 · 10−4 4.41 · 10−4 4.41 · 10−4 4.41 · 10−4 0.0010

W11 W21

Truth 0.0952 0.0476

r 0.0697 0.0255

Mean 0.0925 0.0465

r 0.1250 0.0634

RMSE 0.0147 0.0100

P̄11 P̄22

Truth 0.0011 5.13 · 10−4

r 8.47 · 10−4 2.82 · 10−4

Mean 0.0011 5.13 · 10−4

r 0.0013 8.72 · 10−4

RMSE 1.26 · 10−4 1.60 · 10−4

The system’s condition numbers for its observabil-
ity and controllability matrices are 2.18 and 2.56,
respectively. Here, Ξ, given the initial Kalman filter
gain, is

Ξ =

1.25 1.8
0.5 −1.12
0 0.4

 (191)

and the rank is 2. The number of unknown variables
is 2, therefore, the system noise variances are
estimable. The condition number of Ξ is 2.3 and in-
deed the minimal polynomial approach works well
for this problem. We simulated 100 Monte Carlo
runs with N = 1000, nL = 100, Ns = 1000, and

an initial suboptimal Kalman filter gain

W (0) =

[
0.9
0.5

]
(192)

(193)

Table 3 shows the estimated noise variances. Sim-
ilar to the Case 1 result, the mean values of each
of the estimated parameters are very close to their
corresponding true values. As seen in Table 3, the
true values lie within the 95% PI associated with
the distribution of estimates for each variable Q, R,
W and Pii. Fig.5 shows the Q and R estimates for
each MC run. As shown in Fig.6, the Kalman filter
is considered consistent.

X-C CASE 3
In Case 3, we test on the example in [33]. The
system matrices are assumed to be as follows.
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TABLE 3: Monte Carlo Simulation for Case 2 with
M = 100 and PI= 2σ (100 Runs)

R Q

R1 R2 R3 R4 R5

Truth 1.00 1.00 1.00 1.00 1.00 1.00

r 0.56 0.56 0.56 0.56 0.56 0.78

Mean 1.05 1.05 1.05 1.05 1.05 0.97

r 1.51 1.51 1.51 1.51 1.51 1.18

RMSE 0.25 0.25 0.25 0.25 0.25 0.11

W1 W2

Truth 0.65 0.09

r 0.49 −0.03

Mean 0.63 0.10

r 0.80 0.25

RMSE 0.08 0.07

P̄11 P̄22

Truth 1.89 0.35

r 1.59 0.30

Mean 1.87 0.35

r 2.07 0.39

RMSE 0.12 0.02
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FIGURE 5: Q and R estimation for Case 2.

F =


0.75 −1.74 −0.3 0 −0.15
0.09 0.91 −0.0015 0 −0.008

0 0 0.95 0 0
0 0 0 0.55 0
0 0 0 0 0.905


(194)
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FIGURE 6: Averaged NIS for Case 2.

Γ =


0 0 0
0 0 0

24.64 0 0
0 0.835 0
0 0 1.83

 (195)

H =

[
1 0 0 0 1
0 1 0 1 0

]
(196)

Q =

1 0 0
0 1 0
0 0 1

 R =

[
1 0
0 1

]
(197)

The condition number for the observability ma-
trix is 42.6, and the condition number for the
controllability matrix is 54.6. The system has a
rank(Ξ) equal to 5 (utilizing the constraint that
both R and Q are diagonal), with a total of 5
unknowns. Hence, the Q and R parameters are
identifiable. The condition number of Ξ is 808. The
initial Kalman filter gain is obtained by solving the
Riccati equation with

Q(0) =

0.25 0 0
0 0.5 0
0 0 0.75

 (198)

R(0) =

[
0.4 0
0 0.6

]
(199)

X-C1 Minimum Number of Observation Samples
Needed for Mehra’s and Bélanger’s Methods to
Converge
Both Mehra’s [33] and Bélanger’s [4] methods
to update the Kalman filter gain W can be un-
stable unless a large number of data samples
are observed. This is due to the fact that the
time average converges slowly to the ensemble
average. We conducted 100 MC simulations with
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FIGURE 7: Percentage of unstable Kalman filter
gains obtained from [33] for varying the total
number of observed samples (M = 40).

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

10

20

30

40

50

60

N

Pe
rc

en
ta

ge

FIGURE 8: Percentage of unstable Kalman filter
gains obtained from [4] for varying the total num-
ber of observed samples (M = 5).

10,000 data samples in each run given the five-
state system described in (194)–(197). We then
varied the number of observed samples from 100
to 10,000 and updated the Kalman filter gain using
both the Mehra [33] and Bélanger [4] methods. We
measure the percentage of unstable Kalman filter
gains by checking if any of the eigenvalues of F̄
are outside of the unit circle for each run over the
100 MC runs. The results are shown in Figs.7 and
8. We only display up to 5,000 samples for both
methods because each approach terminated with
a stable gain when the total observation samples
exceeded 5,000. The minimum number of samples
required to obtain a stable gain from these methods
were about 4,500. Our proposed method always
results in a stable Kalman filter gain; hence, it is
not included in the comparison of methods.

X-C2 Comparison of Proposed, Mehra’s, and
Belanger’s Gain Update Methods

Given the 100 MC simulations with 10,000 ob-
servation samples generated in X-C1 and setting
nL = 500, Ns = 10000, Table 4 shows the
estimation of the Kalman filter gain W over 100
Monte Carlo runs, given three different gain update
methods: the proposed method with M = 40,
Mehra’s method with M = 40 [33] and Bélanger’s
method with M = 5 [4].

In Table 4, we see that all methods have the
true values staying within its 95% PI; however, our
proposed method is able to obtain the Kalman filter
gain closest to the optimal Kalman filter gain and
the RMSE are, on average, 8 and 4 times smaller
compared to Mehra’s and Bélanger’s, respectively.
The very small gainsW21 andW41 are (similarly to
the small Q from Case 1) are very hard to estimate
— they are essentially buried in noise.

We test and compare the proposed method with
that of Mehra’s and Bélanger’s for the estimation
of R,Q and P using the methodology described
in Sections VI-B and VII, combined with the
converged Kalman filter gain from Table 4. The
results are shown in Table 5 and Mehra’s method
results in the true value of P33 staying outside of
the 95% PI. In comparison to Bélanger’s method,
the proposed method is vastly more accurate with
lower RMSE (2 to 9 times smaller) for all R, Q,
and P̄ , while Mehra’s method obtained a result
that is less accurate than Bélanger’s method, as
expected from the Kalman filter gain results. The
reason r1 is so difficult to estimate is that S1 is
dominated by the state uncertainty (S1 = 65,
r1 = 1), i.e. the measurement noise is “buried”
in a much larger innovation. In the case of r2 = 1,
one has S2 = 2.45, i.e., r2 is “visible” in the
innovations.

X-C3 Varying The Number of Samples
Observed

In this section, we vary the number of samples
observed, N = 1000, 2500, 5000, 10000 using
our six-step approach. The results are detailed in
Tables 6 and 7. As expected, the accuracy increases
with an increase in N . The estimation is greatly
degraded for N < 5000. Fig.9 illustrates that the
Kalman filter is consistent.
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TABLE 4: W Estimation Monte Carlo Simulation for Case 3 (100 Runs; 10,000 Samples)

W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

Truth 0.95 2.80·10−3 −2.86 −1.76 · 10−4 0.03 0.77 0.34 −1.49 0.25 -0.77

Proposed Method W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

r 0.93 −8.65 · 10−3 −2.94 −0.02 0.02 0.71 0.31 −1.57 0.18 −0.84

Mean 0.95 2.52 · 10−3 −2.86 5.29 · 10−4 0.03 0.77 0.34 −1.50 0.25 −0.76

r 0.97 0.01 −2.80 0.02 0.05 0.84 0.38 −1.41 0.30 −0.68

RMSE 0.01 5.33 · 10−3 0.04 9.31 · 10−3 9.60 · 10−3 0.03 0.02 0.05 0.03 0.04

Mehra’s Method W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

r 0.92 −0.04 −3.38 −0.07 −0.11 0.18 0.04 −2.61 −0.12 −1.17

Mean 1.01 3.79 · 10−4 −3.15 3.59 · 10−3 −0.02 0.62 0.31 −1.34 0.28 −0.62

r 1.08 0.06 −2.83 0.08 0.06 1.11 0.60 0.19 0.80 −0.11

RMSE 0.07 0.03 0.33 0.04 0.07 0.30 0.14 0.79 0.22 0.34

Bélanger’s Method W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

r 0.89 −0.02 −3.02 −0.05 −0.04 0.45 0.13 −2.27 −0.02 −1.15

Mean 0.96 1.46 · 10−4 −2.85 3.85 · 10−3 0.03 0.77 0.33 −1.44 0.26 −0.77

r 1.01 0.04 −2.70 0.04 0.10 1.13 0.52 −0.32 0.56 −0.32

RMSE 0.03 0.02 0.09 0.02 0.03 0.17 0.09 0.48 0.14 0.20

TABLE 5: R, Q and P̄ Estimation Monte Carlo Simulation for Case 3 (100 Runs; 10,000 Samples)

Method R Q P̄

r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

Truth 1.000 1.000 1.000 1.000 1.000 72.31 1.143 1213 0.932 11.74

Proposed Method r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

r 0.043 0.918 0.941 0.662 0.802 66.06 0.930 1141 0.633 9.639

Mean 1.067 1.008 0.998 1.000 0.994 72.36 1.146 1212 0.933 11.72

r 1.976 1.107 1.058 1.261 1.166 77.97 1.334 1290 1.172 13.76

RMSE 0.554 0.052 0.031 0.170 0.097 2.906 0.106 37.87 0.153 1.083

Mehra’s Method r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

r 0.102 0.676 0.995 0.060 0.153 69.01 0.540 1270 0.060 0.791

Mean 1.597 1.024 1.224 1.788 0.989 89.88 1.744 1505 1.715 14.22

r 3.681 1.199 1.420 4.432 2.240 120.7 4.067 1855 4.138 34.21

RMSE 1.484 0.212 0.251 1.464 0.652 23.38 1.280 330.0 1.419 10.61

Bélanger’s Method r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

r 0.0270 0.755 0.885 0.043 0.292 60.37 0.564 1069 0.043 2.507

Mean 1.171 1.008 0.992 1.319 1.117 74.58 1.416 1216 1.238 13.86

r 2.631 1.254 1.126 3.160 2.198 92.54 2.765 1370 2.902 27.078

RMSE 0.789 0.122 0.064 0.829 0.516 9.461 0.667 81.21 0.764 6.829
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TABLE 6: R, Q and P̄ Estimation when Varying the Number of Samples Observed N , Monte Carlo
Simulation for Case 3 (100 Runs; 1,000–10,000 Samples)

R Q P̄

r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

Truth 1.000 1.000 1.000 1.000 1.000 72.31 1.143 1213 0.932 11.74

N =1,000 r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

r 0.075 0.708 0.715 0.593 0.431 62.97 0.965 855.5 0.579 7.505

Mean 2.246 1.014 0.919 1.343 1.120 73.25 1.396 1139 1.263 13.45

r 5.221 1.358 1.137 2.847 1.542 89.88 2.204 1336 2.677 20.37

RMSE 2.060 0.182 0.133 0.663 0.308 6.998 0.398 136.6 0.626 3.511

N =2,500 r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

r 0.041 0.767 0.864 0.635 0.719 64.94 0.941 1071 0.660 8.554

Mean 1.453 1.010 0.977 1.127 1.049 73.24 1.245 1195 1.056 12.49

r 3.354 1.173 1.103 1.685 1.431 80.49 1.653 1342 1.638 16.44

RMSE 1.076 0.094 0.070 0.302 0.181 4.472 0.203 77.80 0.280 2.088

N =5,000 r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

r 0.043 0.885 0.919 0.578 0.726 65.55 0.856 1126 0.550 8.864

Mean 1.100 1.011 0.997 1.008 0.981 72.27 1.148 1211 0.942 11.62

r 2.580 1.161 1.084 1.397 1.265 80.13 1.390 1329 1.293 14.85

RMSE 0.757 0.077 0.045 0.218 0.140 3.692 0.136 52.74 0.197 1.530

N =10,000 r1 r2 q1 q2 q3 P̄11 P̄22 P̄33 P̄44 P̄55

r 0.043 0.918 0.941 0.662 0.802 66.06 0.930 1141 0.633 9.639

Mean 1.067 1.008 0.998 1.000 0.994 72.36 1.146 1212 0.933 11.72

r 1.976 1.107 1.058 1.261 1.166 77.97 1.334 1290 1.172 13.76

RMSE 0.554 0.052 0.031 0.170 0.097 2.906 0.106 37.87 0.153 1.083
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FIGURE 9: Averaged NIS for Case 3.

X-D CASE 4
For case 4, we simulate the unobservable (but
detectable) system in [42],

x(k) =

[
0.1 0
0 0.2

]
x(k − 1) +

[
1
2

]
v(k − 1)

(200)

z(k) =
[
1 0

]
x(k) + w(k) (201)

with

E[v(k)v(j)′] = 1 (202)
E[w(k)w(j)′] = 1 (203)

With the initial Kalman filter gain, the system has

Ξ =

 1.04 1.09
−0.20 −0.31

0 0.02

 (204)

The rank of Ξ is 2 and we have a total of 2
unknown variables. The condition number for Ξ
is 23.4. We simulated 100 MC runs with observed
samples N = 1000 in each run. We set nL = 100,
Ns = 1000, and λQ = 0.1. Table 8 shows the
estimated parameters with the initial Kalman filter
gain obtained by solving the Riccati equation with
R(0) = 0.2, and Q(0) = 0.4. Note that the system
is not fully observable, i.e., the condition number
for the observability matrix is infinity, while that
for the controllability matrix is 25.8. In Table 8, the
true values lie within the 95% PI associated with
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TABLE 7: W Estimation when Varying the Number of Samples Observed N , Monte Carlo Simulation for
Case 3 (100 Runs; 1,000–10,000 Samples)

W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

Truth 0.95 2.80·10−3 −2.86 −1.76 · 10−4 0.03 0.77 0.34 −1.49 0.25 −0.77

N =1,000 W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

r 0.90 −0.04 −2.97 −0.05 −0.03 0.56 0.27 −1.64 0.14 −0.95

Mean 0.96 −1.57 · 10−3 −2.74 7.53 · 10−3 0.04 0.79 0.33 −1.49 0.26 −0.79

r 1.01 0.03 −2.56 0.08 0.09 1.00 0.41 −1.27 0.44 −0.54

RMSE 0.03 0.02 0.17 0.03 0.03 0.11 0.03 0.11 0.08 0.12

N =2,500 W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

r 0.92 −0.02 −2.97 −0.03 −6.51 · 10−3 0.64 0.28 −1.64 0.14 −0.90

Mean 0.96 8.95 · 10−4 −2.82 2.17 · 10−3 0.03 0.77 0.33 −1.50 0.25 −0.78

r 1.01 0.02 −2.62 0.05 0.07 0.95 0.40 −1.31 0.36 −0.59

RMSE 0.02 0.01 0.10 0.02 0.02 0.08 0.03 0.09 0.05 0.08

N =5,000 W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

r 0.92 −0.02 −2.98 -0.03 8.68 · 10−3 0.67 0.30 −1.63 0.15 −0.89

Mean 0.95 2.02 · 10−3 −2.85 1.15 · 10−3 0.03 0.77 0.34 −1.49 0.25 −0.76

r 0.98 0.01 −2.77 0.03 0.06 0.90 0.39 −1.32 0.32 −0.64

RMSE 0.02 7.08 · 10−3 0.06 0.01 0.01 0.06 0.02 0.08 0.05 0.06

N =10,000 W11 W21 W31 W41 W51 W12 W22 W32 W42 W52

r 0.93 −8.65 · 10−3 −2.94 −0.02 0.02 0.71 0.31 −1.57 0.18 −0.84

Mean 0.95 2.52 · 10−3 −2.86 5.29 · 10−4 0.03 0.77 0.34 −1.50 0.25 −0.76

r 0.97 0.01 −2.80 0.02 0.05 0.84 0.38 −1.41 0.30 −0.68

RMSE 0.01 5.33 · 10−3 0.04 9.31 · 10−3 9.60 · 10−3 0.03 0.02 0.05 0.03 0.04
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FIGURE 10: Q and R estimation for Case 4.

each distribution. Fig.10 shows a wide variation
of Q and R estimates; however, the NIS in Fig.11
shows that the Kalman filter is consistent.
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FIGURE 11: Averaged NIS for Case 4.

X-E CASE 5
In Case 5, we simulate the system from [42],

x(k) =

0.1 0 0.1
0 0.2 0
0 0 0.3

x(k − 1) +

1
2
3

 v(k − 1)

(205)

z(k) =
[
0.1 0.2 0

]
x(k) + w(k) (206)
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TABLE 8: Monte Carlo Simulation for Case 4 with M = 100 and PI= 2σ (100 Runs; 1000 Samples)

R Q W1 W2 P̄11 P̄22

Truth 1.00 1.00 0.50 1.01 1.01 4.08

r 3.27 · 10−3 0.26 0.05 0.32 0.27 1.09

Mean 1.04 1.02 0.50 1.00 1.03 4.16

r 2.05 2.09 1.22 2.00 2.09 8.37

RMSE 0.60 0.53 0.32 0.52 0.53 2.11

with

E[v(k)v(j)′] = 0.5 (207)
E[w(k)w(j)′] = 0.1 (208)

The condition number for observability and con-
trollability matrices are 362 and 561, respectively;
hence it is an ill-conditioned case. With the initial
Kalman filter gain, Ξ is

Ξ =


0.28 1.37
−0.09 −0.67
0.006 0.11

0 −0.006

 (209)

The rank of Ξ is 2 and we have a total of 2 unknown
variables indicating that both Q and R are identi-
fiable (albeit due to the high condition number,
not very well relative to the other systems tested).
The condition number for Ξ is 36.4. We simulated
200 MC runs with N = 1000 observed samples
for each run. We set M = 15 to be consistent
with the setup in [42]. We also set the maximum
number of iterations nL = 100, Ns = 1000, and
the regularization term from (120) is λQ = 0.3.
Table 9 shows the estimated parameters with the
initial Kalman filter gain obtained by solving the
Riccati equation with R(0) = 0.1, and Q(0) = 0.5.
The results are detailed in Table 9, where the true
value stays within the 95% PI. Fig.12 shows the
scatter plot for the estimates of R and Q of each
MC run. The plot is similar to the estimates in [42].
However, the upper bound on Q is less than that
of [42] (about 0.2), which does not provide the
detailed results presented in Table 9. Fig.13 shows
that the Kalman filter is consistent.

XI CONCLUSION AND FUTURE WORK
In this paper we derived necessary and sufficient
conditions for the identification of the process and
measurement noise covariances. We also provide
a novel six-step successive approximation method,
coupled with an adaptive gradient method, to
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FIGURE 12: Q and R estimation for Case 5.
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FIGURE 13: Averaged NIS for Case 5.

estimate the steady-state Kalman filter gain W ,
unknown noise covariance matrices R, and Q, as
well as the state prediction (or updated) covariance
matrix P̄ (or P ) when Q and R are identifiable.
Moreover, we developed a novel iterative approach
to obtain positive definite Q, R and P̄ , while
ensuring that the structural assumptions on Q and
R are enforced (e.g., diagonality of Q and R, if
appropriate, symmetry and positive definiteness).
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TABLE 9: Monte Carlo Simulation for Case 5 with M = 100 and PI= 2σ (100 Runs; 1000 Samples)

R Q W1 W2 W3 P̄11 P̄22 P̄33

Truth 0.10 0.50 1.14 2.24 3.39 0.54 2.04 4.69

r 0.07 0.26 0.54 1.05 1.60 0.29 1.07 2.50

Mean 0.11 0.49 1.05 2.06 3.12 0.52 1.99 4.58

r 0.17 0.65 1.40 2.76 4.13 0.69 2.65 6.09

RMSE 0.03 0.11 0.27 0.54 0.80 0.11 0.45 1.00

We provided several approaches to estimate the
unknown noise covariance R via post-fit residuals.
We examined previous methods from the litera-
ture and heretofore undiscussed assumptions of
these methods that result in largely inaccurate or
unstable estimates of the unknown parameters. The
proposed method significantly outperformed the
previous ones, given the same system assumptions.

We validated the proposed method on five dif-
ferent test cases and were able to obtain parameter
estimates where the truth stays within the 95%
probability interval based on the estimates.

In the future, we plan to pursue a number
of research avenues, including 1) estimating Q
and R using one-step lag smoothed residuals;
2) exploring vector moving average estimation
algorithms using the minimal polynomial approach
and/or truncating the effects of state; 3) replacing
the batch innovation covariance estimates by their
individual or mini-batch estimates, as is done
in machine learning; 4) investigating accelerated
gradient methods (e.g., Adam [26], AdaGrad [13],
RMSProp [48], conjugate gradient, memoryless
quasi-Newton, and trust region methods [5]); 5)
automatic model selection; and 6) extension to
nonlinear dynamic models.

.

Appendix A STEADY-STATE UPDATED
STATE COVARIANCE RICCATI EQUATION
From (6) and (9), we can write the steady-state
updated state covariance matrix as

P̄ = P +WSW ′ = FPF ′ + ΓQΓ′ (210)

Thus,

P = FPF ′ −WSW ′ + ΓQΓ′ (211)

Given (14) and (68), we can rewrite (211) as

P = FPF ′ − PH ′R−1SR−1HP ′ + ΓQΓ′

(212)

= FPF ′ − PH ′G−1HP ′ + ΓQΓ′ (213)

= FPF ′ − PH ′(R−HPH ′)−1HP ′ + ΓQΓ′

(214)

Appendix B OBTAIN W USING MINIMAL
POLYNOMIAL
Let Ws be the suboptimal Kalman filter gain and ẽ
be the difference of the state predictions between
the optimal and suboptimal filter, that is,

ẽ(k + 1|k) = F̄sẽ(k|k − 1) + F (W −Ws)ν(k)
(215)

where F̄s is defined as

F̄s = F (Inx
−WsH) (216)

We can write the suboptimal innovation νs(k) in
terms of ẽ(k|k − 1)

νs(k) = Hẽ(k|k − 1) + ν(k) (217)

Then, using the minimal polynomial of F̄s from
(21), νs(k − i) can be written as

νs(k − i)

= H

[
F̄m−is ẽ(k −m|k −m− 1)

+

m∑
l=i+1

F̄ l−i−1
s F (W −Ws)ν(k − l)

]
+ ν(k − i)

(218)

Let us define ξ(k) as
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ξ(k) =

m∑
i=0

aiνs(k − i) (219)

=

m∑
i=0

ai

{[
H

m∑
l=i+1

F̄ l−i−1
s F (W −Ws)ν(k − l)

]
+ ν(k − i)

}
(220)

=

m∑
l=0

[
alInz +H

l−1∑
i=0

aiF̄
l−i−1
s F (W −Ws)

]
ν(k − l) (221)

=

m∑
l=0

Vlν(k − l) (222)

where

Vl = alInz
+H

l−1∑
i=0

aiF̄
l−i−1
s F (W−Ws) (223)

From (15), we can write (222) in terms of z-
transform, that is

ξ(z) =

m∑
l=0

Vlz−lν(z) (224)

Note that we can write ξ(k) as a vector auto-
regressive process of infinite order (which can be
truncated to Mth order), that is,

ξ(k) =

∞∑
j=1

Yjξ(k − j) + ν(k) (225)

The z-transform of (225) is,

ξ(z) =

Inz
−
∞∑
j=1

Yjz−j

−1

ν(k) (226)

Also, note the relationship between (226) and
(224),Inz

−
∞∑
j=1

Yjz−j

 m∑
l=0

Vlz−l = Inz
(227)

By equating coefficients, we have

Yj = Vj −
j−1∑
l=1

Yj−lVl j = 0, 1, 2, . . . ,m

(228)

= −
m∑
l=1

Yj−lVl j = m+ 1 (229)

We can truncate the infinite vector auto-regressive
model at M� m, for i = 1, 2, . . . ,M,

E[ξ(k)ξ(k − i)′] = E


M∑
j=1

Yjξ(k − j)ξ(k − i)′

+ ν(k)ξ(k − i)′


(230)

Then, we obtain the estimates of {Yi}Mi=1 by
solving

i∑
j=1

YjLi−j +

m+i∑
j=i+1

YjL
′
j−i = Li (231)

i = 1, 2, . . . ,m
i∑

j=i−m
YjLm−j+1 +

m+i∑
j=i+1

YjL
′
j−i = 0 (232)

i = m+ 1,m+ 2, . . . ,M

Let ν̂(k) be

ν̂(k) = ξ(k)−
M∑
j=1

Yjξ(k − j) (233)

and recall (223) and note that

Ĉl = H

l−1∑
i=0

aiF̄
l−i−1
s F (234)

where {Ĉl} are the sample covariance matrices.
Then,

vec

[
ξ(k)−

m∑
l=0

alν̂(k − l) +

m∑
l=1

ĈlFWsν̂(k − l)

]
(235)

=

[
m∑
l=0

ν̂(k − l)′ ⊗ Ĉl

]
vec(W ) (236)
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Alternately, W can be computed via {Vl}. To
compute Vl, we know that

V0 = Inz
(237)

Vl =

l−1∑
i=0

ViYl−i l = 1, 2, . . . ,m (238)

Recalling (223), we have the following relation-
ship,

Ṽl = Vl−alInz+ĈlWs = ĈlW l = 1, 2, . . . ,m
(239)

Then,

vec



Ṽ1

Ṽ2

...
Ṽm


 =


Inz ⊗ Ĉ1

Inz
⊗ Ĉ2

...
Inz
⊗ Ĉm

 vec (W ) (240)

= Ĉavec (W ) (241)

where the vec(·) function converts W into a col-
umn vector as in (36) and ⊗ is the Kronecker
product. We can obtain the optimal Kalman filter
gain W by solving the least squares problem,
where a unique solution exists if Ĉa has full column
rank.

Appendix C CHOLESKY DECOMPOSITION
AND EIGEN DECOMPOSITION
To solve forR using R3, we first perform Cholesky
decomposition of S−1. That is,

S−1 = LL′ (242)

Then,

L′RS−1RL = (L′RL)2 = L′GL (243)

Let us perform eigen decomposition on (243), that
is

L′GL = UΛU ′ (244)

Then, we have

L′RL = UΛ1/2U ′ (245)

and R can be computed as

R = (L′)−1UΛ1/2U ′L−1 (246)

Appendix D SIMULTANEOUS
DIAGONALIZATION
To solve for R using R3, we first perform eigen
decomposition on S−1. That is,

S−1 = U1Λ1U
′
1 (247)

= (U1Λ
1/2
1 U ′1)2 (248)

Noting that

S−1/2GS−1/2 =
(
S−1/2RS−1/2

)2

(249)

we perform another eigen decomposition on
U1Λ

1/2
1 U ′1GU1Λ

1/2
1 U ′1 to get

U1Λ
1/2
1 U ′1GU1Λ

1/2
1 U ′1 = (U2Λ

1/2
2 U ′2)2 (250)

= (U1Λ
1/2
1 U ′1RU1Λ

1/2
1 U ′1)2 (251)

and R can be computed as

R = U1Λ
−1/2
1 U ′1U2Λ

1/2
2 U ′2U1Λ

−1/2
1 U ′1 (252)

Appendix E OBJECTIVE FUNCTION GRADIENT COMPUTATION
Note that Θ(i), Ψ, and WĈ(0) are all functions of W in (48). Thus,

δJ =
1

2
trace

{
M−1∑
i=1

[δΘ(i)Ω + Θ(i)δΩ]

}
(253)

where

Ω = [Ψ−WC(0)]E2 [Ψ′ − C(0)W ′] (254)

δΩ =

M−1∑
i=1

{
[δΨ− δWC(0)]E2 [Ψ′ − C(0)W ′] + [Ψ−WC(0)]E2 [δΨ′ − C(0)δW ′]

}
(255)

and

(256)

M−1∑
i =1

δΘ(i)Ω =

M−1∑
i=1

{
[F ′ (Inx − (W + δW )H) ′F ′]

i−1
H ′E2H [F (Inx − (W + δW )H)]

i−1
F

− F ′(F̄ ′)i−1H ′E2HF̄ i−1F
}

Ω
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To first order, (256) can be approximated by

(257)

M−1∑
i =1

−F ′
[
H ′δW ′(F̄ ′)i−2 + F̄ ′H ′δW ′(F̄ ′)i−3 + · · ·+ (F̄ ′)i−2H ′δW ′

]
H ′E2HF̄ i−1FΩ

− F ′(F̄ ′)i−1H ′E2H
[
δWHF̄ i−2 + F̄ δWHF̄ i−3 + · · ·+ F̄ i−2δWH

]
FΩ

Then,

(258)

M−1∑
i =1

δΘ(i)Ω ≈ −
M−1∑
i=1

i−2∑
`=0

[
F ′(F̄ ′)`H ′δW ′(F̄ ′)i−2−`]H ′E2HF̄ i−1FΩ

+ F ′(F̄ ′)i−1H ′E2H
[
F̄ rδWHF̄ i−2−`]FΩ

So,

1

2
trace

(
M−1∑
i=1

δΘ(i)Ω

)
= −trace

[
δW ′

M−1∑
i=1

i−2∑
`=0

(F̄ ′)i−2−`H ′E2HF̄ i−1FΩF ′(F̄ ′)`H ′

]
(259)

= −trace

[
δW ′

M−1∑
i=1

i−2∑
`=0

(F̄ ′)i−2−`H ′E2C(i)E2C(`+ 1)′

]
(260)

For
∑M−1
i=1 Θ(i)δΩ, we have

M−1∑
i=1

Θ(i)δΩ =

M−1∑
i=1

Θ(i)
{

[δPH ′ − δWC(0)] E2(Ψ′ − C(0)W ′)

− [Ψ−WC(0)]E2 [HδP − C(0)δW ′]
}

(261)

where,
δP = F̄P F̄ ′ − FδW (Ψ′ − C(0)W ′)F ′ + F (Ψ−WC(0))δW ′F ′ (262)

= −
∞∑
b=0

F̄ b [FδW (Ψ′ − C(0)W ′)F ′ + F (Ψ−WC(0))δW ′F ′] (F̄ ′)b (263)

Then,

(264)

1

2
trace

(
M−1∑
i=1

Θ(i)δΩ

)
= trace

{
−δW ′

M−1∑
i=1

Θ(i) [Ψ−WC(0)]E2Ĉ(0)

+
1

2

[
Θ(i)(Ψ−WC(0))E2H +H ′E2(Ψ′ − C(0)W ′)Θ(i)

]
δP

}
Substituting (263) into (267), we get

(265)
1

2
trace

(
M−1∑
i=1

Θ(i)δΩ

)
= −trace

{
δW ′

M−1∑
i=1

Θ(i)(Ψ−WC(0))E2C(0)

}
− trace {[FδW (Ψ′ − C(0)W ′)F ′ + F (Ψ−WC(0))δW ′F ′]Z}

(266)Z =

∞∑
b=0

(F̄ ′)b

[
1

2

M−1∑
i=1

[
Θ(i)(Ψ−WC(0))E2H +H ′E2(Ψ′ − C(0)W ′)Θ(i)

]]
F̄ b

We can solve for Z via a Lyapunov equation as in (55). Then, by substituting Z into (265), we have

(267)
1

2
trace

(
M−1∑
i=1

Θ(i)δΩ

)
= −trace

{
−δW ′

[
M−1∑
i=1

Θ(i)XE2C(0) + F ′ZFX

]}
where X can be estimated using (57). Then, by subsituting (260) and (267) into (253), we get (54).
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