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Abstract

The Kalman filter requires knowledge of the noise statistics; however, the noise covariances are generally unknown. Although

this problem has a long history, reliable algorithms for their estimation are scant, and necessary and sufficient conditions for

identifiability of the covariances are in dispute. We address both of these issues in this paper. We first present the necessary

and sufficient condition for unknown noise covariance estimation; these conditions are related to the rank of a matrix involving

the auto and cross-covariances of a weighted sum of innovations, where the weights are the coefficients of the the minimal

polynomial of the closed-loop system transition matrix of a stable, but not necessarily optimal, Kalman filter. We present an

optimization criterion and a novel six-step approach based on a successive approximation, coupled with a gradient algorithm

with adaptive step sizes, to estimate the steady-state Kalman filter gain, the unknown noise covariance matrices, as well as

the state prediction (and updated) error covariance matrix. Our approach enforces the structural assumptions on unknown

noise covariances and ensures symmetry and positive definiteness of the estimated covariance matrices. We provide several

approaches to estimate the unknown measurement noise covariance R via post-fit residuals, an approach not yet exploited in

the literature. The validation of the proposed method on five different test cases from the literature demonstrates that the

proposed method significantly outperforms previous state-of-the-art methods. It also offers a number of novel machine learning

motivated approaches, such as sequential (one sample at a time) and mini-batch-based methods, to speed up the computations.
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ABSTRACT The Kalman filter requires knowledge of the noise statistics; however, the noise covariances
are generally unknown. Although this problem has a long history, reliable algorithms for their estimation are
scant, and necessary and sufficient conditions for identifiability of the covariances are in dispute. We address
both of these issues in this paper. We first present the necessary and sufficient condition for unknown
noise covariance estimation; these conditions are related to the rank of a matrix involving the auto and
cross-covariances of a weighted sum of innovations, where the weights are the coefficients of the minimal
polynomial of the closed-loop system transition matrix of a stable, but not necessarily optimal, Kalman filter.
We present an optimization criterion and a novel six-step approach based on a successive approximation,
coupled with a gradient algorithm with adaptive step sizes, to estimate the steady-state Kalman filter gain,
the unknown noise covariance matrices, as well as the state prediction (and updated) error covariance matrix.
Our approach enforces the structural assumptions on unknown noise covariances and ensures symmetry
and positive definiteness of the estimated covariance matrices. We provide several approaches to estimate
the unknown measurement noise covariance R via post-fit residuals, an approach not yet exploited in the
literature. The validation of the proposed method on five different test cases from the literature demonstrates
that the proposed method significantly outperforms previous state-of-the-art methods. It also offers a number
of novel machine learning motivated approaches, such as sequential (one sample at a time) and mini-batch-
based methods, to speed up the computations.

INDEX TERMS Adaptive filtering, Kalman filter, minimal polynomial, noise covariance estimation,
adaptive gradient descent.

I. INTRODUCTION
The Kalman filter (KF) [23] is the optimal state estimator
for linear dynamic systems driven by Gaussian white noise

The associate editor coordinating the review of this manuscript and

approving it for publication was Pietro Savazzi .

with measurements corrupted by Gaussian white noise.1

In the classical design of a Kalman filter, the noise covari-
ance matrices are assumed known and they, along with the
system dynamics, determine the achievable filter’s accuracy.
However, inmany practical situations, including noisy feature

1The KF is also the best linear estimation algorithm when the noises are
non-Gaussian with known covariances [2].
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data in machine learning, the statistics of the noise covari-
ances are often unknown or only partially known. Thus,
noise identification is an essential part of adaptive filtering.
Adaptive filtering has numerous applications in engineer-
ing [36], machine learning [9], econometrics [11], weather
forecasting [10], [20], [35], [46], to name a few.

We were motivated by the following learning problem:
Given a vector time series and a library of models of sys-
tem dynamics for the data (e.g., a Wiener process, a white
noise acceleration model, also called nearly constant velocity
model, or a white noise jerkmodel, also called nearly constant
acceleration model), find a suitable process noise and mea-
surement noise model and the best system dynamics for the
time series. The problem we consider in this paper is limited
to finding a suitable process noise and measurement noise
covariance for a given dynamic model.

A. PREVIOUS WORK
The approaches for estimating the noise covariance matrices
for a Kalman filter can be broadly classified into four general
categories: Bayesian inference, maximum likelihood estima-
tion, covariance-matching, and correlation methods. The first
two categories pose the noise covariance estimation problem
as a parameter estimation problem.

In the Bayesian inference approach [19], the covariance
estimation problem is solved by obtaining the posterior prob-
ability density function (pdf) of the unknown parameters (in
this case, the noise covariance matrix elements) from their
prior pdf and the observed measurements using the Bayes’
formula recursively. In 2013, Matisko and Havlena [32]
proposed a new Bayesian method to estimate the unknown
covariance matrices. They first use a Monte Carlo method to
generate a grid of possible unknown covariance matrix pairs
(Q, R) with more density near the highest prior probability.
Then, they compute the likelihood and posterior probability
after performing state estimation for each pair using aKalman
filter. In general, the Bayesian approach suffers from the curse
of dimensionality and is computationally intractable due to
the fact that it involves numerical integration or Monte Carlo
simulations over a very large parameter space.

In maximum likelihood estimation [25], [48], the noise
statistics are obtained by maximizing the probability den-
sity function of the measurement residuals generated by the
filter, which is the likelihood of the filter parameters [2].
These filter-based maximum likelihood methods require
nonlinear programming based optimization and are com-
putationally intractable. Shumway and Stoffer [47] utilize
the expectation maximization (EM) algorithm [12], which
requires the smoothed estimates of the system state. This
approach starts with the smoothed estimation of the system
state given an estimate of the initial state and noise covari-
ance matrices. Then, the unknown parameters are estimated
via maximum likelihood estimation using the smoothed
state estimates obtained from the expectation step. Later,
Ghahramani and Hinton [17] present an extension of [47]
that can account for an unknown observation matrix in linear

dynamic systems. They then go on to use forward and back-
ward recursions to estimate the noise covariance matrices.
This process is repeated until the estimated parameters con-
verge. In addition to computational complexity, this method
suffers from convergence to a local optimum.

The basic idea of the covariance-matching techniques [38]
is that the sample covariance of the innovations should be
consistent with its theoretical value. In [38], the unknown
noise covariances are estimated from the sample covariance
computed from the innovation sequences accumulated over
the entire historical data (or in a moving time window).
In this method, if the estimated innovation covariance value
is much larger than the theoretical value, then the process
noise covariance is increased. The convergence has never
been proved for this method.

With regard to correlation methods, Heffes [18] derived an
expression for the covariance of the state error and of the
innovations of any suboptimal filter as a function of noise
covariances. This expression serves as a fundamental building
block in the correlation methods. The first innovation-based
technique to estimate the optimal Kalman filter gain and the
unknown noise covariance matrices via the correlations of
innovations from an arbitrary initial stabilizing filter gain was
introduced by Mehra [33]. Another procedure to carry out
the identification of unknown optimal Kalman filter gain and
the noise covariance matrices is by Carew and Bélanger [7].
Their strategy calculates the Kalman filter gain based on the
estimation error that is defined as the discrepancy between
the optimal state estimates obtained from the optimal Kalman
filter gain and the state estimates obtained from an arbi-
trary suboptimal Kalman filter gain. There is a question as
to whether the correlation method is sensitive to the initial
Kalman filter gain selection. Mehra suggested to repeat the
noise covariance estimation steps with the obtained gain
from the first attempt to improve the estimation. However,
Carew andBélanger [7] claim that if the optimal Kalman filter
gain is used as the initial condition, then the approximations
in Mehra’s approach are such that the correctness of the
optimal gain will not be confirmed.

Later, Neethling and Young [39] suggested to combine the
noise covariance matrices in a vector and solve a single least
squares or weighted least squares problem to improve the
performance of Mehra and Carew–Bélanger’s approaches.
In 2006, Odelson et al. [41], [42] developed the autocovari-
ance least squares method to estimate the noise covariance
matrices by applying the suggestions of [39] on Mehra’s
approach and using the Kronecker operator. The algorithm
defines amultistep autocovariance function between themea-
surements, which is used to develop a linear least squares
formulation to estimate the noise covariance matrices.
Duník et al. [14] compared the method presented by
Odelson et al. [42] to a combined state and parameter esti-
mation approach.

An interesting variant of the correlation methods is to
utilize the output correlations. In 1972, Mehra [34] pro-
posed an output correlation technique to directly estimate the
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optimal Kalman filter gain. This method has the advantage of
being non-recursive compared to the innovation correlation
techniques. However, the poor estimates of sample output
correlation functions can lead to an ill-conditioned Riccati
equation.

The contributions of the present paper are as follows:

1) A necessary and sufficient condition for the identifia-
bility of unknown noise covariances is provided for a
Gauss-Markov system. This involves the rank of the
auto and cross-covariances of the weighted sum of
innovations of a suboptimal filter, where the weights
are the coefficients of the minimal polynomial of the
state transition matrix.

2) A novel six-step solution approach via a successive
approximation and adaptive gradient descent scheme
with a new objective function to obtain the unknown
noise covariance matrices Q and R, as well as the
steady-state Kalman filter gainW , and the steady-state
state prediction covariance matrix P̄ or the updated
state covariance matrix P, is proposed. This ensures
positive definite Q and positive definite R, as well
as P̄ and P.

3) Several novel approaches to estimate the unknown
noise covariance matrix R are derived via utilization of
the post-fit residual, which has not yet been discussed
in the literature.

4) Convergence proofs in [7] assumed that time averages
are the same as ensemble averages. This is only approx-
imate with finite data. Consequently, these methods
either diverge or result in largely inaccurate estimates
of unknown covariances.

5) Our approach can enforce structural assumptions on
Q and R (e.g., diagonality of Q and R, symmetry and
positive definiteness).

The paper is organized as follows. In Section II, we provide
an overview of the Kalman filter and derive a new Riccati
equation for the updated state covariance. Then, in Section III,
we discuss the necessary and sufficient condition for the
unknown noise covariances’ estimation. We briefly discuss
different approaches to obtaining the unknown covariance
parameters in Section IV. Then, in Section V, we discuss a
convergent version ofMehra’s method to estimate the optimal
Kalman filter gain. In Section VI, we derive five different
ways to obtain R. Section VII provides a method to estimate
the process noise covariance matrix Q and the steady-state
updated state covariance P, iteratively. All these methods are
combined in Section VIII, where we present a systematic pro-
cess to find the optimal filter gain W , the innovation covari-
ance S, the measurement noise covariance R, the steady-state
state prediction (or updated state) covariance P̄ (P) and the
process noise covariance Q. In Section IX, we specialize the
approach to estimate W , R, Q and P for a process, where
all the states are observed and for a Wiener process. Lastly,
we apply our approach to five numerical examples from the
literature in Section X, and conclude the paper in Section XI.

TABLE 1. Summary of notation.

In this paper, all the subscripts denote matrix indices. The
iteration variable is superscript with (·) to differentiate the
notation from exponents.

II. PLANT AND MEASUREMENT MODEL FOR THE
KALMAN FILTER
The notation used in the remainder of this paper is listed
in Table 1. Consider the discrete-time linear dynamic system

x(k + 1) = Fx(k)+ 0v (k) (1)

z(k) = Hx(k)+ w(k) (2)

(i.e., a Gauss-Markov system) where x(k) is an
nx-dimensional state vector, F is the state transition matrix
of the system, H is the nz × nx measurement matrix, and
0 is the nx×nv dimensional noise gainmatrix. The sequences
v (k), k = 0, 1, . . . , and w(k), k = 0, 1, . . . , are zero-mean
white Gaussian noises with covariance matrices Q and R,
respectively. The two noise sequences and the initial state
are assumed to be mutually independent. The matrices Q
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and R are assumed to be positive definite. Note that even if
Q is positive definite, 0Q0′ need not be; it can be positive
semi-definite. We assume that the system is observable and
(F , 0Q1/2) is controllable.2

Given the estimate x̂(k|k), the Kalman filter [2], [23] esti-
mates the state at the next time instant k + 1 as

x̂(k + 1|k) = Fx̂(k|k) (3)

ν(k + 1) = z(k + 1)− Hx̂(k + 1|k) (4)

x̂(k + 1|k + 1) = x̂(k + 1|k)

+W (k + 1)ν(k + 1) (5)

P(k + 1|k) = FP(k|k)F ′ + 0Q0′ (6)

S(k + 1) = HP(k + 1|k)H ′ + R (7)

W (k + 1) = P(k + 1|k)H ′S(k + 1)−1 (8)

P(k + 1|k + 1) = P(k + 1|k)

−W (k + 1)S(k + 1)W (k + 1)′ (9)

where the estimate x̂(k + 1|k) is the one-step extrapolated
estimate of the state vector x(k) based on the measurements
up to k , W (k), k = 1, . . . ,N is the sequence of Kalman
filter gains, ν(k), k = 1, . . . ,N is the innovation sequence,
P(k + 1|k) is the state prediction covariance, S(k + 1) is
the measurement prediction (or innovation) covariance, and
P(k + 1|k + 1) is the updated state error covariance.

The six-step approach in this paper is designed specifi-
cally for a steady-state Kalman filter. The steady-state state
prediction covariance matrix P̄ satisfies an algebraic Riccati
equation.

P̄ = F[P̄− P̄H ′(HP̄H ′ + R)−1HP̄]F ′ + 0Q0′ (10)

The steady-state updated state covariance, denoted as P,
can also be computed via another algebraic Riccati equation
(see Appendix A).

P = FPF ′ − PH ′(R− HPH ′)−1HP′ + 0Q0′ (11)

Evidently,

P = P̄−WSW ′ (12)

= (Inx −WH )P̄(Inx −WH )′ +WRW ′ (13)

where (13) is known as the Joseph form; W and S are the
steady-state optimal gain, and the steady-state innovation
covariance, respectively, and are given by

W = P̄H ′S−1

= P̄H ′(HP̄H ′ + R)−1

= PH ′R−1 (14)

S = E[ν(k)ν(k)′] = HP̄H ′ + R (15)

Note that (Inx − WH ) is invertible, but need not be stable
(i.e., eigenvalues need not be inside the unit circle).

2Detectability and stabilizability are all that are needed for a stableKalman
filter (i.e., state observability is not needed).

III. IDENTIFIABILITY OF Q AND R
One major issue in the previous literature involves the
necessary conditions to estimate the unknown covariance
matrices. Mehra [33] claimed that the systemmust be observ-
able and controllable; however, Odelson [42] provided a
counter-example wherein the systemwas observable and con-
trollable, but the full Q matrix was not estimable. Following
the ideas in [49], we prove that the necessary and suffi-
cient condition (as detailed in Appendix B) to estimate the
unknown covariance matrices in a system is directly related
to its minimal polynomial of

F̄ = F(Inx −WH ), (16)

its stable closed-loop filter matrix F̄ , and a transformation
of the innovations based on the coefficients of the minimal
polynomial. Let us define x̃(k+1|k) to be the predicted error
between the state x(k + 1) and its predicted state x̂(k + 1|k),
that is,

x̃(k + 1|k) = x(k + 1)− x̂(k + 1|k) (17)

We can rewrite x̂(k + 1|k) in terms of x̃, that is,

x̂(k + 1|k)=Fx̂(k|k−1)+FWHx̃(k|k−1)+FWw(k) (18)

Then, substituting (18) into (17) and using (1), we
have

x̃(k + 1|k) = F̄ x̃(k|k − 1)+ 0v (k)− FWw(k) (19)

where F̄ is defined in (16). We can also write ν(k) in terms
of x̃, that is

ν(k) = Hx̃(k|k − 1)+ w(k) (20)

Let us define the mth order minimal polynomial of F̄
as

m∑
i=0

aiF̄m−i = 0; a0 = 1 (21)

Then, the innovations ν(k) can be written as (22), shown at
the bottom of the next page.

Note that we apply the minimal polynomial of F̄ to ensure
that the innovation in (22), is stationary. Let us define ξ (k)
as (23)–(27), shown at the bottom of the next page, where
Bl and Gl are the sum of two moving average processes
driven by the process noise and the measurement noise,
that is,

Bl = H

(
l−1∑
i=0

aiF̄ l−i−1
)
0 (28)

Gl =

[
alInz − H

(
l−1∑
i=0

aiF̄ l−i−1
)
FW

]
(29)

G0 = Inz (30)

Denoting Lj = E
[
ξ (k)ξ (k − j)′

]
, for j = 0, 1, 2, . . . ,m,

we have

Lj =
m∑

i=j+1

BiQB′i−j +
m∑
i=j

GiRG ′i−j (31)
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We know that Q = [qij] is an nv × nv positive
semi-definite and symmetric matrix, and R = [rij] is
an nz × nz positive definite and symmetric matrix. Uti-
lizing the symmetry of Q and R, and letting bi,l and gi,l
denote the l-th column of Bi and Gi, respectively, we can
rewrite (31) as (32)–(34) shown at the bottom of the next
page.

From (34), we can form the noise covariance identifia-
bility matrix I of dimension (m + 1)n2z ×

1
2 [nv (nv + 1) +

nz(nz + 1)], as in Algorithm 1. Algorithm 1 uses the vec(A)
function to convert a matrixA into a column vector. For a p×n
matrix A,

vec(A) , [a11, . . . , ap1, a12, . . . , ap2, . . . , a1n, . . . , apn]′

(35)

Using (34) and collecting terms corresponding to each
qlp, p = l, l + 1, . . . , nv and each rlp, p = l, l + 1, . . . , nz
into the corresponding columns of I , we obtain the fol-
lowing identifiability condition that must be satisfied by Q
and R,

I

[
vec(Q)
vec(R)

]
=


L0

L1
...

Lm

 (36)

The linearity of (36) implies the full rank condition on I .
Since R is always estimable because Gm (recall that m is
the order of minimal polynomial) is invertible,3 the maxi-
mum number of unknowns in Q that can be estimated must
be less than or equal to the minimum number of indepen-
dent measurements minus the number of unknowns in R.

3See Appendix C for a detailed proof.

Algorithm 1 Construction of the Noise Covariance
Identifiability Matrix I

1: for j := 0 : m do
2: r = j ∗ n2z
3: k← 0
4: for l := 1 : nv do
5: k← k+ 1
6: b =

∑m
i=j+1[bi,lb

′
i−j,l]

′

7: I (r+ 1 : r+ n2z ,k)← vec(b)
8: for p := l + 1 : nv do
9: k← k+ 1
10: cj,l,i(p) = [bi,lb′i−j,p + bi,pb

′
i−j,l]

′

11: d =
∑m

i=j+1 cj,l,i(p)
12: I (r+ 1 : r+ n2z ,k)← vec(d)
13: end for
14: end for
15: for l := 1 : nz do
16: k← k+ 1
17: g =

∑m
i=j[gi,lg

′
i−j,p]

′

18: I (r+ 1 : r+ n2z ,k)← vec(g)
19: for p := l + 1 : nz do
20: k← k+ 1
21: hj,l,p(i) = [gi,lg′i−j,p + gi,pg

′
i−j,l]

′

22: f =
∑m

i=j hj,l,p(i)
23: I (r+ 1 : r+ n2z ,k)← vec(f)
24: end for
25: end for
26: end for

That is

rank(I )− nR > nQ (37)

v (k) = HF̄mx̃(k − m|k − m− 1)+

H
m−1∑
j=0

F̄m−1−j [0v (k − m+ j)− FWw(k − m+ j)]

+ w(k) (22)

ξ (k) =
m∑
i=0

aiv(k − i) (23)

=

m∑
i=0

ai

H

m−i−1∑
j=0

F̄m−i−1−j [0v (k − m+ j)− FWw(k − m+ j)]

+ w(k − i)
 (24)

=

m∑
i=0

ai

H


m∑
l=i+1

F̄ l−i−1 [0v (k − l)− FWw(k − l)]

+ w(k − i)
 (25)

=

m∑
l=1

H

(
l−1∑
i=0

aiF̄ l−i−1
)
[0v (k − l)− FWw(k − l)]+

m∑
l=0

alw(k − l) (26)

=

m∑
l=1

Blv (k − l)+
m∑
l=0

Glw(k − l) (27)
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where nR is the number of unknowns in R, and nQ is the
number of unknowns in Q
To illustrate the necessity and sufficiency of this condition,

consider an example system from [42],

x(k) =

0.9 0 0
1 0.9 0
0 0 0.9

 x(k − 1)+ v (k − 1) (38)

z(k) =
[
0 1 0
0 0 1

]
x(k)+ w(k) (39)

with Q being a full 3 × 3 positive definite symmetric matrix
and R being a full 2 × 2 positive definite symmetric matrix.
Since the rank of I is not affected by W (the observ-
ability condition is independent of the filter gain matrix),
one can examine the rank of I for W = 0 for conve-
nience. In this case, the minimal polynomial coefficients
are [

a0 a1 a2
]′
=
[
1 −1.8 0.81

]′ (40)

The B and G matrices are

B1 =

[
1 1 0
0 0 1

]
B2 =

[
1 −0.9 0
0 0 −0.9

]
(41)

G0 =

[
1 0
0 1

]
G1 =

[
−1.8 0
0 −1.8

]
(42)

G2 =

[
0.81 0
0 0.81

]
(43)

Here, I is a 12 × 9 matrix with a rank of 8. Since there
are 9 unknown variables (6 in Q and 3 in R), the covariance
matrix elements are not identifiable. However, ifE[v (k)v (k)′]
is diagonal, as is typically the case, then the covariancematrix
elements are identifiable because there are only 6 unknown
variables (full R matrix and three diagonal elements
of Q).

Another example to illustrate the necessity and sufficiency
of this condition is to consider the system

x(k) =
[
0.1 0
0 0.2

]
x(k − 1)+

[
1 0
0 2

]
v (k) (44)

z(k) =
[
1 0

]
x(k)+ w(k) (45)

withQ being a diagonal 2×2 positive definite diagonalmatrix
and R being a scalar. Similarly, we examine the rank of I for
W = 0 and obtain the minimal polynomial coefficients,[

a0 a1 a2
]′
=
[
1 −0.3 0.02

]′ (46)

The B and G matrices are

B1 =
[
1 0

]
B2 =

[
−0.2 0

]
(47)

G0 = 1 G1 = −0.3 G2 = 0.02 (48)

Here,

I =

1.04 0 1.09
−0.2 0 −0.31
0 0 0.02

 (49)

has a rank of 2. Since there are 3 unknown variables (2
in Q and 1 in R), the covariance matrix elements are not
identifiable.

Note that the minimal polynomial can be used to estimate
the unknown covariancesR andQ via quadratic programming
techniques. Furthermore, it can be used to estimate the opti-
mal gain W , as in [49] and Appendix D; however, reliable
and accurate estimation of the parameters of vector moving
average processes is still an unresolved problem [16], [24],
[31], [45].

IV. APPROACHES TO OBTAIN FILTER PARAMETERS
There are two competing approaches for the estimation of
the filter parameters W , R, Q, and P̄. The first approach
is to estimate the noise covariance matrices first and sub-
sequently the Kalman filter gain W and the predicted state

Lj =
nv∑
l=1

nv∑
p=1

qlp

 m∑
i=j+1

bi,lb′i−j,p

+ nz∑
l=1

nz∑
p=1

rlp

 m∑
i=j

gi,lg′i−j,p

 (32)

=

nv∑
l=1


l∑

p=1

qlp

 m∑
i=j+1

bi,lb′i−j,p

+ m∑
p=l+1

qlp

 m∑
i=j+1

bi,lb′i−j,p


+

nz∑
l=1


l∑

p=1

rlp

 m∑
i=j

gi,lg′i−j,p

+ m∑
p=l+1

rlp

 m∑
i=j

gi,lg′i−j,p

 (33)

=

nv∑
l=1

qll
 m∑
i=j+1

bi,lb′i−j,l

+ nv∑
p=l+1

qlp

 m∑
i=j+1

bi,lb′i−j,p + bi,pb
′
i−j,l


+

nz∑
l=1

rll
 m∑
i=j

gi,lg′i−j,p

+ nz∑
p=l+1

rlp

 m∑
i=j

gi,lg′i−j,p + gi,pg
′
i−j,l

 (34)
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covariance P̄ are computed given the estimated noise covari-
ance matrices [32], [48]. This method has an underlying
problem in that it involves the sum of two moving average
processes. Additionally, the autoregressive moving aver-
age (ARMA) approach, pioneered in the econometric liter-
ature, does not extend naturally to sums of moving average
processes and we have found the resulting algorithms [16],
[24], [31], [45] to have erratic computational behavior.

The second approach is to estimate the Kalman filter gain
W from the measured data first [7], [33]. Given the optimal
W , we can compute R, Q and P̄ (this approach is applied in
this paper). The proposed R, Q and P̄ estimates in this paper
are valid as long as an optimal gainW is provided. There are
many ways to obtain the optimal Kalman filter gain W . The
techniques listed in this paper to obtain the optimalW , that is,
SectionV andAppendix D, are by nomeans all-inclusive, and
several such methods may be suitable for a given problem.
For example, the optimal gain W can be obtained from the
suboptimal Kalman filter residual [8], solving the minimal
polynomial problem [49], utilizing the least squares method
on the observable form [6], and utilizing a second Kalman
filter to track the error in the estimated residual of the first
Kalman filter [44], to name a few.

V. ESTIMATION OF W
This section includes the discussion of two different
approaches to estimate the optimal Kalman filter gain W ,
namely, the minimal polynomial approach and the successive
approximation, coupled with an adaptive gradient descent
scheme, on a criterion based on innovation correlations. The
derivation of the minimal polynomial approach is detailed in
Appendix D. This approach assumes the system to be purely
driven by the optimal innovation. In doing so, the estimation
of the optimal Kalman gain can be achieved via a vector
auto-regressive model approximation of a vector moving
average process. However, from limited testing on examples
chosen in this paper, this approach was found to be numer-
ically unstable, only performing well on systems with no
eigenvalues close to unity. In fact, the vector auto-regressive
model has various numerical problems and an accurate and
reliable algorithm to obtain the solution still remains to be
developed [24]. Therefore, we omit this approach from the
paper and focus on minimization of the innovation correla-
tions using a successive approximation and adaptive gradient
descent method.

In the sequel, we describe in detail the approach of our
paper using the correlation-based criterion. If the Kalman fil-
ter gainW is not optimal, the innovation sequence {ν(k)}Nk=1
is correlated. We can use the innovation sequence of any sta-
ble suboptimal Kalman filter and computeM sample covari-
ance matrices, as in [33]:

Ĉ(i)=
1

N −M

N−M∑
j=1

ν(j)ν(j+i)′ i = 0, 1, 2, . . . ,M−1

(50)

We know that the optimal Kalman filter gain W makes the
autocorrelation function Ĉ(i), i = 0, 1, 2, . . . ,M − 1 vanish
for all i 6= 0. Given the correlation matrix for i ≥ 1 as in [33],
that is

C(i) = E[ν(k)ν(k − i)′] = HF̄ i−1F
[
P̄H ′ −WC(0)

]
(51)

where F̄ is as in (16). We define the objective function J to
be minimized as

J =
1
2
tr

{
M−1∑
i=1

[
diag

(
Ĉ(0)

)]− 1
2
Ĉ(i)′

×

[
diag

(
Ĉ(0)

)]−1
Ĉ(i)

[
diag

(
Ĉ(0)

)]− 1
2

}
(52)

where diag(C) is the Hadamard product of an identity matrix,
of same dimension as C , with C

diag(C) = I � C (53)

This objective function is selected to minimize the sum of the
normalized Ĉ(i) with respect to the corresponding diagonal
elements of Ĉ(0) for i > 0. The optimal J becomes 0 as
the sample size N tends to∞ because the time averages are
the same as ensemble averages given infinite data. Substitut-
ing (51) into (52) and utilizing the cyclic property of trace,
we have

J =
1
2
tr

{
M−1∑
i=1

2(i)XE 2X ′
}

(54)

where

2(i) = 8(i)′E 28(i) (55)

8(i) = HF̄ i−1F (56)

X = 9 −WC(0) (57)

9 = P̄H ′ (58)

E =
[
diag (C(0))

]− 1
2 (59)

For ill-conditioned systems, a regularization term λW tr(WW ′)
can be added to convexify the objective function. Taking the
gradient4 of (54) with respect to W , we get

∇W J = −
M−1∑
i=1

8(i)′E 2C(i)E 2C(0)− F ′ZFX

−

i−2∑
`=0

[
C(`+ 1)E 2C(i)′E 2HF̄ i−`−2

]′
(60)

and Z is given by the Lyapunov equation

Z= F̄ ′ZF̄+
1
2

M−1∑
i

8(i)′E 2Ĉ(i)E 2H+
(
8(i)′E 2Ĉ(i)E 2H

)′
(61)

4Detailed steps on the gradient computation are provided in Appendix E.
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and X is obtained by rewriting (51) as
HF
HF̄F
...

HF̄M−1F

X =


Ĉ(1)
Ĉ(2)
...

Ĉ(M − 1)

 (62)

Then, we can obtain X as

X =


HF
HF̄F
...

HF̄M−1F


†

Ĉ(1)
Ĉ(2)
...

Ĉ(M − 1)

 (63)

where A† is the pseudoinverse of A, defined by

A† = (A′A)−1A′ (64)

which exists, since we assume the system to be completely
observable and M ≥ nx . The gradient direction can be
used to obtain the optimal Kalman filter gain W iteratively
through the bold driver method in [3], [29], [53]. Details of
this application can be found in Section VIII-C2.

VI. ESTIMATION OF R
A. GENERAL R
Given the steady-state optimal gain W and the innova-
tion covariance S, whose estimation is explained later in
Section VIII, let µ(k), k = 1, . . . ,N be the sequence of post-
fit residuals of the Kalman filter, that is,

µ(k) = z(k)− Hx̂(k|k) (65)

= (Inz − HW )ν(k) (66)

Note that (Inz − HW ) is invertible (rank nz) because
(Inz−HW ) = RS−1 (proven below) and due to the assumption
that R is positive definite.
Proposition 1: Given the optimal steady-state Kalman

filter gain W , the post-fit residual sequence µ(k), and the
innovation sequence ν(k), the joint covariance of these two
sequences is

Cov
([
ν(k)
µ(k)

])
=

[
S R
R R− HPH ′

]
(67)

Proof: On the right hand side of (67), the (1,1) block
is simply the definition of the innovation covariance matrix
in (15). Using (66), the (1,2) block in (67) is, given by

E[µ(k)ν(k)′] = (Inz − HW )E[ν(k)ν(k)′]

= (Inz − HW )S (68)

Using (7) and (8),

E[µ(k)ν(k)′] = (Inz − HP̄H
′S−1)S (69a)

= S − HP̄H ′ = R (69b)

The (2,2) block of (67) is obtained as follows.

G = E[µ(k)µ(k)′] (70)

= E
{[(

Inz − HW
)
ν(k)

]
[(
Inz − HW

)
ν(k)

]′} (71)

= (Inz − HW )S(Inz − HW )′ (72)

= R(Inz − HW )′ = R− RW ′H ′ (73)

which, given (14), simplifies to

G = R− HPH ′ (74)

Note that by using the Schur determinant identity [5], [51],
the determinant of (67) is∣∣∣∣S R

R R− HPH ′

∣∣∣∣ = |S||G− RS−1R| = 0 (75)

where the relationship G = R − HPH ′ = RS−1R is proved
in (74) and Proposition 2 below.
Proposition 2:Given the optimal steady-state Kalman filter

gain W and the corresponding post-fit residual µ(k) and
innovation ν(k) sequences, the covariance matrix R can be
computed in the following five ways:

R1 : R = (Inz − HW )S (76)

R2 : R =
1
2

{
E[µ(k)ν(k)′ + E[ν(k)µ(k)′]

}
(77)

R3 : Obtain R from

G = RS−1R (78)

R4 : R =
1
2

[
G+ S − HWSW ′H ′

]
(79)

R5 : R =
1
2

{
G(Inz −W

′H ′)−1 +(Inz − HW )−1G
}

(80)

Proof: R1 is proven in (68). Method R2 to estimate R is
by symmetrizing (68). For method R3 to estimate R, we can
substitute (8) in (74) and rewrite G as

G = R− HP̄H ′ + HWSW ′H ′ (81)

Then, by substituting (14) into (81)

G = R− HP̄H ′ + HP̄H ′S−1HP̄H ′ (82)

We also know from (15)

(S − R) = HP̄H ′ (83)

By substituting (83) into (82), we canwriteG, defined in (71),
as

G = R− (S − R)+ (S − R)S−1(S − R) (84)

= RS−1R (85)

S = RG−1R (86)

Note that (85) is a continuous-time algebraic Riccati
equation.5 Therefore, we can estimate R by solving the
continuous-time Riccati equation, as in [1], or Klein-
man’s method [27]. Some additional methods to solve the
continuous-time algebraic Riccati equation can be found
in [30]. We can also interpret (78) in terms of a Linear

50R+ R0− RS−1R+ G = 0
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Quadratic Regulator (LQR) optimal control problem, where
we can obtain R as the solution of the continuous-time alge-
braic Riccati equation associated with the optimal gain in the
LQR problem. The computation of R is also related to the
simultaneous diagonalization problem6 in linear algebra [51].
Note that, in the scalar case, R is the geometric mean of
the variance of the post-fit residual and the innovation, as in
the (1,2) block of (67).

For R4, we substitute (83) into (81) and rewrite G as

G = R− (S − R)+ HWSW ′H ′ (87)

= 2R− S + HWSW ′H ′ (88)

Solving for R, we obtain

R =
1
2

{
G+ S − HWSW ′H ′

}
(89)

thus, proving R4.
For R5, recall (68). We can rewrite (72) as

G = (Inz − HW )S(Inz − HW )′ (90)

= R(Inz − HW )′ = (Inz − HW )R (91)

Thus, we can compute R as

R̂ =
(
Inz − HW

)−1 G (92)

= G
(
Inz −W

′H ′
)−1 (93)

We can symmetrize the estimate of R by

ˆ̂R =
1
2

{
G
(
Inz −W

′H ′
)−1
+
(
Inz − HW

)−1 G} (94)

proving R5.
Note that R1–R5 are theoretically the same; however, they

are numerically different.We recommendR3, since it ensures
the positive definiteness of R.

B. DIAGONAL R
When R is diagonal, we solve the least squares problem of

min
X≥0
||X − R||2F (95)

where F, indicates the Frobenius norm. The positive defi-
nite R can be estimated from R3, given in Proposition 2. The
solution is simply the diagonal elements of the estimated R
from R3. This can also be interpreted as the masking opera-
tion to impose structural constraints on R, as discussed in the
context of the estimation of Q in Section VII.

C. USE OF SMOOTHED STATE ESTIMATE WITH
ONE-STEP-LAG POST-FIT RESIDUALS
Note that R can also be estimated using one-step-lag smooth-
ing on the post-fit residuals. Let us define the one-step-lag
smoothed residual s(k) as in [37], that is,

s(k) = z(k)− Hx̂(k|k + 1) (96)

6The solution via Cholesky decomposition and eigen decomposition or
simultaneous diagonalization can be found in Appendix F and Appendix G,
respectively.

= z(k)− Hx̂(k|k)− HW1ν(k + 1) (97)

W1 = P̄F̃ ′P̄−1W (98)

where F̃ is defined as

F̃ = (Inx −WH )F = F−1F̄F (99)

From (65), we can also write s(k) as a one-step moving
average process

s(k) = µ(k)− HW1ν(k + 1) (100)

= (Inz − HW )ν(k)− HW1ν(k + 1) (101)

Therefore,

E[s(k)ν(k)′] = (Inz − HW )C(0)− HW1C(1)′ (102)

and for the optimal Kalman filter gain W , we can
write (102) as

E[s(k)ν(k)′] = (Inz − HW )S = R (103)

A similar expression can be derived for E[s(k)µ(k)′], that is,

E[s(k)µ(k)′] = (Inz − HW )C(0)(Inz − HW )′

−HW1C(1)′(Inz − HW )′ (104)

and for the optimal Kalman filter gain W , we have

E[s(k)µ(k)′] = (Inz − HW )S(Inz − HW )′

= RS−1R = G (105)

Lastly, the expression for E[s(k)s(k)′] is

E[s(k)s(k)′] = (Inz − HW )C(0)(Inz − HW )′

+HW1C(0)W ′1H
′

− (Inz − HW )C(1)(W1)′H ′

−HW1C(1)′(Inz − HW )′ (106)

and with the optimal Kalman filter gain W , combined
with (14), we get (107)–(110), as shown at the bottom of the
next page.

Note that E[s(k)s(k)′] can be used in a manner similar to
the algorithm in Section V to obtain the optimal Kalman filter
gain W . More investigation is needed into this approach.

VII. ESTIMATION OF Q, P AND P̄
In this section, we discuss a method to estimate the process
noise covariance Q and the state prediction (updated) covari-
ance P̄ (P). Unlike the case of a Wiener process and for a
process with H = I , where both Q and P̄ can be estimated
separately and without iteration, as shown in Section IX-A3,
Q and P̄ (P) are coupled in the general case, requiringmultiple
iterations for the estimation to converge. The relationship
between the steady-state state prediction covariance matrix
P̄ and the steady-state updated state covariance matrix Pwith
the process noise covariance matrix Q is

P̄ = FPF ′ + 0Q0′ (111)

= F
(
P̄−1 + H ′R−1H

)−1
F ′ + 0Q0′ (112)

= F̄ P̄F̄ ′ + FW RW ′F ′ + 0Q0′ (113)
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Similarly, the steady-state updated state covariance matrix
can be written as

P = F̃PF̃ ′ +WRW ′

+ (Inx −WH )0Q0′(Inx −WH )′ (114)

=

(
P̄−1 + H ′R−1H

)−1
(115)

=

[(
FPF ′ + 0Q0′

)−1
+ H ′R−1H

]−1
(116)

where F̃ is defined as in (99) and (115) is derived
utilizing (14) and the fact (from [2]) that

P = (Inx −WH )P̄ (117)

We also define P̃ as

P̃ , FPF ′ = F̄ P̃F̄ ′ + FWRW ′F ′ + F̄0Q0′F̄ ′ (118)

Given P̃ and S, or P and S, or P̄ and S, we can compute 0Q0′

in the following ways:

Q1 : 0Q0′ = F−1P̃(F−1)′ +WSW ′ − P̃ (119)

Q2 : 0Q0′ = P+WSW ′ − FPF ′ (120)

Q3 : 0Q0′ = P̄− FP̄F ′ + FWSW ′F ′ (121)

where Q1 – Q3 are derived from (6).
In this paper, we utilize the updated state covariance matrix

to estimate Q and P, iteratively. Let t = 0, 1, . . . and ` =
0, 1, . . . denote the (two loop) iteration indices, and let us
assume the initial estimate 0Q(0)0′ = WSW ′ (this is the
Wiener process solution for the estimation of Q, as shown
in Section IX). Let us initialize P by solving the Lyapunov
equation (starting with t = 0 and ` = 0)

P(0)= F̃P(0)F̃ ′+WRW ′+(Inx −WH) 0Q(t)0′(Inx−WH )′

(122)

for P(0). We compute P(`+1) utilizing (116) until the value
converges, that is,

P(`+1) =
[(
FP(`)F ′ + 0Q(t)0′

)−1
+ H ′R−1H

]−1
(123)

Given the converged P, let us denote D(t+1) as

D(t+1)
= P+WSW ′ − FPF ′ (124)

Then, we can update Q(t+1) from (120)

Q(t+1)
= 0†D(t+1)(0′)† (125)

A mask matrix A can shape Q to enforce the structural con-
straints (e.g., diagonal covariance). The mask matrix com-
prises binary matrix elements with a 1 in the desired positions

and 0, elsewhere, for example, as in an identity matrix. Then
Q is structured by

Q(t+1)
= A� Q(t+1) (126)

where � is the Hadamard product. We subsequently set ` =
0 and recompute P using Q(t+1) in (123), and this process
repeats until the estimate of Q converges. For ill-conditioned
systems, a tuning (regularization) parameter λQ can be used
in (125), that is

Q(t+1)
= 0†

[
D(t+1)

+ λQInx
]
(0′)† (127)

After the estimate of Q converges, we can estimate P̄ using
either (111), (112) or (113).

VIII. ITERATIVE ALGORITHM TO ESTIMATE
STEADY-STATE W , S, P (P̄), Q AND R
Given the methods to obtain estimates of R and Q
in Sections VI and VII, we summarize our method into a
six-step solution approach to obtain the optimal steady-state
W , S, P (P̄), Q, and R.

A. STEP 1
Start with iteration r = 0 and initialize with a W (0) to
stabilize the system as in [28]. We execute the Kalman filter
for samples k = 1, 2, . . . ,N as

x̂(r)(k + 1|k)=Fx̂(r)(k|k) (128)

ν(r)(k + 1)= z(k + 1)−Hx̂(r)(k + 1|k) (129)

x̂(r)(k + 1|k + 1)= x̂(r)(k+1|k)+W (r)ν(r)(k+1) (130)

µ(r)(k + 1)= z(k + 1)−Hx̂(r)(k + 1|k + 1) (131)

B. STEP 2
Compute M sample covariance matrices, as in (50).

C. STEP 3
In this step, we check whether any of the termination condi-
tions given below are met. If none of the termination con-
ditions are met, we update the Kalman filter gain via the
proposed method, detailed later in Section VIII-C2.

1) TERMINATION CONDITIONS
There are five conditions that result in algorithm termination,
subsequently yielding a Kalman filter gainW for R, Q and P̄
estimates in later steps:
Condition 1: The converged Kalman filter gain is within a

specified threshold ζW .

E[s(k)s(k)′] = RS−1R+ HP̄F̃ ′P̄−1WSW ′P̄−1WSW ′P̄−1F̃ P̄H ′ (107)

= RS−1R+ RW ′F ′(Inx − H
′W ′)H ′R−1SR−1H (Inx −WH )FWR (108)

= RS−1R+ RW ′F ′H ′S−1SS−1HFWR (109)

= R(S−1 +W ′F ′H ′S−1HFW )R (110)
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Condition 2: The gradient of Kalman filter gain (60) is
within a specified threshold ζ1.

Condition 3: The objective function value in (52) is within a
specified threshold ζJ from zero.

Condition 4: The objective function value stops improv-
ing, given a specified ‘‘patience’’ (number of epochs,
detailed in Section VIII-C2) for the adaptive gradient
method.

Condition 5: The maximum number of iterations is reached.

a: CONDITION 1
Let 1W be the change in the Kalman filter gain from
iteration r to r + 1, that is

1W = W (r+1)
−W (r) (132)

then

δW = ||1W ./(W (r)
+ εW )|| (133)

where ./ indicates element-wise division and ||·|| is a matrix
norm (In this paper, the authors use the Euclidean norm)
and εW is a very small value to protect against zeros in the
denominator. When δW is less than a specified threshold ζW ,
the Kalman filter gain is assumed to have converged and we
terminate the algorithm; otherwise, we update the Kalman
filter gain W for the next iteration.

b: CONDITION 2
We also examine the gradient of the Kalman filter gain ∇W J
for convergence. We assume the Kalman filter gain to be
converged when the Euclidean norm of ∇W J is less than a
sufficiently small threshold ζ1, that is,

‖∇W J‖2 < ζ1 (134)

c: CONDITION 3
Similar to W , we can compute the change in the objective
function J from iteration r to r+1. The Kalman filter gain is
assumed to have converged when J (r) is less than a specified
threshold ζJ ; otherwise, we update the Kalman filter gain for
the next iteration.

d: CONDITION 4
The fourth termination condition is related to the step
size for the proposed approximation method. We adapt the
bold driver method in [3], [29], [53] and the method con-
siders a ‘‘patience’’ parameter to indicate that the objec-
tive function value J (r) has stopped improving (detailed in
Section VIII-C2). The algorithm is terminated with the
Kalman filter gain corresponding to minimum J (r).

e: CONDITION 5
This condition is implemented to ensure that the algorithm
terminates within a reasonable number of iterations, denoted
by nL . Typically, the number of iterations required to reach
the optimal Kalman filter gain W increases proportionally
with nx .

2) KALMAN FILTER GAIN UPDATE
When any of the above conditions are met, we terminate the
algorithm. Otherwise, we update the Kalman filter gainW for
the next iteration r+1 via the gradient direction in (60). Given
the gradient direction, the Kalman filter gain at iteration r+1
is updated by

W (r+1)
= W (r)

− α(r)∇W J (135)

where α(r) is the step size for the proposed method. The step
size is initialized as

α(0) = min

(
c
(
N
Ns

)β
, c

)
(136)

where c is a positive constant and is used to update the
Kalman filter gain in the first iteration,Ns is a hyperparameter
on the number of observations, and β is a positive constant to
adapt the initial step size to the number of observations. Note
that (136) is selected to automatically tune the initial step size.
When only a small subset of samples are observed, wewant to
use a smaller step size to prevent large steps that could result
in unstable gains. If a line search is used instead, initialization
is not necessary. Use of stochastic approximation type step
sizes will enable one to extend the estimation method to
on-line situations and the extended Kalman filter.

Subsequently, α(r) is computed using the bold driver
method in [3], [29], [53]. That is, after each iteration, we com-
pare the J (r) to its previous value, J (r−1), and set

α(r) =

{
0.5α(r−1), if J (r) > J (r−1)

max(1.1α(r−1), c̄), otherwise
(137)

where c̄ is the maximum step size defined as,

c̄ = min

((
N
Ns

)β
, cmax

)
(138)

and cmax is a positive constant between 0 and 1.
Once we update the Kalman filter gain W , we go back to

Step 1 by setting r = r + 1 and repeat the same process until
any of the five termination conditions are met.

Note that each time J (r) ≤ J (r−1), we save the corre-
sponding Kalman filter gain W (r) and J (r), and we halve the
step size each time J (r) > J (r−1) in the hope of observing
a decrease in J (r). If the value of J (r) has consecutively
increased for a specified number of iterations (i.e., given a
‘‘patience’’ factor), we select the best Kalman filter gain W
by

W = argmin
r
J (r) (139)

We then terminate the iteration and move onto Step 4 after
repeating Steps 1 and 2 with the correspondingW . Note that
adaptive stochastic gradient descent methods can be applied
to compute the optimal Kalman filter gainW as in [21], [26],
[40], [50], [54].
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D. STEP 4
Once we obtain the optimal steady-state Kalman filter gainW
and the corresponding innovation covariance S, we can com-
pute the unknown R, as in Section VI.

E. STEP 5
Given the covariance matrix R, computed in Step 4, we can
compute the covariance matrix Q and steady-state state pre-
diction covariance matrix P̄, as detailed in Section VII.

F. STEP 6
We implement a successive approximation as follows: an
outer-loop is used to reinitialize with the R and Q obtained
from Step 5 and then reinvoke Steps 1-5. We keep track of the
best J (r) among the outer-loop iterations. The Kalman filter
gain associated with the minimum J (r) is selected to be the
optimal Kalman filter gain. The algorithm terminates when
the difference between the best J (r) from each outer-loop is
less than ζJ or the maximum number of outer-loop iterations
is reached.

IX. SPECIAL CASES: WIENER PROCESS AND
H = Inx CASES
In this section, we consider two special cases below. The
first case is when the state transition matrix F and the mea-
surement matrix H are both identity matrices, Inx and Inz ,
where nx = nz. This considerably simplifies our method to
estimate R and Q. The second special case is when only the
measurement matrix H is the identity matrix, while the state
transition matrix F remains general. Note that we can extend
either case to that of one assuming perfect measurements, that
is, when H = Inx , we have no measurement noise, and thus,
R = 0.

A. CASE 1: WIENER PROCESS
For a Wiener process, we have F = Inx and H = Inx .

1) KALMAN FILTER GAIN UPDATE FOR A WIENER PROCESS
To get the optimal Kalman filter gain, for k = 1, 2, . . . ,N ,

x̂(k|k − 1) = x̂(k − 1|k − 2)+Wν(k − 1) (140)
ẑ(k|k − 1) = x̂(k|k − 1) (141)

z(k) = ẑ(k|k − 1)+ ν(k)
= x̂(k|k − 1)+ ν(k) (142)

Define

ξ (k) = z(k)− z(k − 1) (143)
= x̂(k|k − 1)+ ν(k)− x̂(k − 1|k − 2)
− ν(k − 1) (144)

= ν(k)+ (W − Inx )ν(k − 1) (145)

Then, let us define L0 and L1 as

L0 = E
[
ξ (k)ξ (k)′

]
= S + (W − Inx )S(W − Inx )

′ (146)

L1 = E
[
ξ (k)ξ (k − 1)′

]
= (W − Inx )S (147)

Note that both L0 and L1 can be computed from samples.
Additionally, we can obtain the optimal W from L1 as

W = Inx + L1S
−1 (148)

SubstitutingW in (148) into (146), we can write the relation-
ship between L0 and L1 as

L0 = S + L1S−1SS−1L ′1 (149)

= S + L1S−1L ′1 (150)

Note that (150) is in a form related to the discrete algebraic
Riccati equation and has a positive definite solution [15].

2) ESTIMATION OF R FOR A WIENER PROCESS
Proposition 3: For a Wiener process where both the state

transition matrix F and the measurement matrix H are both
the identity matrices, Inx and Inz , respectively, where nx = nz,
and given the optimal steady-state Kalman filter gainW , and
the concomitant post-fit residual sequence µ(k) and innova-
tion sequence ν(k), the covariance matrix R can be computed
in the following ways:

SR1 : R = (Inz −W )S (151)

SR2 : R =
1
2

{
E[µ(k)ν(k)′ + E[ν(k)µ(k)′]

}
(152)

SR3 : G = RS−1R (153)

SR4 : R =
1
2

[
G+ S −WSW ′

]
(154)

SR5 : R = G−WSW ′ +
1
2
(WS + S ′W ′) (155)

Proof: SR1-SR4 are directly proven by substituting
H = Inz into R1–R4. For SR5, we know from (8) that

WS = P̄ (156)

and we also know from (15) that,

S = P̄+ R (157)

Then,

G = (Inx −W )S(Inx −W )′ (158)

= (Inx −W )S − (Inx −W )SW ′ (159)

= S −WS − SW ′ +WSW (160)

= R− SW ′ +WSW ′ (161)

Then, we can compute R as

R = G+WS −WSW ′ (162)

Symmetrizing (162),

R = G−WSW ′ +
1
2
(WS + S ′W ′) (163)

hence, SR5 is proven.
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3) ESTIMATION OF P̄ AND Q FOR A WIENER PROCESS
Unlike the general case, where multiple iterations are needed
to estimate both Q and P̄, in the case of a Wiener process,
we can estimate them with no iteration.
Proposition 4: For aWiener process, where the state transi-

tion matrix F and the measurement matrixH are both identity
matrices, Inx and Inz , respectively, and given the optimal
steady-state Kalman filter gain W , and the corresponding
innovation sequence ν(k), the steady-state state prediction
covariance and the process noise covariance Q can be com-
puted as:

P̄ = WS (164)

Q = WSW ′ (165)

Proof: Given the relationship in (8) and knowing that,
for a Wiener process H = Inz , using (8), we have (164).
For a Wiener process, we can rewrite the Riccati

equation (10) as

P̄ = P̄− P̄(P̄+ R)−1P̄+ Q (166)

Using the relationship of (15) and (164) in (166) yields

P̄ = P̄−WSW ′ + Q (167)

Thus, for a Wiener process, Q can be estimated as

Q = WSW ′ (168)

Hence, (165) is proven. Note that (165) is used as Q(0) in the
general case for iteratively computingQ. Also note that when
R = 0 (i.e., perfect measurement case), we have,

W = Inx (169)

P = 0 (170)

G = 0 (171)

Q = S = P̄ (172)

B. CASE 2: H = Inx

In the second case, only H is the identity matrix, but F is not
necessarily so.

1) KALMAN FILTER GAIN UPDATE FOR THE H = Inx CASE
To get the optimal Kalman filter gain, for k = 1, 2, . . . ,N ,

x̂(k + 1|k) = Fx̂(k|k − 1)+ FWν(k) (173)

z(k) = x(k)+ w(k)

= x̂(k|k − 1)+ ν(k) (174)

Let ξ (k) be

ξ (k) = z(k)− Fz(k − 1) (175)

Define

ξ (k) = x̂(k|k − 1)+ ν(k)

−Fx̂(k − 1|k − 2)− Fν(k − 1) (176)

= ν(k)− F̄ν(k − 1) (177)

where

F̄ = F(Inx −W ) (178)

We can write L0 = E{ξ (k)ξ (k)′} as

L0 = S + F̄SF̄ ′ (179)

Similarly, L1 = E{ξ (k)ξ (k − 1)′} can be computed based
on (177) as,

L1 = −F̄S (180)

From the right hand side of (179), we can find S by solving

S + L1S−1L ′1 = L0 (181)

Upon calculating S, we can find the optimal Kalman filter
gain W as

W = Inz + F
−1L1S−1 (182)

and we can calculate R from R3, in (85).G can be obtained by
running the filter given the optimal Kalman filter gain. Note
that, we can also write ξ (k) as

ξ (k) = x(k)− Fx(k − 1)

+w(k)− Fw(k − 1) (183)

= 0v (k − 1)+ w(k)− Fw(k − 1) (184)

Then, L0 is

L0 = 0Q0′ + R+ FRF ′ (185)

Equating (179) and (185), we can compute 0Q0′ as

0Q0′ = S + F̄SF̄ ′ − (R+ FRF ′) (186)

= S + FGF ′ − (R+ FRF ′) (187)

Equation (187) follows from

G = (Inz −W )S(Inz −W )′ (188)

Note that when R = 0 (i.e., perfect measurement case),
we have W , P and G as in (169)–(171), respectively, and

L0 = S = 0Q0′ = P̄ (189)

X. NUMERICAL EXAMPLES
In this section, we illustrate our method on the following five
cases:
1) A second-order kinematic system (a white noise accel-

eration or nearly constant velocity model) by varying
the lags M in the correlation.

2) A system described in Neethling [39].
3) A five-state system from [33] and [4] with diagonal Q

and R.
4) A detectable, but not completely observable, system

from [42].
5) A three-state system from [42].

Each case is simulated with 100 Monte Carlo (MC) runs
with an assumed ‘‘patience’’ of 5, ζJ = 10−6, ζW = 10−6,
ζ1 = 10−6, c = 0.01, cmax = 0.2, β = 2 and the maximum
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outer-loop iteration limit is set to 20. Case 5 is simulated with
200 MC runs to be compatible with the results in [42].

For each test case, we examine the condition number of the
system’s observability and controllability matrices, as well as
matrix I . The condition number of matrix A is computed as

κ(A) = ‖A‖‖A†‖ (190)

where A† is the pseudoinverse of A and ||·|| is a Euclidean
norm. The rank of matrix I is also examined for each
test case. For each test case result, we compute the 95%
probability interval (PI) via the highest probability interval
method7 and denote by r and r the corresponding lower and
upper limits, respectively. We also provide the mean and
the root mean squared error (RMSE) of each distribution.
The averaged normalized innovation squared (NIS) is also
provided to measure the consistency of the Kalman filter,

ε̄(k) =
1

nMC

nMC∑
i=1

ν(k)′S−1ν(k) (191)

where nMC is the number of MC runs. The elements of each
matrix A are denoted as aij, representing the element in the
ith row and the jth column of A.

A. CASE 1
We simulated a second-order kinematic system described by

x(k) =
[
1 T
0 1

]
x(k − 1)+

[1
2
T 2

T

]
v (k − 1) (192)

z(k) =
[
1 0

]
x(k)+ w(k) (193)

with sampling period T = 0.1, where

E[v (k)v (j)′] = 0.0025δkj (194)

E[w(k)w(j)′] = 0.01δkj (195)

where δkj is the Kronecker delta function. The mean of the
process and the measurement noises are assumed to be zero
and the corresponding variances are given in (194) and (195),
respectively. Note that the system has the condition number
of 20.1 for its observability matrix and 20.2 for its controlla-
bility matrix. The noise covariance identifiability matrix I ,
given the initial Kalman filter gain in (197), is

I =

 5 · 10−5 6
2.5 · 10−5 −4

0 1

 (196)

which has a rank of 2, and we have 2 unknown variables
to estimate, implying that Q and R are identifiable. The
condition number forI is 1.5·105. The least squares problem
using the minimal polynomial approach is ill-conditioned.

7The highest probability interval is, assuming unimodality, the minimum
width interval such that the estimates of the parameter within the interval
have a specified higher probability density than points outside of the interval.

FIGURE 1. 100 Monte Carlo runs for the Kalman filter R estimation using
method R3 with various M.

TABLE 2. Monte carlo simulation for Case 1 varying the number of lags M
(Method R3).

1) VARYING THE NUMBER OF LAGS IN THE CORRELATIONS
We performed 100 MC runs, where each run contained N =
1000 sample observations. We set nL = 100, Ns = 1000,
and vary the lags,M = 10, 20, 30, 40, 50, 100, with an initial
Kalman Filter gain

W (0)
=

[
0.1319
0.0932

]
, (197)

obtained by solving the Riccati equation with Q(0)
= 0.1

and R(0) = 0.1. Figs.1 and 2 show the box plots of the esti-
mated R using R38 and Q of 100 MC runs, respectively, with
varying M .

The bottom and top of each ‘‘box’’ are the first (denoted
Q1) and third (denoted Q3) quartiles of the estimate, respec-
tively. The line in the middle of each box is the median
estimate. The distances between the tops and bottoms are the
interquartile ranges (IQR = Q3−Q1). The whiskers are lines
extending above and below each box and are drawn from each
end of the interquartile ranges to the upper (Q3 + 1.5IQR)
and lower (Q1 − 1.5IQR) adjacent values. Estimates beyond
the whisker length are marked as outliers (indicated by the
‘‘+’’ symbols). The accuracies of the estimates of both R and
Q increase with an increase in M . Table 2 shows the mean
value of the estimates of both R and Q. The smallest error
of the median of the estimates of R and the variability of the
estimates of Q are obtained with M ≥ 100.

2) ESTIMATION OF W AND P̄
Given M = 100, for 100 MC runs with the initial Kalman
Filter gain as in (197), we found that R1–R5 estimate the

8All (R1–R5) obtain the same values.
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FIGURE 2. 100 Monte Carlo runs for the Kalman filter Q estimation with
various M.

FIGURE 3. Q and R estimation for Case 1.

FIGURE 4. Averaged NIS for Case 1.

same R values. The true values of R all lie within the 95% PI
associated with the distribution of estimates. Fig.3 shows the
Q versus R plot of each estimate. The true values are marked
by ‘‘+’’ symbols. The reason the estimated Q varies so much
is that its value is very small compared to the measurement
noise. Fig.4 shows the averaged NIS and its 95% probability
region, which proves that the filter is consistent.

B. CASE 2
We simulated the system described in Neethling [39],

x(k) =
[
0.8 1
−0.4 0

]
x(k − 1)+

[
1
0.5

]
v (k − 1) (198)

z(k) =
[
1 0

]
x(k)+ w(k) (199)

where

E[v (k)v (j)′] = δkj (200)

E[w(k)w(j)′] = δkj (201)

The system’s condition numbers for its observability and
controllability matrices are 2.18 and 2.56, respectively.
Here, I , given the initial Kalman filter gain, is

I =

1.25 1.8
0.5 −1.12
0 0.4

 (202)

and the rank is 2. The number of unknown variables is 2,
therefore, the system noise variances are estimable. The
condition number of I is 2.3 and indeed the minimal poly-
nomial approach works well for this problem. We simu-
lated 100 Monte Carlo runs with N = 1000, nL = 100,
Ns = 1000, and an initial suboptimal Kalman filter
gain

W (0)
=

[
0.9
0.5

]
(203)

Table 4 shows the estimated noise variances. Similar to the
Case 1 result, the mean values of each of the estimated
parameters are very close to their corresponding true values.
As seen in Table 4, the true values lie within the 95% PI
associated with the distribution of estimates for each variable
Q, R, W and Pii. Fig.5 shows the Q and R estimates for each
MC run. As shown in Fig.6, the Kalman filter is considered
consistent.

C. CASE 3
In Case 3, we test on the example in [33]. The systemmatrices
are assumed to be as follows.

F =


0.75 − 1.74 − 0.3 0 − 0.15
0.09 0.91 − 0.0015 0 − 0.008
0 0 0.95 0 0
0 0 0 0.55 0
0 0 0 0 0.905


(204)

0 =


0 0 0
0 0 0

24.64 0 0
0 0.835 0
0 0 1.83

 (205)

H =
[
1 0 0 0 1
0 1 0 1 0

]
(206)

Q =

1 0 0
0 1 0
0 0 1

 R =
[
1 0
0 1

]
(207)
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TABLE 3. Monte Carlo Simulation for Case 1 with M = 100 and PI= 2σ (100 Runs).

The condition number for the observability matrix is 42.6,
and the condition number for the controllability matrix is
54.6. The system has a rank(I ) equal to 5 (utilizing the
constraint that both R and Q are diagonal), with a total of 5
unknowns. Hence, the Q and R parameters are identifiable.
The condition number of the noise covariance identifiability
matrix I is 808. The initial Kalman filter gain is obtained by
solving the Riccati equation with

Q(0)
=

0.25 0 0
0 0.5 0
0 0 0.75

 (208)

R(0) =
[
0.4 0
0 0.6

]
(209)

1) MINIMUM NUMBER OF OBSERVATION SAMPLES NEEDED
FOR MEHRA’s AND Bélanger’s METHODS TO CONVERGE
Both Mehra’s [33] and Bélanger’s [4] methods to update the
Kalman filter gainW can be unstable unless a large number of
data samples are observed. This is due to the fact that the time
average converges slowly to the ensemble average. We con-
ducted 100 MC simulations with 10,000 data samples in
each run given the five-state system described in (204)–(207).
We then varied the number of observed samples from 100 to
10,000 and updated the Kalman filter gain using both the
Mehra [33] and Bélanger [4] methods. We measure the
percentage of unstable Kalman filter gains by checking if
any of the eigenvalues of F̄ are outside of the unit circle
for each run over the 100 MC runs. The results are shown

TABLE 4. Monte Carlo Simulation for Case 2 with M = 100 and
PI = 2σ (100 Runs).

in Figs.7 and 8. We only display up to 5,000 samples for
both methods because each approach terminated with a stable
gain when the total observation samples exceeded 5,000.
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FIGURE 5. Q and R estimation for Case 2.

FIGURE 6. Averaged NIS for Case 2.

The minimum number of samples required to obtain a stable
gain from these methods were about 4,500. Our proposed
method always results in a stable Kalman filter gain; hence,
it is not included in the comparison of methods.

2) COMPARISON OF PROPOSED, MEHRA’S, AND
BELANGER’S GAIN UPDATE METHODS
Given the 100 MC simulations with 10,000 observation sam-
ples generated in X-C1 and setting nL = 500, Ns = 10000,
Table 5 shows the estimation of the Kalman filter gainW over
100Monte Carlo runs, given three different gain updatemeth-
ods: the proposed method with M = 40, Mehra’s method
with M = 40 [33] and Bélanger’s method with M = 5 [4].

In Table 5, we see that all methods have the true values
staying within its 95% PI; however, our proposed method is
able to obtain the Kalman filter gain closest to the optimal
Kalman filter gain and the RMSE are, on average, 8 and
4 times smaller compared to Mehra’s and Bélanger’s, respec-
tively. The very small gains W21 and W41 are (similarly to
the small Q from Case 1) very hard to estimate — they are
essentially buried in noise.

We test and compare the proposed method with that of
Mehra’s and Bélanger’s for the estimation ofR,Q andP using

FIGURE 7. Percentage of unstable Kalman filter gains obtained from [33]
for varying the total number of observed samples (M = 40).

FIGURE 8. Percentage of unstable Kalman filter gains obtained from [4]
for varying the total number of observed samples (M = 5).

the methodology described in Sections VI-B and VII, com-
bined with the converged Kalman filter gain from Table 5.
The results are shown in Table 6 and Mehra’s method results
in the true value of P33 staying outside of the 95% PI.
In comparison to Bélanger’s method, the proposed method is
vastly more accurate with lower RMSE (2 to 9 times smaller)
for all R, Q, and P̄, while Mehra’s method obtained a result
that is less accurate than Bélanger’s method, as expected
from the Kalman filter gain results. The reason r1 is so
difficult to estimate is that S1 is dominated by the state
uncertainty (S1 = 65, r1 = 1), i.e. the measurement noise
is ‘‘buried’’ in a much larger innovation. In the case of
r2 = 1, one has S2 = 2.45, i.e., r2 is ‘‘visible’’ in the
innovations.

3) VARYING THE NUMBER OF SAMPLES OBSERVED
In this section, we vary the number of samples observed,N =
1000, 2500, 5000, 10000 using our six-step approach. The
results are detailed in Tables 7 and 8. As expected, the accu-
racy increases with an increase inN . The estimation is greatly
degraded for N < 5000. Fig.9 illustrates that the Kalman
filter is consistent.
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TABLE 5. W Estimation Monte Carlo Simulation for Case 3 (100 Runs; 10,000 Samples).

TABLE 6. R, Q and P̄ Estimation Monte Carlo Simulation for Case 3 (100 Runs; 10,000 Samples).

D. CASE 4
For case 4, we simulate the unobservable (but detectable)
system in [42],

x(k) =
[
0.1 0
0 0.2

]
x(k − 1)+

[
1
2

]
v (k − 1) (210)

z(k) =
[
1 0

]
x(k)+ w(k) (211)

with

E[v (k)v (j)′] = δkj (212)

E[w(k)w(j)′] = δkj (213)

VOLUME 8, 2020 59379



L. Zhang et al.: On the Identification of Noise Covariances and Adaptive Kalman Filtering: New Look at a 50 Year-Old Problem

TABLE 7. R, Q and P̄ Estimation when Varying the Number of Samples Observed N , Monte Carlo Simulation for Case 3 (100 Runs; 1,000–10,000 Samples).

FIGURE 9. Averaged NIS for Case 3.

With the initial Kalman filter gain, the system has

I =

 1.04 1.09
−0.20 −0.31

0 0.02

 (214)

The rank of I is 2 and we have a total of 2 unknown
variables. The condition number for I is 23.4. We simulated
100 MC runs with observed samples N = 1000 in each run.
We set nL = 100, Ns = 1000, and λQ = 0.1. Table 9
shows the estimated parameters with the initial Kalman filter
gain obtained by solving the Riccati equation with R(0) =
0.2, and Q(0)

= 0.4. Note that the system is not fully
observable, i.e., the condition number for the observability

FIGURE 10. Q and R estimation for Case 4.

matrix is infinity, while that for the controllability matrix
is 25.8. In Table 9, the true values lie within the 95% PI asso-
ciated with each distribution. Fig.10 shows a wide variation
of Q and R estimates; however, the NIS in Fig.11 shows that
the Kalman filter is consistent.

E. CASE 5
In Case 5, we simulate the system from [42],

x(k)=

0.1 0 0.1
0 0.2 0
0 0 0.3

 x(k − 1)+

12
3

 v (k−1) (215)

z(k) =
[
0.1 0.2 0

]
x(k)+ w(k) (216)
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TABLE 8. W Estimation when Varying the Number of Samples Observed N , Monte Carlo Simulation for Case 3 (100 Runs; 1,000–10,000 Samples).

FIGURE 11. Averaged NIS for Case 4.

with

E[v (k)v (j)′] = 0.5δkj (217)

E[w(k)w(j)′] = 0.1δkj (218)

The condition number for observability and controllabil-
ity matrices are 362 and 561, respectively; hence it is an
ill-conditioned case. With the initial Kalman filter gain,
the noise covariance identifiability matrix I is

I =


0.28 1.37
−0.09 −0.67
0.006 0.11
0 − 0.006

 (219)

TABLE 9. Monte Carlo Simulation for Case 4 with M = 100 and PI = 2σ

(100 Runs; 1,000 Samples).

The rank of I is 2 and we have a total of 2 unknown
variables indicating that both Q and R are identifiable (albeit
due to the high condition number, not very well relative to
the other systems tested). The condition number for I is
36.4. We simulated 200 MC runs with N = 1000 observed
samples for each run.We setM = 15 to be consistent with the
setup in [42]. We also set the maximum number of iterations
nL = 100,Ns = 1000, and the regularization term from (127)
is λQ = 0.3. Table 10 shows the estimated parameters with
the initial Kalman filter gain obtained by solving the Riccati
equation with R(0) = 0.1, and Q(0)

= 0.5. The results are
detailed in Table 10, where the true value stayswithin the 95%
PI. Fig.12 shows the scatter plot for the estimates of R and Q
of each MC run. The plot is similar to the estimates in [42].
However, the upper bound on Q is less than that of [42]
(about 0.2), which does not provide the detailed results
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TABLE 10. Monte Carlo Simulation for Case 5 with M = 100 and PI = 2σ

(100 Runs; 1,000 Samples).

FIGURE 12. Q and R estimation for Case 5.

FIGURE 13. Averaged NIS for Case 5.

presented in Table 10. Fig.13 shows that the Kalman filter
is consistent.

XI. CONCLUSION AND FUTURE WORK
In this paper we derived necessary and sufficient condi-
tions for the identification of the process and measure-
ment noise covariances for a Gauss-Markov system. We also
provide a novel six-step successive approximation method,
coupled with an adaptive gradient method, to estimate the
steady-state Kalman filter gain W , unknown noise covari-
ance matrices R, and Q, as well as the state prediction
(or updated) covariance matrix P̄ (or P) when Q and R

are identifiable. Moreover, we developed a novel iterative
approach to obtain positive definite Q, R and P̄, while ensur-
ing that the structural assumptions on Q and R are enforced
(e.g., diagonality of Q and R, if appropriate, symmetry and
positive definiteness). We provided several approaches to
estimate the unknown noise covariance R via post-fit resid-
uals. We examined previous methods from the literature
and heretofore undiscussed assumptions of these methods
that result in largely inaccurate or unstable estimates of
the unknown parameters. The proposed method significantly
outperformed the previous ones, given the same system
assumptions.

We validated the proposed method on five different test
cases and were able to obtain parameter estimates where the
truth stays within the 95% probability interval based on the
estimates.

In the future, we plan to pursue a number of research
avenues, including 1) estimating Q and R using one-step
lag smoothed residuals; 2) exploring vector moving aver-
age estimation algorithms using the minimal polynomial
approach and/or truncating the effects of state; 3) replacing
the batch innovation covariance estimates by their individual
or mini-batch estimates, as is done in machine learning,
to enable real-time estimation; 4) investigating acceler-
ated gradient methods (e.g., Adam [26], AdaGrad [13],
RMSProp [50], conjugate gradient, memoryless quasi-
Newton, and trust region methods [5]); 5) automatic model
selection from a library of models; and 6) extension to non-
linear dynamic models.

APPENDIXES
APPENDIX A
STEADY-STATE UPDATED STATE COVARIANCE RICCATI
EQUATION
From (6) and (9), we can write the steady-state updated state
covariance matrix as

P̄ = P+WSW ′ = FPF ′ + 0Q0′ (220)

Thus,

P = FPF ′ −WSW ′ + 0Q0′ (221)

Given (14) and (74), we can rewrite (221) as

P = FPF ′ − PH ′R−1SR−1HP′ + 0Q0′ (222)

= FPF ′ − PH ′G−1HP′ + 0Q0′ (223)

= FPF ′ − PH ′(R− HPH ′)−1HP′ + 0Q0′ (224)

APPENDIX B
PROOF OF NECESSARY AND SUFFICIENT CONDITION FOR
IDENTIFIABILITY OF UNKNOWN COVARIANCES
Proposition 5: The necessary and sufficient condition

to estimate the unknown covariance matrices in a system
is directly related to its minimal polynomial of its sta-
ble closed-loop filter matrix F̄ and a transformation of
the innovations based on the coefficients of the minimal
polynomial.

59382 VOLUME 8, 2020



L. Zhang et al.: On the Identification of Noise Covariances and Adaptive Kalman Filtering: New Look at a 50 Year-Old Problem

Proof: To prove necessity, let us assume thatQ and R are
uniquely estimable, but I does not have a full column rank.
This implies the nullspace of I , N (I ), contains nonzero
vectors. Consequently, the column vectors of I are depen-
dent and there is an infinite number of Q and R estimates that
satisfy the linear equations, which contradicts our original
assumption.

Now, to prove sufficiency, let us assume that I has a full
column rank. This implies that N (I ) contains only the null
vector, and thus, a unique solution exists for the Q and R
concatenated into a column vector in (36). Therefore, Q and
R must be estimable.

APPENDIX C
PROOF OF ESTIMABILITY OF R
Without loss of generality, let us assume that am 6= 0 and
the closed-loop transition matrix F̄ is invertible. Note that
W should be such that F̄ does not correspond to a deadbeat
observer (which has no noise assumption) or an observer with
zero eigenvalues for F̄ . Since R is assumed to be positive
definite, F̄ is always invertible [22], [43], [52]. When the
Kalman filter gain W = 0, it is evident that

Gm = amInz (225)

Then,

Lm = amR (226)

and R is clearly identifiable. When W is not zero, using (21)
in (29), we have

Gm = am
[
Inz + H (Inx −WH )−1W

]
(227)

= am(Inz − HW )−1 (228)

Recall that (Inz − HW ) is invertible because it relates the
innovations and post-fit residuals (see (66)). So, we have(

Inz − HW
)
Lm = amR (229)

Thus, R is estimable.

APPENDIX D
PROCEDURE TO OBTAIN W USING MINIMAL
POLYNOMIAL
Let Ws be the suboptimal Kalman filter gain and ẽ be the
difference of the state predictions between the optimal and
suboptimal filter, that is,

ẽ(k + 1|k) = F̄sẽ(k|k − 1)+ F(W −Ws)ν(k) (230)

where F̄s is defined as

F̄s = F(Inx −WsH ) (231)

We can write the suboptimal innovation νs(k) in terms of
ẽ(k|k − 1)

νs(k) = Hẽ(k|k − 1)+ ν(k) (232)

Then, using the minimal polynomial of F̄s from (21), νs(k−i)
can be written as

νs(k − i)

= H

F̄m−is ẽ(k − m|k − m− 1)

+

m∑
l=i+1

F̄ l−i−1s F(W−Ws)ν(k − l)

+ν(k−i) (233)

Let us define ξ (k) as

ξ (k)

=

m∑
i=0

aiνs(k − i)

=

m∑
i=0

ai


H m∑

l=i+1

F̄ l−i−1s F(W−Ws)ν(k − l)

+ν(k−i)


(234)

=

m∑
l=0

[
alInz + H

l−1∑
i=0

aiF̄ l−i−1s F(W −Ws)

]
ν(k − l) (235)

=

m∑
l=0

Vlν(k − l) (236)

where

Vl = alInz + H
l−1∑
i=0

aiF̄ l−i−1s F(W −Ws) (237)

From (15), we can write (236) in terms of z-transform, that is

ξ (z) =
m∑
l=0

Vlz−lν(z) (238)

Note that we can write ξ (k) as a vector auto-regressive pro-
cess of infinite order (which can be truncated to M th order),
that is,

ξ (k) =
∞∑
j=1

Yjξ (k − j)+ ν(k) (239)

The z-transform of (239) is,

ξ (z) =

Inz − ∞∑
j=1

Yjz−j

−1 ν(k) (240)

Also, note the relationship between (240) and (238),Inz − ∞∑
j=1

Yjz−j

 m∑
l=0

Vlz−l = Inz (241)

By equating coefficients, we have

Yj = Vj −
j−1∑
l=1

Yj−lVl j = 0, 1, 2, . . . ,m

= −

m∑
l=1

Yj−lVl j = m+ 1
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We can truncate the infinite vector auto-regressive model at
M � m, for i = 1, 2, . . . ,M ,

E[ξ (k)ξ (k − i)′]

= E


M∑
j=1

Yjξ (k − j)ξ (k − i)′ + ν(k)ξ (k − i)′

 (242)

Then, we obtain the estimates of {Yi}Mi=1 by solving

i∑
j=1

YjLi−j +
m+i∑
j=i+1

YjL ′j−i = Li i = 1, 2, . . . ,m

i∑
j=i−m

YjLm−j+1 +
m+i∑
j=i+1

YjL ′j−i = 0

i = m+ 1,m+ 2, . . . ,M

Let ν̂(k) be

ν̂(k) = ξ (k)−
M∑
j=1

Yjξ (k − j) (243)

and recall (237) and note that

Ĉl = H
l−1∑
i=0

aiF̄ l−i−1s F (244)

where {Ĉl} are the sample covariance matrices. Then,

vec

[
ξ (k)−

m∑
l=0

al ν̂(k − l)+
m∑
l=1

ĈlFWsν̂(k − l)

]

=

[
m∑
l=0

ν̂(k − l)′ ⊗ Ĉl

]
vec(W ) (245)

Alternately, W can be computed via {Vl}. To compute Vl ,
we know that

V0 = Inz (246)

Vl =
l−1∑
i=0

ViYl−i l = 1, 2, . . . ,m (247)

Recalling (237), we have the following relationship,

Ṽl = Vl − alInz + ĈlWs = ĈlW l = 1, 2, . . . ,m (248)

Then,

vec



Ṽ1
Ṽ2
...

Ṽm


 =


Inz ⊗ Ĉ1

Inz ⊗ Ĉ2
...

Inz ⊗ Ĉm

 vec (W ) (249)

= Ĉavec (W ) (250)

where the vec(·) function convertsW into a column vector as
in (35) and ⊗ is the Kronecker product. We can obtain the
optimal Kalman filter gain W by solving the least squares
problem, where a unique solution exists if Ĉa has full column
rank.

APPENDIX E
OBJECTIVE FUNCTION GRADIENT COMPUTATION
Note that 2(i), 9, andWĈ(0) are all functions ofW in (54).
Thus,

δJ =
1
2
trace

{
M−1∑
i=1

[δ2(i)�+2(i)δ�]

}
(251)

where

� = [9 −WC(0)]E 2 [9 ′ − C(0)W ′] (252)

δ� =

M−1∑
i=1

{
[δ9 − δWC(0)]E 2 [9 ′ − C(0)W ′]

+ [9 −WC(0)]E 2 [δ9 ′ − C(0)δW ′]} (253)

and
M−1∑
i=1

δ2(i)� =
M−1∑
i=1

{[
F ′
(
Inx − (W + δW )H

)′ F ′]i−1
× H ′E 2H

[
F
(
Inx − (W + δW )H

)]i−1
× F − F ′(F̄ ′)i−1H ′E 2HF̄ i−1F

}
�

(254)

To first order, (254) can be approximated by

M−1∑
i=1

−F ′
[
H ′δW ′(F̄ ′)i−2 + F̄ ′H ′δW ′(F̄ ′)i−3+

· · · + (F̄ ′)i−2H ′δW ′
]
H ′E 2HF̄ i−1F�

−F ′(F̄ ′)i−1H ′E 2H
[
δWHF̄ i−2 + F̄δWHF̄ i−3+

· · · + F̄ i−2δWH
]
F� (255)

Then,

M−1∑
i=1

δ2(i)�

≈ −

M−1∑
i=1

i−2∑
`=0

[
F ′(F̄ ′)`H ′δW ′(F̄ ′)i−2−`

]
H ′E 2HF̄ i−1F�

+F ′(F̄ ′)i−1H ′E 2H
[
F̄ rδWHF̄ i−2−`

]
F� (256)

So,

1
2
trace

(
M−1∑
i=1

δ2(i)�

)

=−trace

[
δW ′

M−1∑
i=1

i−2∑
`=0

(F̄ ′)i−2−`H ′E 2HF̄ i−1F�F ′(F̄ ′)`H ′
]

(257)

=−trace

[
δW ′

M−1∑
i=1

i−2∑
`=0

(F̄ ′)i−2−`H ′E 2C(i)E 2C(`+ 1)′
]
(258)
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For
∑M−1

i=1 2(i)δ�, we have

M−1∑
i=1

2(i)δ�

=

M−1∑
i=1

2(i)
{[
δPH ′ − δWC(0)

]
E 2(9 ′ − C(0)W ′)

− [9 −WC(0)]E 2 [HδP− C(0)δW ′]} (259)

where,

δP = F̄PF̄ ′ − FδW (9 ′ − C(0)W ′)F ′

+F(9 −WC(0))δW ′F ′ (260)

= −

∞∑
b=0

F̄b
[
FδW (9 ′ − C(0)W ′)F ′

+ F(9 −WC(0))δW ′F ′
]
(F̄ ′)b (261)

Then,

1
2
trace

(
M−1∑
i=1

2(i)δ�

)

= trace

{
−δW ′

M−1∑
i=1

2(i) [9−WC(0)]E 2Ĉ(0)

+
1
2

[
2(i)(9 −WC(0))E 2H

+ H ′E 2(9 ′ − C(0)W ′)2(i)
]
δP

}
(262)

Substituting (261) into (265), we get

1
2
trace

(
M−1∑
i=1

2(i)δ�

)

=−trace

{
δW ′

M−1∑
i=1

2(i)(9 −WC(0))E 2C(0)

}
− trace

{[
FδW (9 ′−C(0)W ′)F ′+F(9−WC(0))δW ′F ′

]
Z
}

(263)

Z =
∞∑
b=0

(F̄ ′)b
[
1
2

M−1∑
i=1

[
2(i)(9 −WC(0))E 2H

+ H ′E 2(9 ′ − C(0)W ′)2(i)
] ]

F̄b

(264)

We can solve for Z via a Lyapunov equation as in (61). Then,
by substituting Z into (263), we have

1
2
trace

(
M−1∑
i=1

2(i)δ�

)

= −trace

{
−δW ′

[
M−1∑
i=1

2(i)XE 2C(0)+F ′ZFX

]}
(265)

where X can be estimated using (63). Then, by subsituting
(258) and (265) into (251), we get (60).

APPENDIX F
CHOLESKY DECOMPOSITION AND EIGEN
DECOMPOSITION
To solve for R using R3, we first perform Cholesky decom-
position of S−1. That is,

S−1 = L L ′ (266)

Then,

L ′RS−1RL = (L ′RL )2 = L ′GL (267)

Let us perform eigen decomposition on (267), that is

L ′GL = U3U ′ (268)

Then, we have

L ′RL = U31/2U ′ (269)

and R can be computed as

R = (L ′)−1U31/2U ′L −1 (270)

APPENDIX G
SIMULTANEOUS DIAGONALIZATION
To solve for R using R3, we first perform eigen decomposi-
tion on S−1. That is,

S−1 = U131U ′1 (271)

= (U13
1/2
1 U ′1)

2 (272)

Noting that

S−1/2GS−1/2 =
(
S−1/2RS−1/2

)2
(273)

we perform another eigen decomposition on U13
1/2
1 U ′1

GU13
1/2
1 U ′1 to get

U13
1/2
1 U ′1GU13

1/2
1 U ′1 = (U23

1/2
2 U ′2)

2 (274)

= (U13
1/2
1 U ′1RU13

1/2
1 U ′1)

2 (275)

and R can be computed as

R = U13
−1/2
1 U ′1U23

1/2
2 U ′2U13

−1/2
1 U ′1 (276)
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