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Abstract

We propose Reduced Collatz conjecture and prove that it is

equivalent to Collatz conjecture but more primitive due to reduced

dynamics. We study reduced dynamics (that consists of occurred

computations from any starting integer to the first integer less

than it), because it is the component of original dynamics (from any

starting integer to 1). Reduced dynamics is denoted as a sequence of

“I’‘ that represents (3*x+1)/2 and “O” that represents x/2. Here

3*x+1 and x/2 are combined together because 3*x+1 is always even and

thus followed by x/2. We discover and prove two key properties on

reduced dynamics: (1) Reduced dynamics is invertible. That is, given

a reduced dynamics, a residue class that presents such reduced

dynamics, can be computed directly by our derived formula. (2)

Reduced dynamics can be constructed algorithmically, instead of by

computing concrete 3*x+1 and x/2 step by step. We discover the

sufficient and necessary condition that guarantees a sequence

consisting of “I’‘ and “O” to be a reduced dynamics. Counting

from the beginning of a sequence, if and only if the count of x/2

over the count of 3*x+1 is larger than ln3/ln2, reduced dynamics

will be obtained (i.e., current integer will be less than starting

integer).
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1. Introduction

The Collatz conjecture can be stated simply as follows: Take any positive
integer number x. If x is even, divide it by 2 to get x/2. If x is odd, multiply
it by 3 and add 1 to get 3 ∗ x + 1. Repeat the process again and again. The
Collatz conjecture is that no matter what the number (i.e., x) is taken, the
process will always eventually reach 1.

The current known integers that have been verified are about 60 bits by
T.O. Silva using normal personal computers [1, 2]. They verified all integers
that are less than 60 bits.

Wei Ren et al. [3] verified 2100000 − 1 can return to 1 after 481603 times
of 3 ∗ x + 1 computation, and 863323 times of x/2 computation, which is the
largest integer being verified in the world. Wei Ren [4] also pointed out a new
approach for the possible proof of Collatz conjecture. Wei Ren [5] proposed
to use a tree-based graph to observe two key inner properties in reduced
Collatz dynamics: one is ratio of the count of x/2 over the count of 3 ∗ x +
1, and the other is partition (all positive integers are partitioned regularly
corresponding to ongoing dynamics). Wei Ren et al. [6] also proposed an
automata method for fast computing Collatz dynamics. All source code and
output data by computer programs in those related papers can be accessed
in public repository [7].

2. Preliminaries

Notation 2.1.

(1) N∗: positive integers;

(2) N = N∗ ∪ {0};
(3) [1]2 = {x|x ≡ 1 mod 2, x ∈ N∗}; [0]2 = {x|x ≡ 0 mod 2, x ∈ N∗}.
(4) [i]m = {x|x ≡ i mod m,x ∈ N∗,m ≥ 2,m ∈ N∗, 0 ≤ i ≤ m− 1, i ∈ N}.

Proposition 2.2. x/2 always follows after 3 ∗ x + 1.
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Proof When x ∈ [1]2, then next computation is 3∗x+1. Obviously, 3∗x+1 ∈
[0]2, thus the next computation must be x/2 consequently. ¤

We thus can represent required computation as (3 ∗ x + 1)/2 and x/2,
which are denoted by I(x) and O(x), respectively.

Notation 2.3. I(x) = (3 ∗ x + 1)/2, O(x) = x/2.

Note that, I(x) and O(x) can be simply denoted as I(·) and O(·), or
I and O, respectively. Obviously, ∀x ∈ N∗, I(x) = (3 ∗ x + 1)/2 > x,
O(x) = x/2 < x. That is the reason of notation - I represents “Increase” and
O represents “dOwn”.

Definition 2.4. Collatz transformation, denoted as f(·), where f(·) = I(·) =
(3 ∗ x + 1)/2 if x ∈ [1]2, and f(·) = O(·) = x/2 if x ∈ [0]2.

Remark 2.5.

(1) We assume f 0(x) = x.

(2) Obviously, f1‖f2‖...‖fn(x) = fn(fn−1(...f2(f1(x)))), where fi(·) ∈ {I(·), O(·)},
i = 1, 2, ..., n, and “‖” is concatenation of Collatz transformations. For sim-
plicity, we just denote fi(·) as f ∈ {I, O}.
(3) fn(x) = f...f︸︷︷︸

n

(x), fn(x) = f(fn−1(x)), n ∈ N∗. Note that, whether f is I

or O in f(fn−1(x)), is determined by fn−1(x) ∈ [1]2 or [0]2.

Definition 2.6. Collatz Conjecture. ∀x ∈ N∗, ∃L ∈ N∗, such that fL(x) = 1
where f ∈ {I, O}.

Obviously, Collatz conjecture is held when x = 1. In the following, we
mainly concern x ≥ 2, x ∈ N∗.

Definition 2.7. Reduced Collatz Conjecture. ∀x ∈ N∗, x ≥ 2, ∃L ∈ N∗,
such that fL(x) < x and f i(x) 6< x, i = 0, 1, ..., L− 1, f ∈ {I, O}.

Obviously, L must be the minimal positive integer such that fL(x) < x.

Theorem 2.8. Collatz Conjecture is equivalent to Reduced Collatz Conjec-
ture.

3



Proof ∀x, L ∈ N∗, x ≥ 2, it is obvious that fL(x) ∈ N∗, i.e., fL(x) ≥ 1.
(1) Suppose Collatz Conjecture is true. That is, ∀x ∈ N∗, x ≥ 2, ∃L ∈ N∗,

fL(x) = 1. Thus, fL(x) < x. Hence, Reduced Collatz Conjecture is true.
(2) Inversely, suppose Reduced Collatz Conjecture is true. That is, ∀x ∈

N∗, x ≥ 2, ∃q0 ∈ N∗, f q0(x) < x.
If f q0(x) = 1, then Collatz Conjecture is true.
If f q0(x) > 1, then let y1 = f q0(x). As Reduced Collatz Conjecture is

true, ∃q1 ∈ N∗, f q1(y1) < y1.
For better notation, let y0 = x. Iteratively, if yi = f qi−1(yi−1) = 1, i ∈ N∗,

then Collatz Conjecture is true. If yi = f qi−1(yi−1) > 1, then ∃qi ∈ N∗,
yi+1 = f qi(yi) < yi.

Thus, yi+1 < yi < ... < y1 < y0 = x. yi (i ∈ N∗) is a strictly decreasing
sequence.

Besides, yi+1 = f q0+q1+q2+...+qi(x) ≥ 1.
Therefore, after finite times of iterations, ∃n ∈ N∗, yn = 1.
That is, ∃q = q0 + q1 + ... + qn−1 = Σn−1

i=0 qi, q ∈ N∗, f q(x) = 1.
Thus, Collatz Conjecture is true. ¤

Remark 2.9.

(1) We call an ordered sequence f q ∈ {I, O}q in above proof as original dy-
namics (referring to f q(x) = 1), which consists of q occurred Collatz transfor-
mations during the computing procedure from a starting integer to 1. For ex-
ample, the original dynamics of 5 is IOOO due to 5 → 16 → 8 → 4 → 2 → 1.

(2) In contrast, we call f q0 in above proof as reduced dynamics (referring to
f q0(x) < x), which is represented by a sequence of occurred Collatz transfor-
mations during the computing procedure from a starting integer (i.e., x) to the
first transformed integer that is less than the starting integer (i.e., f q0(x)).
For example, the reduced dynamics of 5 is IO due to 5 → 16 → 8 → 4.

(3) Obviously, reduced dynamics is more primitive than original dynamics,
because original dynamics consists of reduced dynamics. Simply speaking,
reduced dynamics are building blocks of original dynamics.

Due to above theorem, we concentrate on reduced dynamics.

Notation 2.10. RD[x]. It denotes reduced dynamics of x that are repre-
sented by f ∈ {I, O}. Formally, ∀x ∈ N∗, x ≥ 2, if ∃L ∈ N∗ such that
fL(x) < x and f i(x) 6< x, i = 0, 1, ..., L − 1, where f ∈ {I, O}, then let

4



s = fL ∈ {I, O}L and s is called as reduced dynamics of x, denoted as
RD[x] = fL = s.

Remark 2.11.

(1) Simply speaking (or recall that), RD[x] represents occurred Collatz trans-
formations in terms of I and O during the computing process from starting
integer x to the first transformed integer that is less than x.

(2) Recall that, fL ∈ {I, O}L is an ordered sequence consisting of I and O.
Besides, fL = fL−1‖f, fL(x) = f(fL−1(x)), and f 0(x) = x. Furthermore,
this sequence implicitly matches the parity of all occurred intermediate trans-
formed integers that are taken as input of f(·).
(3) Roughly speaking, in RD[x] = fL, x is called starting integer. f i(x), i =
1, 2, ..., L are called transformed integers. fL(x) is the first transformed in-
teger that is less than the starting integer x. In other words, f i(x) 6< x, i =
0, 1, ..., L − 1, and fL(x) < x. (f 0(x) = x.) Besides, the parity of f i(x)
determines the selection of the intermediately next f ∈ {I, O} after f i.

(4) Obviously, RD[x ∈ [0]2] = O.

(5) For example, RD[3] = IIOO, RD[5] = IO, RD[7] = IIIOIOO, RD[9] =
IO, RD[11] = IIOIO. Indeed, we design computer programs that output all
RD[x],∀x ∈ [1, 99999999] [7]. From the data we discover the property - period
and its relation to the number of computing x/2 in reduced dynamics - will
be proved in the following of this paper.

(6) In fact, we proved some results on RD[x] for specific x, e.g., RD[x ∈
[1]4] = IO, RD[x ∈ [3]16] = IIOO, RD[x ∈ [11]32] = IIOIO, and so on [5].

(7) IIOO can be denoted in short as I2O2. IIIOIOO can be denoted in short
as I3OIO2. In other words, we denote I...I︸︷︷︸

n

as In, and we denote O...O︸ ︷︷ ︸
n

as

On where n ∈ N∗, n ≥ 2. We also assume I1 = I, O1 = O. I0 = O0 = ∅
means no transformation occurs.

(8) We will formally proved that the ratio exists in any reduced Collatz dy-
namics. That is, the count of x/2 over the count of 3 ∗ x + 1 is larger than
log23 in this paper. The ratio can also be observed and verified in my proposed
tree-based graph [5].

Example 2.12. RD[5] = IO, if and only if
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(1) “I” is due to 5 ∈ [1]2;

(2) I(5) = (3 ∗ 5 + 1)/2 = 8 6< 5, thus continue;
(3) “O” is due to I(5) = 8 ∈ [0]2;
(4) IO(5) = O(I(5)) = O(8) = 8/2 = 4 < 5, thus end.

To better present above the implicity in reduced dynamics, we introduce
two functions as follows:

Definition 2.13. IsMatched : x × c → bool. It takes as input x ∈ N∗
and c ∈ {I, O}, and outputs bool ∈ {True, False}. If x ∈ [1]2 and c = I,
or if x ∈ [0]2 and c = O, then output bool = True; Otherwise, output
bool = False.

Remark 2.14. Simply speaking, this function checks whether the forthcom-
ing Collatz transformation (i.e., c ∈ {I, O}) matches with the current trans-
formed integer x.

Definition 2.15. GetS : s × i × j → s′. It takes as input s, i, j, where
s ∈ {I, O}|s|, 1 ≤ i ≤ |s|, 1 ≤ j ≤ |s| − (i − 1), and outputs s′ where
s = sa‖s′‖sb, |sa| = i − 1, |s′| = j, |sb| = |s| − |sa| − |s′| and “| · |” returns
length in terms of the total count of I or O.

Remark 2.16.

(1) For example, GetS(IIOO, 1, 4) = IIOO, GetS(IIOO, 1, 3) = IIO.

(2) Especially, GetS(s, 1, |s|) = s. GetS(s, |s|, 1) returns the last transforma-
tion in s. GetS(s, 1, 1) returns the first transformation in s. GetS(s, j, 1)
returns the j-th transformation in s.

(3) In other words, s′ is a selected segment in s that starts from the location
i and has the length of j. Indeed, that is the reason we call this function as
“Get Substring”.
(4) Simply speaking, this function can obtain the Collatz transforms from i to
i + j − 1 from a given inputting transform sequence (e.g., reduced dynamics)
in terms of s ∈ {I, O}|s|.
(5) Note that, GetS(·) itself is a function. In other words, it can be looked
as GetS(·)(·). E.g., GetS(IIOO, 1, 1)(3) = I(3) = (3 ∗ 3 + 1)/2 = 5,
GetS(IIOO, 1, 2)(3) = II(3) = I(I(3)) = I(5) = (3 ∗ 5 + 1)/2 = 8,
GetS(IIOO, 1, 3)(3) = IIO(3) = O(II(3)) = O(8) = 8/2 = 4,
GetS(IIOO, 1, 4)(3) = IIOO(3) = O(IIO(3)) = O(4) = 4/2 = 2 < 3.
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(6) It is worth to stress that, although in above definition j ≥ 1, it can be
extended to j ≥ 0 by assuming GetS(·, ·, 0)(x) = x.

Proposition 2.17. Suppose x ∈ N∗, x ≥ 2. If RD[x] exists, then
(1) s(x) < x, where s = RD[x];
(2) GetS(s, 1, i)(x) 6< x, where i = 1, 2, ..., |s| − 1;
(3) IsMatched(GetS(s, 1, j − 1)(x), GetS(s, j, 1)) = True, where j =

1, 2, ..., |s|.

Proof Straightforward by the definition of RD[x]. ¤

Remark 2.18.

(1) s(x) is the last transformed integer, or the first transformed integer that
is less than the starting integer.

(2) GetS(s, 1, i)(x) (i = 1, 2, ..., |s| − 1) are all intermediate transformed
integers.

(3) When j = 1, GetS(s, 1, j − 1)(x) = GetS(s, 1, 0)(x) = x. GetS(s, j, 1) is
the first transformation.

(4) If GetS(s, 1, j − 1)(x) (j = 2, ..., |s|) is current transformed integer, then
GetS(s, j, 1) is the next intermediate Collatz transformation.

Proposition 2.19. ∀x ∈ N∗, x ≥ 2, if RD[x] exists, then RD[x] is unique.

Proof Straightforward. Given x, either I(x) or O(x) is deterministic and
unique. Similarly, given x, s′(x) is deterministic and unique, where s′ =
GetS(s, 1, i), s = RD[x], i = 1, 2, ..., |s|. Thus, s is unique for any given x. ¤

Remark 2.20.

We assume RD[x = 1] = IO, although IO(1) = O((3 ∗ 1 + 1)/2) = O(2) =
2/2 = 1 6< x. In other words, we assume the reduced dynamics of x = 1 is
IO. In the following, we always concern x ≥ 2, x ∈ N∗.

Proposition 2.21. Given x ∈ N∗, if RD[x] exists, then RD[x] ends by O.

Proof Straightforward due to I(x) = (3 ∗ x + 1)/2 > x. Suppose ∃x ∈ N∗,
x ≥ 2, s(x) 6< x, RD[x] = s‖I. Then, {s‖I}(x) = I(s(x)) > s(x), thus
RD[x] = {s‖I}(x) 6< x. Contradiction occurs. ¤

7



Proposition 2.22. RD[x ∈ [0]2] = O, RD[x ∈ [1]4] = IO.

Proof (1) x ∈ [0]2, thus O occurs. x/2 < x, thus RD[x] = O.
(2) If x = 1, RD[1] = IO (by assumption).
If x ≥ 2, x = 4t + 1 ∈ [1]2, where t ∈ N∗. Thus, I occurs. I(x) =

(3 ∗ x + 1)/2 = (3 ∗ (4t + 1) + 1)/2 = (12t + 4)/2 = 2 ∗ (3t + 1) ∈ [0]2.
2 ∗ (3t + 1) > x = 4t + 1, thus further transformation occurs. O(I(x)) =
2 ∗ (3t + 1)/2 = 3t + 1 < 4t + 1 = x (∵ t ∈ N∗), thus RD[x] = IO. ¤

Proposition 2.23. Given x ∈ [3]4, if RD[x] exists, then RD[x] ∈ IpO‖{I, O}≥1,
p ≥ 2.

Proof Let x = 4t + 3, t ∈ N. Obviously, x ∈ [1]2.
I(x) = (3x + 1)/2 = (12t + 10)/2 = 6t + 5 ∈ [1]2.
I2(x) = I(I(x)) = (3(6t + 5) + 1)/2 = 9t + 8.
(1) If t ∈ [0]2 ∪ {0}, then 9t + 8 ∈ [0]2. Thus, the next transformation is

“x/2”. Thus, current occurred transformations are “IIO”. Besides, IIO(x) =
(9t+8)/2 = 4.5t+4 > 4t+3 = x. Further transformation thus occurs. Hence,
if RD[x] exists, then RD[x] ∈ I2O‖{I, O}≥1.

(2) If t ∈ [1]2, then 9t + 8 ∈ [1]2. Thus, current occurred transformations
are “III”. Besides, III(x) = (3(9t+8)+1)/2 = (27t+25)/2 = 13.5t+12.5 >
4t + 3 = x. Further transformation occurs. Hence, if RD[x] exists, then
RD[x] ∈ I3‖{I, O}≥1.

If III(x) ∈ [1]2, then more “I” occurs. Obviously, IIII(x) > x. Further
transformation occurs. Hence, if RD[x] exists, then RD[x] ∈ I4‖{I, O}≥1. If
III(x) ∈ [0]2, then IIIO(x) = (13.5t + 12.5)/2 = 6.75t + 6.25 > 4t + 3 = x.
Further transformation occurs consequently. Hence, if RD[x] exists, then
RD[x] ∈ I3‖O‖{I, O}≥1.

Note that, suppose RD[x] = fL ∈ {I, O}L. There exists at least one “O”
in L transformations, otherwise fL(x) = IL(x) > IL−1(x) > ... > I(x) > x,
which contradicts with fL(x) < x. Besides, IpO(x) = Ip(x)/2 > Ip−1(x)/2 =
Ip−1O(x) > ... > IIO(x) > x, p ≥ 3, thus there exists further transformation
after IpO (p ≥ 3).

In summary, if RD[x ∈ [3]4] exists, then RD[x] ∈ IpO‖{I, O}≥1, p ≥ 2. ¤

Theorem 2.24. (Format Theorem.) Given x ∈ N∗, if RD[x] exists, then
RD[x] ∈ Ip‖O‖{I, O}q, where p ∈ N, q = |RD[x]| − p− 1. Besides,

8



p =





0 x ∈ [0]2,

1 x ∈ [1]4,

2 x ∈ [3]8,

α + 2 t + 1 = 2α ∗ A,A ∈ [1]2, α ∈ N∗ x ∈ [7]8.

(1)

q = 0 when p = 0, 1; q ≥ 1 when p ≥ 2.

Proof The range of q is straightforward due to Proposition 2.22 and Propo-
sition 2.23, thus we mainly concern p.

By Proposition 2.22, if x ∈ [0]2, then RD[x] = O and p = 0. If x ∈ [1]4,
then RD[x] = IO and p = 1.

Next, we concentrate on x ∈ [3]4.
RD[3] = IIOO = I2O2, which can be manually and easily verified.
Let x = 4t + 3, t ∈ N∗.
(1) Case I: t ∈ [0]2.
As x = 4t + 3 ∈ [1]2, I(·) is conducted consequently. As I(x) = (3x +

1)/2 = 1.5x+1.5 > x and II(x) > I(x) > x, the checking on whether current
transformed number is less than starting number may be omitted in some
straightforward cases.

I(x) = (3x+1)/2 = (3(4t+3)+1)/2 = (12t+10)/2 = 6t+5 ∈ [1]2, thus
transformation I(·) is conducted consequently.

I(I(x)) = II(x) = (3(6t + 5) + 1)/2 = (18t + 16)/2 = 9t + 8 ∈ [0]2. Thus,
O(·) is conducted consequently.

O(I(I(x))) = IIO(x) = (9t + 8)/2 = 4.5t + 4 > 4t + 3. Thus, further
transformation is conducted consequently.

Therefore, RD[x] ∈ I2O‖{I, O}≥1.
(2) Case II: t ∈ [1]2.
As x = 4t + 3 ∈ [1]2, I(·) is conducted consequently.
I(x) = (3x+1)/2 = (3(4t+3)+1)/2 = (12t+10)/2 = 6t+5 ∈ [1]2, thus

I(·) is conducted consequently.
II(x) = (3(6t + 5) + 1)/2 = (18t + 16)/2 = 9t + 8 ∈ [1]2. Thus, I(·) is

conducted consequently.
III(x) = (3(9t + 8) + 1)/2 = (27t + 25)/2. It depends on the partition of

t (more specifically, t ∈ [1]4 or [3]4) whether (27t + 25)/2 is even or odd.
(2.1) If t ∈ [1]4, III(x) = (27t + 25)/2 = (27 ∗ (4 ∗ k + 1) + 25)/2 =

(108k + 52)/2 = 54k + 26 ∈ [0]2 (k ∈ N∗), thus O(·) will occur consequently.
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(2.2) If t ∈ [3]4, III(x) = (27t + 25)/2 = (27 ∗ (4 ∗ k + 3) + 25)/2 =
(108k + 106)/2 = 54k + 53 ∈ [1]2, thus I(·) will occur consequently.

IIIO(x) = (27t + 25)/2/2 = (54k + 26)/2 = 27k + 13, whose parity
depends on the parity of k.

IIII(x) = (3(27t+25)/2+1)/2 = (3(54k+53)+1)/2 = (162k+160)/2 =
81k + 80, whose parity depends on the parity of k.

In other words, the judgement on the parity of IIIO(x) is undecidable,
unless the domain (t ∈ [1]4 or t ∈ [3]4) is partitioned further.

For exploring more general results, we put it in another way as follows:
Suppose there exist at most p times of “I” at head (i.e., Ip‖O‖...) for

x ∈ [3]4. Observing following equation for Ip(x) after consecutive p ≥ 2
times of “I”:

Ip(x) = (3(...(3(3x + 1)/2) + 1)/2...) + 1)/2

=
3

2
(
3

2
(...

3

2
(
3

2
x +

1

2
) +

1

2
) + ... +

1

2
) +

1

2

= (
3

2
)px +

1

2
((

3

2
)p−1 + (

3

2
)p−2 + ... + 1)

= (
3

2
)px +

1

2
(
(3

2
)p − 1

3
2
− 1

)

= (
3

2
)px + (

3

2
)p − 1

= (
3

2
)p(x + 1)− 1 (∵ x = 4t + 3, t ∈ N)

= (
3

2
)p(4t + 3 + 1)− 1 = (

3p

2p−2
)(t + 1)− 1 ∈ N∗.

(2)

Note that, above computation implicitly includes two requirements due
to p times of consecutive I(·) as follows:

(i) All intermediate transformed numbers during processes (i.e., com-
puting p times of consecutive “I”) satisfy ( 3i

2i−2 )(t + 1) − 1 ∈ [1]2, where
2 ≤ i ≤ p− 1, i ∈ N∗.

(ii) Besides, ( 3i

2i−2 )(t + 1) − 1 ∈ [0]2, where i = p, as only (or at most) p
consecutive I(·) occur.

In other words, p can also be looked as the minimal value to let current
transformed number be in [0]2. Thus, we need to explore the requirement on
p for given t such that

10







(
3i

2i−2
)(t + 1)− 1 ∈ [1]2 2 ≤ i ≤ p− 1,

(
3i

2i−2
)(t + 1)− 1 ∈ [0]2 i = p.

(3)

Represent t + 1 as 2α ∗ A,A ∈ [1]2, α ∈ N∗. That is, t + 1 = 2α ∗ A.
Obviously, this representation is unique. We thus need to prove that the
requirement in Eq. 3 is satisfied if and only if p = α + 2. Note that, we will
see that here p is indeed determined by α.

For 2 ≤ i < p = α + 2, i ∈ N∗, we have α + 2− i > 0.

(
3i

2i−2
)(t + 1)− 1 = (

3i

2i−2
) ∗ 2α ∗ A− 1 = 3i ∗ 2α−i+2 ∗ A− 1.

α + 2− i > 0 ⇒ 2α−i+2 ∈ [0]2 ⇒ 3i ∗ 2α−i+2 ∗ A ∈ [0]2
⇒ 3i ∗ 2α−i+2 ∗ A− 1 ∈ [1]2.

When i = p = α + 2, we have exactly

(
3p

2p−2
)(t + 1)− 1 = (

3p

2p−2
) ∗ 2α ∗ A− 1

= 3p ∗ 2α−p+2 ∗ A− 1 = 3p ∗ A− 1 ∈ [0]2. ∵ A, 3p ∈ [1]2

It is easy to see that p = α+2 is the one and only one for the requirement
in Eq. 3, as desired. ¤

Corollary 2.25. (t determines p Corollary.) Given starting integer x ∈ [3]4
(i.e., x = 4t + 3, t ∈ N), the count of consecutive “I” (denoted as p) is
determined by t as follows:
If t ∈ [0]2, then p = 2; if t ∈ [1]2, then p = α + 2, where α = log2

t+1
A
∈ N∗,

A = max({a | a ∈ [1]2, a|(t + 1)}).

Proof It is straightforward by Theorem 2.24. ¤

Corollary 2.26. Given starting integer x ∈ [3]4, t = (x− 3)/4 ∈ N, the first
p count of Collatz transformations must be Ip and p can be determined by t,
and the transformed integer after Ip transformations is

Ip(x) = (
3

2
)p(x + 1)− 1 = (

3p

2p−2
)(t + 1)− 1 ∈ N∗, p ≥ 2.

11



Proof It is straightforward by Theorem 2.24 and Corollary 2.25. ¤

Remark 2.27.

(1) Note that, due to Corollary 2.25, p for Ip in RD[x] can be computed by
t = (x− 3)/4 and log2

t+1
A

directly without conducting concrete Collatz trans-
formations, which can shorten the computation delay for reduced dynamics.

(2) Besides, by Eq. 2 or Corollary 2.26, if t = 0, we then have p = 2, because
Ip(x) = ( 3p

2p−2 )(t + 1) − 1 = ( 3p

2p−2 ) − 1 ∈ N∗, which matches with the result
RD[3] = IIOO by manually computing.

(3) Indeed, Eq. 2 can be extended to include all cases (i.e., for p = 0, 1). If
p = 0, by assuming I0(x) = x, I0(x) = x = (3

2
)0(x+1)− 1 = (3

2
)p(x+1)− 1;

If p = 1, I1(x) = I(x) = (3 ∗ x + 1)/2 = (3
2
)1(x + 1) − 1 = (3

2
)p(x + 1) − 1.

Therefore, Ip(x) = (3
2
)p(x + 1)− 1 for p ∈ N∗.

Corollary 2.28. Suppose x = 2n − 1, n ∈ N∗. If RD[x] exists, then RD[x] ∈
In‖O‖{I, O}≥0.

Proof Straightforward. ¤

Remark 2.29. Simply speaking, above Corollary states that if RD[x = 2n −
1, n ∈ N∗] exists, then the first n + 1 Collatz transformations for x must be
InO. Indeed, the resumption on the existence of the reduced dynamics of x
can be omitted. That is, the first n + 1 Collatz transformations in original
dynamics of x must also be InO.

Example 2.30. RD[7] = IIIOIOO = I3‖O‖IOO, as 7 → 22 → 11 →
34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 < 7.

Next corollary states that reduced dynamics consists of segment or seg-
ments with a unified form as IpOq, p ≥ 1, q ≥ 1.

Corollary 2.31. Given x ∈ [3]4, if RD[x] exists, then

RD[x] ∈ Ip0≥2‖Oq0≥1‖Ip1≥1‖Oq1≥1‖...‖Ipn≥1‖Oqn≥1.

Proof Straightforward. x ∈ [1]2, thus I occurs. After p times of I trans-
formations, Ip(x) ∈ [0]2 and thus O follows. After q times of O transforma-
tions, IpOq(x) ∈ [1]2, thus I occurs. Indeed, q can be determined by Ip(x)

by q = log2
Ip(x)

B
, B = max({b|b ∈ [1]2, b|Ip(x)}).

12



Iteratively, each segment has a unified form IpOq, where p, q ∈ N∗.
The first segment is listed solely, because the distinction between the first

segment and the other segments is that p0 ≥ 2 but pi ≥ 1, i ∈ N∗. (In other
words, when and only when an intermediate transformed number is in [1]4
occurs, pi = 1. Otherwise, pi ≥ 2.) ¤

3. Derive x from RD[x]

3.1. Preparation
Notation 3.1. SetRD = {s|x ∈ N∗,∃RD[x], s = RD[x], s ∈ {I, O}≥1}.

That is, ∀x ∈ N∗, if RD[x] exists, then RD[x] = s will be included in
SetRD, which is a set of existing reduced dynamics.

In this section, we will study two problems as follows:

1. Inverse problem: Given ∀s ∈ SetRD, is it possible to derive starting
integer x such that RD[x] = s?

2. What is the sufficient and necessary conditions for any existing reduced
dynamics. That is, given s ∈ {I, O}≥1, how to decide whether s ∈
SetRD?

Before exploring general situations, we give two trivial cases.

Proposition 3.2. O ∈ SetRD, IO ∈ SetRD.

Proof Straightforward. RD[x ∈ [0]2] = O and RD[x ∈ [1]4] = IO by Propo-
sition 2.22. ¤

In the following, we thus mainly concentrate on x ∈ [3]4 where their
reduced dynamics presents the form like Ip≥2O‖{I, O}q≥1, p, q ∈ N∗ once it
exists (recall Proposition 2.23).

Theorem 3.3. (Subset Theorem.)
Suppose s ∈ SetRD, |s| ≥ 2, x ∈ N∗, i = 0, 1, ..., |s| − 2. We have
(1.1) {x|GetS(s, 1, i + 1)(x) ∈ [1]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [0]2};
(1.2) {x|GetS(s, 1, i + 1)(x) ∈ [0]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [0]2};
(2.1) {x|GetS(s, 1, i + 1)(x) ∈ [1]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [1]2};
(2.2) {x|GetS(s, 1, i + 1)(x) ∈ [0]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [1]2}.

13



Proof When i = 0, there exists two and only two cases as follows:
(1) If GetS(s, i + 1, 1) = O, then GetS(s, 1, i)(x) ∈ [0]2. There exists two

subcases as follows:
(1.1) If GetS(s, i + 2, 1) = I, then
O(GetS(s, 1, i)(x))) ∈ [1]2

⇒ GetS(s, 1, i)(x)/2 ∈ [1]2
⇒ GetS(s, 1, i)(x) ∈ [2]4 ⊂ [0]2.

Thus, {x|GetS(s, 1, i + 1)(x) ∈ [1]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [0]2}.
(1.2) If GetS(s, i + 2, 1) = O, then
O(GetS(s, 1, i)(x))) ∈ [0]2

⇒ GetS(s, 1, i)(x)/2 ∈ [0]2
⇒ GetS(s, 1, i)(x) ∈ [0]4 ⊂ [0]2.

Thus, {x|GetS(s, 1, i + 1)(x) ∈ [0]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [0]2}.
(2) If GetS(s, i + 1, 1) = I then GetS(s, 1, i)(x) ∈ [1]2. There exists two

subcases as follows:
(2.1) If GetS(s, i + 2, 1) = I, then
I(GetS(s, 1, i)(x))) ∈ [1]2

⇒ (3 ∗GetS(s, 1, i)(x) + 1)/2 ∈ [1]2
⇒ 3 ∗GetS(s, 1, i)(x) + 1 ∈ [2]4
⇒ 3 ∗GetS(s, 1, i)(x) ∈ [1]4
⇒ GetS(s, 1, i)(x) ∈ [3]4 ⊂ [1]2.

Thus, {x|GetS(s, 1, i + 1)(x) ∈ [1]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [1]2}.
(2.2) If GetS(s, i + 2, 1) = O, then
I(GetS(s, 1, i)(x))) ∈ [0]2

⇒ (3 ∗GetS(s, 1, i)(x) + 1)/2 ∈ [0]2
⇒ 3 ∗GetS(s, 1, i)(x) + 1 ∈ [0]4
⇒ 3 ∗GetS(s, 1, i)(x) ∈ [3]4
⇒ GetS(s, 1, i)(x) ∈ [1]4 ⊂ [1]2.

Thus, {x|GetS(s, 1, i + 1)(x) ∈ [0]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [1]2}.
We can prove similarly for i = 1, 2, ..., |s| − 2. ¤

Corollary 3.4. Suppose s ∈ SetRD, |s| ≥ 2, i = 0, 1, ..., |s| − 2, x ∈ N∗. We
have

(1.1) {x|GetS(s, 1, i + 1)(x) ∈ [1]2} = {x|GetS(s, 1, i)(x) ∈ [2]4};
(1.2) {x|GetS(s, 1, i + 1)(x) ∈ [0]2} = {x|GetS(s, 1, i)(x) ∈ [0]4};
(2.1) {x|GetS(s, 1, i + 1)(x) ∈ [1]2} = {x|GetS(s, 1, i)(x) ∈ [3]4};
(2.2) {x|GetS(s, 1, i + 1)(x) ∈ [0]2} = {x|GetS(s, 1, i)(x) ∈ [1]4}.

14



Proof Straightforward by Theorem 3.3. ¤

Remark 3.5.

(1) Corollary 3.4 states the residue classes are partitioned regularly into
halves and either half will present either next intermediate transformation
in terms of I or O. (Indeed, the partition property is thoroughly explored and
proved in my another paper [9]. Note that, this paper is independent with
cited paper.)

(2) Note that, Theorem 3.3 is not only guaranteed for reduced dynamics, but
also for original dynamics.

Corollary 3.6. Suppose s ∈ SetRD, |s| ≥ 2, i = 2, 3, ..., |s|, x ∈ N∗. We
have

{x|IsMatched(GetS(s, 1, i− 1)(x), GetS(s, i, 1)) = True}
⊂ {x|IsMatched(GetS(s, 1, i− 2)(x), GetS(s, i− 1, 1)) = True}.

Proof Straightforward by Theorem 3.3. ¤

Roughly speaking, above corollary asserts that the last parity requirement
is sufficient to guarantee all previous parity requirements. That is, the residue
equation for last parity requirement is sufficient for deriving the required
residue class for satisfying all parity requirements.

In the following, notation [i]m is extended in that i could be larger than m
or less than 0. That is, [i]m = {x|x = k∗m+ i, k ∈ N, i ∈ Z,m ∈ N∗,m ≥ 2}.
Z is integer.

Lemma 3.7. a ∈ N, x, b, c ∈ N∗, b ≥ 2, thus
(1) x + c ∈ [a]b ⇔ x ∈ [a− c]b.
(2) c ∗ x ∈ [a]b ⇔ x ∈ [c−1 ∗ a]b, if gcd(c, b) = 1.
(3) x/c ∈ [a]b ⇔ x ∈ [a ∗ c]b∗c.

Proof (1) x + c ∈ [a]b ⇔ x + c = k ∗ b + a, k ∈ N
⇔ x = k ∗ b + a− c ⇔ x ∈ [a− c]b.

(2) c ∗ x ∈ [a]b ⇔ c ∗ x = k ∗ b + a, k ∈ N
⇔ (k′ ∗ b + [c]b) ∗ x = k ∗ b + a, ∵ c = k′ ∗ b + [c]b, k

′ ∈ N
⇔ [c]b ∗ x = (k − k′ ∗ x) ∗ b + a
⇔ [c]b ∗ x ∈ [a]b
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⇔ [c−1]b ∗ [c]b ∗x ∈ [c−1]b ∗ [a]b ∵ gcd(c, b) = 1,∃[c−1]b, s.t. [c−1]b ∗ [c]b = [1]b
⇔ x ∈ [c−1 ∗ a]b.

(3) x/c ∈ [a]b ⇔ x/c = k ∗ b + a, k ∈ N
⇔ x = k ∗ b ∗ c + a ∗ c, k ∈ N⇔ x ∈ [a ∗ c]b∗c. ¤

Indeed, if gcd(c, b) = 1, then [c−1]b exists and is the inverse of [c]b in group
Z/bZ∗ = 〈Z/bZ \ {0}, ∗ mod b〉 such that [c−1]b ∗ [c]b = [1]b.

3.2. Derive x if RD[x]=IpOq

In this subsection, we assume p, q ∈ N∗, p ≥ 2, x ∈ [3]4 if no explicitly
declaration exists.

Lemma 3.8. Suppose p, q ∈ N∗, p ≥ 2.
∃x ∈ [3]4 such that RD[x] = IpOq, if and only if
Req-I) Ip(x) ∈ [0]2q ;
Req-II) IpOq(x) < x ∧ IpOq−1(x) 6< x.

Proof By Theorem 3.3 or Corollary 3.6, all parity sequence can be guaran-
teed if the last parity requirement is guaranteed.

IpOq−1(x) ∈ [0]2 ⇔ Ip(x)/2q−1 ∈ [0]2 ⇔ Ip(x) ∈ [0]2q , by Lemma 3.7 (3).
Thus, Req-I is sufficient for the requirements for all parities.
Any x such that IpOq−1(x) 6< x can guarantee IpOi(x) > x, i = 1, 2, ..., q−

2, because IpOi(x) = IpOq−1(x) ∗ 2(q−1)−i. Besides, I i(x) > x, i = 1, 2, ..., p,
due to I(x) = (3∗x+1)/2 > x. Thus, Req-II is sufficient for the requirements
for all transformed integers. ¤

Next, we check the requirement for Req-I.

Lemma 3.9. Ip(x) ∈ [0]2q ⇔ x ∈ [(3p)−1 ∗ 2p − 1]2p+q .

Proof Ip(x) ∈ [0]2q

⇔ (3
2
)p(x + 1)− 1 ∈ [0]2q ∵ Eq.2

⇔ (3
2
)p(x + 1) ∈ [1]2q ∵ Lemma 3.7 (1)

⇔ 3p(x + 1) ∈ [2p]2p+q ∵ Lemma 3.7 (3)
⇔ [3p]2p+q(x + 1) ∈ [2p]2p+q ∵ Lemma 3.7 (2)
⇔ x + 1 ∈ [(3p)−1 ∗ 2p]2p+q ∵ Lemma 3.7 (2) and gcd(3p, 2p+q) = 1
⇔ x ∈ [(3p)−1 ∗ 2p − 1]2p+q . ∵ Lemma 3.7 (1) ¤
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(Indeed, [(3p)−1]2p+q is the inverse of [3p]2p+q in group Z/2p+qZ∗ = 〈Z/2p+qZ\
{0}, ∗ mod 2p+q〉. Besides, even if p = 1, above lemma still holds due to
Corollary 2.26 Remark (3).)

Next, we explore Req-II, assuming that Req-I is already guaranteed -
x ∈ [(3p)−1 ∗ 2p − 1]2p+q .

Lemma 3.10. IpOq(x) < x ∧ IpOq−1(x) ≥ x ⇔ q = dλ ∗ pe ∧ x > 3p−2p

2p+q−3p .

Proof (1) IpOq(x) < x ⇔ ((3
2
)p(x + 1)− 1)/2q < x ∵ Eq.2

⇔ 3px + 3p < (2qx + 1)2p

⇔ 3px + 3p < 2p+qx + 2p

⇔ 3p − 2p < (2p+q − 3p)x ∵ x > 0, 3p − 2p > 0
⇔ 2p+q − 3p > 0 ∧ x > 3p−2p

2p+q−3p .
(2) 2p+q − 3p > 0 ⇔ 2q > 3p/2p ⇔ q > log2 1.5 ∗ p ⇔ q ≥ dlog2 1.5 ∗ pe,

since q ∈ N∗, log2 1.5 6∈ Q, log2 1.5 ∗ p 6∈ N∗.
(3) IpOq(x) < x∧ IpOq−1(x) ≥ x ⇔ q = dlog2 1.5∗pe, as q is the minimal

one in q ≥ dlog2 1.5 ∗ pe. ¤

Notation 3.11. λ = log2 1.5.

Next theorem proves that q = dλ ∗ pe is the necessary condition for
IpOq ∈ SetRD.

Theorem 3.12. If IpOq ∈ SetRD, p, q ∈ N∗, p ≥ 2, then
(1) ∃x ∈ [(3p)−1 ∗ 2p − 1]2p+q ∧ x > 3p−2p

2p+q−3p such that RD[x] = IpOq;
(2) q = dλ ∗ pe.

Proof It is straightforward due to Lemma 3.8, Lemma 3.9, Lemma 3.10. ¤

Next theorem proves that q = dλ ∗ pe is also the sufficient condition for
IpOq ∈ SetRD.

Theorem 3.13. If q = dλ ∗ pe, p, q ∈ N∗, p ≥ 2, then
(1) ∃x ∈ [(3p)−1 ∗ 2p − 1]2p+q ∧ x > 3p−2p

2p+q−3p such that RD[x] = IpOq;
(2) IpOq ∈ SetRD.

Proof It is due to Lemma 3.8, Lemma 3.9, Lemma 3.10. ¤

Next corollary claims sufficient and necessary condition for IpOq ∈ SetRD

(p ≥ 2).
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Corollary 3.14. q = dλ ∗ pe ⇔ IpOq ∈ SetRD, where p, q ∈ N∗, p ≥ 2.

Proof It is straightforward by Theorem 3.12 and Theorem 3.13. ¤

Next corollary extends above corollary by tackling the cases p = 0 and
p = 1.

Corollary 3.15. q = max(1, dλ ∗ pe) ⇔ IpOq ∈ SetRD, where p ∈ N, q ∈ N∗.

Proof (1) p = 0, q = max(1, 0) = 1. I0O1 = O ∈ SetRD, as RD[x ∈ [0]2] = O.
(2) p = 1, q = max(1, dλ ∗ 1e) = dλ ∗ 1e = 1. I1O1 = IO ∈ SetRD, as

RD[x ∈ [1]4] = IO.
(3) p ≥ 2, q = max(1, dλ ∗ pe) = dλ ∗ pe. IpOq ∈ SetRD due to Corollary

3.14.
Inverse direction can be proved similarly. ¤

Corollary 3.16. ‖SetRD‖ = +∞.

Proof ∀p ∈ N∗, p ≥ 2, let q = dλ ∗ pe. Thus, 2p+q > 3p. ∃x ∈ [(3p)−1 ∗ 2p −
1]2p+q ∧ x > 3p−2p

2p+q−3p such that RD[x] = IpOq. Hence, ‖SetRD‖ = +∞. ¤

3.3. Derive x if RD[x]=Ip1Oq1Ip2Oq2 ...IpnOqn

In this subsection, we assume pi, qi ∈ N∗, p1 ≥ 2, n ≥ 2, and x ∈ [3]4, if
there exists no explicitly declaration.

Lemma 3.17. Suppose s = Ip1Oq1Ip2Oq2 ...IpnOqn, kj =
∑j

i=1(pi + qi), j =
1, 2, ..., n− 1.

(1) GetS(s, 1, kj)(x) ≥ x ⇒ GetS(s, 1, kj −m)(x) > x, m = 1, 2, ..., qj.
(2) GetS(s, 1, kj)(x) ≥ x ⇒ GetS(s, 1, kj + m)(x) > x, m = 1, 2, ..., pj+1.

Proof Straightforward.
(1) Because GetS(s, 1, kj)(x) ≥ x, and

GetS(s, 1, kj −m)(x) = GetS(s, 1, kj)(x) ∗ 2m > GetS(s, 1, kj)(x), we have
GetS(s, 1, kj −m)(x) > x, m = 1, 2, ..., qj.
(2) Because GetS(s, 1, kj)(x) ≥ x, and

GetS(s, 1, kj + m)(x) = Im(GetS(s, 1, kj)(x)) > GetS(s, 1, kj)(x) (due to
I(x) > x), we have

GetS(s, 1, kj + m)(x) > x, m = 1, 2, ..., pj+1. ¤
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Remark 3.18. For better understanding above lemma, we can explain the
conclusion as follows: if “going Down” stage ends with a transformed integer
that is not less than the starting integer, then all transformed integers in its
“left” and “right” will be larger than the starting integer.

Lemma 3.19. Suppose pi, qi ∈ N∗, p1 ≥ 2, n ≥ 2.
∃x ∈ [3]4 such that RD[x] = Ip1Oq1Ip2Oq2 ...IpnOqn, if and only if
Req-I): Ip1Oq1Ip2Oq2 ...Ipn(x) ∈ [0]2qn ;
Req-II): (Ip1Oq1Ip2Oq2 ...IpnOqn(x) < x) ∧ (Ip1Oq1Ip2Oq2 ...IpnOqn−1(x) ≥

x);
Req-III): Ip1Oq1Ip2Oq2 ...IpjOqj(x) ≥ x, j = 1, 2, ..., n− 1.

Proof Roughly speaking, Req-I is a residue equation to specify the require-
ment for parity sequence, Req-II and Req-III are two inequalities to specify
the requirements for transformed integers.

(1) Req-I is sufficient and necessary because of Theorem 3.3.
(2) Req-II.
Ip1Oq1Ip2Oq2 ...IpnOi(x) = Ip1Oq1Ip2Oq2 ...IpnOqn−1(x) ∗ 2(qn−1)−i. Thus,
Ip1Oq1Ip2Oq2 ...IpnOqn−1(x) ≥ x

⇒ Ip1Oq1Ip2Oq2 ...IpnOi(x) > x, i = 1, 2, ..., qn − 2.
Together with Ip1Oq1Ip2Oq2 ...IpnOqn(x) < x, qn is thus the minimal one

to let Ip1Oq1Ip2Oq2 ...IpnOi(x) < x.
(3) Req-III. Obviously, I i(x) > x, i = 1, 2, ..., p1. Besides, let s = RD[x].

By Lemma 3.17, we have
GetS(s, 1,

∑j
i=1 pi + qi)(x) ≥ x, j = 1, 2, ..., n− 1

⇒ GetS(s, 1, k)(x) > x, k = p1 + 1, p1 + 2, ...,
∑n−1

i=1 (pi + qi) + pn. ¤

Lemma 3.20. Ip1Oq1Ip2Oq2 ...Ipn(x) ∈ [0]2qn , n, pi, qi ∈ N∗, p1 ≥ 2, i = 1, 2, ..., n,

⇔ x ∈ [−∑n
i=1 AiBiCi−1]Cn , where Ai = 3pi−2pi, Bi = (3

∑i
j=1 pj)−1 mod Cn,

Ci = 2
∑i

j=1(pj+qj), C0 = 1.

The proof is somewhat straightforward but the computation is tedious;
we thus move them to Appendix (section 4.1).

Remark 3.21.

(1) The conclusion for n = 1 is identical with that in Theorem 3.13.

(2) When p1 = q1 = 1, the conclusion [3−p12p1 − 1]2p1+q1 = [3−1 ∗ 2 − 1]4 =
[3∗2−1]4 = [1]4, which is identical with that in Proposition 3.2. Thus, p1 ≥ 2
in Lemma 3.20 can be extended to p1 ≥ 1.
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Next lemma is stated only for x ∈ [−∑n
i=1 AiBiCi−1]Cn , since Req-I

should be guaranteed for ordered parity sequence firstly.

Lemma 3.22. Ip1Oq1Ip2Oq2 ...IpnOqn(x) < x, n, pi, qi ∈ N∗, p1 ≥ 2, i = 1, 2, ..., n

⇔ x > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
∧ 2

∑n
i (pi+qi) − 3

∑n
i pi > 0.

Proof Ip1Oq1Ip2Oq2 ...IpnOqn(x) < x
⇔ ∏n

i=1 aix+
∏n

i=2 aib1+
∏n

i=3 aib2+...+
∏n

i=n−1 aibn−2+
∏n

i=n aibn−1+bn < x
(due to the equation in the proof of Lemma 3.20 (7))
⇔ (1−∏n

i=1 ai)x > Ψ
(Let Ψ =

∏n
i=2 aib1 +

∏n
i=3 aib2 + ... +

∏n
i=n−1 aibn−2 +

∏n
i=n aibn−1 + bn)

⇔ (1−∏n
i=1

3pi

2pi+qi
) ∗ x > Ψ

⇔ (1− 3
∑n

i=1 pi

2
∑n

i=1
(pi+qi)

) ∗ x > Ψ

⇔ x > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
∧ 2

∑n
i (pi+qi) − 3

∑n
i pi > 0. ∵ x > 0, Ψ > 0

Indeed, Ψ =
∏n

i=2 aib1 +
∏n

i=3 aib2 + ...+
∏n

i=n−1 aibn−2 +
∏n

i=n aibn−1 + bn

= (3p1−2p1 )3
∑n

i=2 pi

2
∑n

i=1
(pi+qi)

+ (3p2−2p2 )3
∑n

i=3 pi

2
∑n

i=2
(pi+qi)

+ ... + anbn−1 + bn

= (3p1−2p1 )3
∑n

i=2 pi

2
∑n

i=1
(pi+qi)

+ (3p2−2p2 )3
∑n

i=3 pi

2
∑n

i=2
(pi+qi)

+ ... + 3pn

2pn+qn

3pn−1−2pn−1

2pn−1+qn−1
+ 3pn−2pn

2pn+qn

= (3p1−2p1 )3
∑n

i=2 pi

2
∑n

i=1
(pi+qi)

+ (3p2−2p2 )3
∑n

i=3 pi

2
∑n

i=2
(pi+qi)

+ ... + (3pn−1−2pn−1 )3pn

2pn+qn+pn−1+qn−1
+ 3pn−2pn

2pn+qn . ¤

Remark 3.23.

(1) When n = 1, Ψ = 3pn−2pn

2pn+qn = 3p1−2p1

2p1+q1
.

Ip1Oq1(x) < x

⇔ x > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
∧ 2

∑n
i (pi+qi) − 3

∑n
i pi > 0

⇔ x > Ψ ∗ 2p1+q1

2p1+q1−3p1
∧ 2p1+q1 − 3p1 > 0

⇔ x > 3p1−2p1

2p1+q1
∗ 2p1+q1

2p1+q1−3p1
∧ 2p1+q1 − 3p1 > 0

⇔ x > 3p1−2p1

2p1+q1−3p1
∧ 2p1+q1 − 3p1 > 0, which is exactly identical with that of

Theorem 3.13. Therefore, the conclusion can be extended to n = 1.

(2) When n = 1 with p1 = 1, q1 = 1. x > Ψ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
= 3p1−2p1

2p1+q1−3p1
=

3−2
22−31 = 1/1 = 1. It is consistent with the conclusion in Proposition 3.2 for
RD[x ∈ [1]4] = IO.

Note that, here 2
∑n

i (pi+qi) − 3
∑n

i pi > 0 is a necessary condition for
Ip1Oq1Ip2Oq2 ...IpnOqn(x) < x.
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Next, we check the requirement Req-III. Again, next lemma is discussed
only for x ∈ [−∑n

i=1 AiBiCi−1]Cn , since Req-I should be guaranteed for des-
ignated parity sequence as a prerequisite.

Lemma 3.24. Ip1Oq1Ip2Oq2 ...IpjOqj(x) ≥ x, j = 1, 2, ..., n− 1, n ≥ 2

⇔ 2
∑j

i (pi+qi) − 3
∑j

i pi < 0.

Proof Ip1Oq1Ip2Oq2 ...IpjOqj(x) ≥ x, j = 1, 2, ..., n− 1
⇔ ∏j

i=1 aix+
∏j

i=2 aib1 +
∏j

i=3 aib2 + ...+
∏j

i=j−1 aibj−2 +
∏j

i=j aibj−1 +bj ≥ x
(due to the equation in the proof of Lemma 3.20 (7))
⇔ (1−∏j

i=1 ai)x ≤ Ψj

Let Ψj =
∏j

i=2 aib1 +
∏j

i=3 aib2 + ... +
∏j

i=j−1 aibj−2 +
∏n

i=j aibj−1 + bj

⇔ (1−∏j
i=1

3pi

2pi+qi
) ∗ x ≤ Ψj

⇔ (1− 3
∑j

i=1
pi

2
∑j

i=1
(pi+qi)

) ∗ x ≤ Ψj

⇔ (x ≤ Ψj ∗ 2
∑j

i=1
(pi+qi)

2
∑j

i=1
(pi+qi)−3

∑j
i=1

pi
∧ 2

∑j
i (pi+qi) − 3

∑j
i pi > 0)

∨ (2
∑j

i (pi+qi) − 3
∑j

i pi < 0).

Next, we will prove that 2
∑j

i (pi+qi) − 3
∑j

i pi > 0, j = 1, 2, ..., n − 1 is
impossible by contradiction.

Suppose Ip1Oq1Ip2Oq2 ...Ipj(x) ∈ [0]2qj ⇔ x ∈ Sj, j = 1, 2, ..., n. By
Lemma 3.19 (1) or Theorem 3.3, Sj+1 ⊂ Sj, j = n− 1, n− 2, ..., 1.

Suppose ∃j ∈ [1, n−1] such that 2
∑j

i (pi+qi)−3
∑j

i pi > 0. Select the minimal
one in them. (Thus, for 1 ≤ k ≤ j − 1, 2

∑k
i (pi+qi) − 3

∑k
i pi < 0.) Because the

generality of n in qn in Lemma 3.22, we have Ip1Oq1Ip2Oq2 ...IpjOqj(x) < x,

when x > Ψ′
j = Ψj ∗ 2

∑j
i=1

(pi+qi)

2
∑j

i=1
(pi+qi)−3

∑j
i=1

pi
, j ∈ [1, n− 1].

Let Ψ′
n = Ψ ∗ 2

∑n
i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
.

Therefore, if x > max(Ψ′
j, Ψ

′
n) and x ∈ Sn, then Ip1Oq1Ip2Oq2 ...Ipj(x) ∈

[0]2qj , Ip1Oq1Ip2Oq2 ...IpjOqj(x) < x, and Ip1Oq1Ip2Oq2 ...IpkOqk(x) ≥ x, k =
1, 2, ..., j − 1. Thus, RD[x ∈ Sn] = Ip1Oq1Ip2Oq2 ... IpjOqj , which contradicts
with RD[x ∈ Sn] = Ip1Oq1Ip2Oq2 ...IpnOqn in assumption. Thus, @j ∈ [1, n−
1], 2

∑j
i (pi+qi)− 3

∑j
i pi > 0. That is, 2

∑j
i (pi+qi)− 3

∑j
i pi < 0, j = 1, 2, ..., n− 1. ¤

Lemma 3.25. 2
∑n

i (pi+qi) − 3
∑n

i pi > 0 ⇔ ∑n
i=1 qi ≥ dλ ∗∑n

i=1 pie.

Proof Let U =
∑n

i pi, D =
∑n

i (pi + qi).
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2
∑n

i (pi+qi) − 3
∑n

i pi > 0 ⇔ 2D > 3U ⇔ D > log2 3 ∗ U
⇔ D ≥ dlog2 3 ∗ Ue ∵ U,D ∈ N∗, log2 3 6∈ Q∗, log2 3 ∗ U 6∈ N∗
⇔ D − U ≥ dlog2 3 ∗ Ue − U
⇔ D − U ≥ dlog2 3 ∗ U − Ue
⇔ D − U ≥ dlog2 1.5 ∗ Ue
⇔ ∑n

i=1 qi ≥ dλ ∗∑n
i=1 pie. ¤

Lemma 3.26. 2
∑j

i (pi+qi) − 3
∑n

i pi < 0 ⇔ ∑j
i=1 qi < dλ ∗∑j

i=1 pie,
j = 1, 2, ..., n− 1.

Proof Let U ′ =
∑j

i pi, D
′ =

∑j
i (pi + qi).

2
∑j

i (pi+qi) − 3
∑j

i pi < 0 ⇔ 2D′ < 3U ′ ⇔ D′ < log2 3 ∗ U ′

⇔ D′ ≤ dlog2 3 ∗ U ′e − 1 ∵ U ′, D′ ∈ N∗, log2 3 6∈ Q∗, log2 3 ∗ U ′ 6∈ N∗
⇔ D′ − U ′ ≤ dlog2 3 ∗ U ′e − U ′ − 1
⇔ D′ − U ′ ≤ dlog2 3 ∗ U ′ − U ′e − 1
⇔ D′ − U ′ ≤ dlog2 1.5 ∗ U ′e − 1
⇔ ∑j

i=1 qi < dλ ∗∑j
i=1 pie. ¤

Lemma 3.27. Ip1Oq1Ip2Oq2 ...IpnOqn(x) < x ∧
Ip1Oq1Ip2Oq2 ...IpnOqn−1(x) ≥ x

⇔ qn = dλ ∗∑n
i=1 pie −

∑n−1
i=1 qi ∧ x > Ψ ∗ 2

∑n
i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
.

Proof By Lemma 3.25,
∑n

i=1 qi ≥ dλ ∗∑n
i=1 pie.

Ip1Oq1Ip2Oq2 ...IpnOqn(x) < x ∧ Ip1Oq1Ip2Oq2 ...IpnOqn−1(x) ≥ x, thus qn

is the minimal one. Therefore, qn = dλ ∗∑n
i=1 pie −

∑n−1
i=1 qi. ¤

Theorem 3.28. If Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD, pi, qi ∈ N∗, p1 ≥ 2, i =
1, 2, ..., n, n ∈ N∗, n ≥ 2, then

(1) ∃x ∈ [−∑n
i=1 AiBiCi−1]Cn ∧ x > Ψ ∗ 2

∑n
i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
such that

RD[x] = Ip1Oq1Ip2Oq2 ...IpnOqn , where Ai = 3pi − 2pi, Bi = (3
∑i

j=1 pj)−1

mod Cn, Ci = 2
∑i

j=1(pj+qj), C0 = 1, Ψ =
∏n

i=2 aib1+
∏n

i=3 aib2+...+
∏n

i=n−1 aibn−2+∏n
i=n aibn−1 + bn, ai = 3pi

2pi+qi
, bi = 3pi−2pi

2pi+qi
, i = 1, 2, ...n;

(2)
∑n

i=1 qi = dλ ∗ ∑n
i=1 pie ∧

∑j
i=1 qi < dλ ∗ ∑j

i=1 pie, j = 1, 2, ..., n −
1, n ≥ 2.

Proof It is straightforward due to Lemma 3.20, Lemma 3.22, Lemma 3.24,
Lemma 3.25, Lemma 3.26, and Lemma 3.27. ¤
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Next theorem proves that
∑n

i=1 qi = dλ ∗ ∑n
i=1 pie and

∑j
i=1 qi < dλ ∗∑j

i=1 pie, j = 1, 2, ..., n− 1, n ≥ 2 is also the sufficient condition for
Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD.

Theorem 3.29. If
∑n

i=1 qi = dλ ∗ ∑n
i=1 pie,

∑j
i=1 qi < dλ ∗ ∑j

i=1 pie, j =
1, 2, ..., n− 1, pi, qi ∈ N∗, p1 ≥ 2. i = 1, 2, ..., n, n ∈ N∗, n ≥ 2, then

(1) ∃x ∈ [−∑n
i=1 AiBiCi−1]Cn ∧ x > Ψ ∗ 2

∑n
i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
such that

RD[x] = Ip1Oq1Ip2Oq2 ...IpnOqn where Ai = 3pi − 2pi, Bi = (3
∑i

j=1 pj)−1

mod Cn, Ci = 2
∑i

j=1(pj+qj), C0 = 1, Ψ =
∏n

i=2 aib1+
∏n

i=3 aib2+...+
∏n

i=n−1 aibn−2+∏n
i=n aibn−1 + bn, ai = 3pi

2pi+qi
, bi = 3pi−2pi

2pi+qi
, i = 1, 2, ..., n;

(2) Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD.

Proof By Lemma 3.27,∑n
i=1 qi = dλ ∗∑n

i=1 pie ∧ x > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi

⇒ Ip1Oq1Ip2Oq2 ...IpnOqn(x) < x ∧ Ip1Oq1Ip2Oq2 ...IpnOqn−1(x) ≥ x.
Together with x ∈ [−∑n

i=1 AiBiCi−1]Cn , we have
Ip1Oq1Ip2Oq2 ...Ipn(x) ∈ [0]2qn due to Lemma 3.20.
Besides, Ip1Oq1Ip2Oq2 ...IpjOqj(x) ≥ x, j = 1, 2, ..., n − 1 by Lemma 3.24

and Lemma 3.26. Therefore, by Lemma 3.19,
∃x ∈ N∗, RD[x] = Ip1Oq1Ip2Oq2 ...IpnOqn . ¤

Note that, above theorem indeed implies that RD[x] = RD[x + P ] =
Ip1Oq1Ip2Oq2 ...IpnOqn where P = 2p1+q1+p2+q2+...pn+qn = 2Σn

i=1(pi+qi) = 2|RD[x]|

when x is sufficient large (i.e., x > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
).

(Indeed, the requirement for being sufficient large can be omitted and
proved by us in another paper [8]. Note that, this paper is independent with
cited paper.)

Following corollary states the necessary and sufficient condition for guar-
anteeing that any Ip1Oq1Ip2Oq2 ...IpnOqn where pi, qi ∈ N∗, p1 ≥ 2 and i =
1, 2, ..., n, n ∈ N∗, n ≥ 2, is a reduced dynamics of some x ∈ N∗.

Corollary 3.30.
∑n

i=1 qi = dλ∗∑n
i=1 pie, pi, qi ∈ N∗, p1 ≥ 2 i = 1, 2, ..., n, n ∈

N∗, n ≥ 2 ∧ ∑j
i=1 qi < dλ ∗∑j

i=1 pie, j = 1, 2, ..., n− 1
⇔ Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD.

Proof Straightforward due to Theorem 3.28 and Theorem 3.29. ¤
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Theorem 3.31. (Prefix-free Theorem.) Suppose pi, qi ∈ N∗, i = 1, 2, ..., n,
p1 ≥ 2, n ≥ 2. If s = Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD, then
GetS(s, 1,

∑j
i=1(pi + qi)) 6∈ SetRD, j = 1, 2, ..., n− 1.

Proof Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD

⇒ ∀x ∈ [−∑n
i=1 AiBiCi−1]Cn , Ip1Oq1Ip2Oq2 ...IpjOqj(x) ≥ x, j = 1, 2, ..., n−1

⇒ 2
∑j

i (pi+qi) − 3
∑j

i pi < 0, j = 1, 2, ..., n− 1 ∵ Lemma 3.24
⇒ @x ∈ N∗, GetS(s, 1,

∑j
i=1(pi + qi))(x) < x ∵ Lemma 3.22

⇒ GetS(s, 1,
∑j

i=1(pi + qi)) 6∈ SetRD, j = 1, 2, ..., n− 1. ¤

Simply speaking, Theorem 3.31 shows that SetRD is prefix-free. Regarding
more general conclusion by including O or IO (i.e., for x 6∈ [3]4) and n = 1
(i.e., for IpOq), we have following corollary.

Corollary 3.32. s ∈ SetRD ⇒ s‖{I, O}≥1 6⊂ SetRD.

Proof Straightforward. ¤

Next, we give more general results by introducing two functions as follows:

Definition 3.33. Function CntI(·). CntI : c → y takes as input c ∈
{I, O}≥1, and outputs y ∈ N that is the count of “I” in c.

Definition 3.34. Function CntO(·). CntO : c → y takes as input c ∈
{I, O}≥1, and outputs y ∈ N∗ that is the count of “O” in c.

E.g., CntI(IIOO) = 2, CntO(IIOO) = 2, CntI(IIOIO) = 3, CntO(IIOIO) =
2.

Corollary 3.30 states the sufficient and necessary condition for
s = Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD, n ≥ 2. It can be extended by using
GetS(s, 1, k), k = 1, 2, ..., |s|−1 instead of GetS(s, 1,

∑j
i=1(pi+qi)) as follows:

Corollary 3.35. s = Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD, pi, qi ∈ N∗, p1 ≥ 2,
i = 1, 2, ..., n, n ∈ N∗, n ≥ 2, if and only if

(1) CntO(s) = dλ ∗ CntI(s)e, and
(2) CntO(GetS(s, 1, k)) < dλ ∗ CntI(GetS(s, 1, k))e, k = 1, 2, ..., |s| − 1.

Proof Straightforward. ¤
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If n = 1 and p = 0, 1 for IpOq are both included, above corollary can be
extended to following corollary.

Corollary 3.36. s = Ip1Oq1Ip2Oq2 ...IpnOqn ∈ SetRD, pi ∈ N, qi ∈ N∗, i =
1, 2, ..., n, n ∈ N∗, if and only if

(1) p1 = 0, n = 1. s = O; Or,
(2) p1 ≥ 1. CntO(s) = dλ ∗ CntI(s)e, and

CntO(GetS(s, 1, k)) < dλ ∗ CntI(GetS(s, 1, k))e, k = 1, 2, ..., |s| − 1.

Proof (1) It is trivial s = O ⇒ s ∈ SetRD. Inversely, n = 1, p1 = 0, s =
Ip1Oq1 = Oq1 ∈ SetRD ⇒ s = O.

(2) n = 1, s = Ip1Oq1 , p1, q1 ∈ N∗.
(2.1) p1 = 1. GetS(s, 1, 1) = I. Obviously, CntO(GetS(s, 1, 1)) = 0 <

dλ ∗ CntI(GetS(s, 1, 1))e = dλ ∗ 1e = dlog21.5e = 1.
s = IOq1 , thus GetS(s, 1, 2) = IO. Then, CntO(GetS(s, 1, 2)) = 1,

dλ∗CntI(GetS(s, 1, 2))e = dλ∗1e = 1. Thus, |s| = 2 and s = IO. Obviously,
IO ∈ SetRD.

Inversely,
s = IO ∈ SetRD

⇒ (CntO(s) = 1 = dλ ∗ 1e = dλ ∗ CntI(s)e) ∧
(CntO(GetS(s, 1, k)) = 0 < dλ ∗ CntI(GetS(s, 1, k))e = 1, k = |s| − 1 = 1.)

(2.2) p1 ≥ 2. q1 = dλ ∗ p1e ⇔ Ip1Oq1 ∈ SetRD by Corollary 3.14. Thus,
q1 = dλ ∗ p1e ⇔ CntO(s) = dλ ∗CntI(s)e because CntO(s) = q1, CntI(s) =
p1.

Besides, q1 = dλ∗p1e ⇒ CntO(GetS(s, 1, k)) < dλ∗CntI(GetS(s, 1, k))e,
k = 1, 2, ..., |s| − 1. The reason is as follows:

When k = 1, 2, ..., p1,
CntO(GetS(s, 1, k)) = 0 < dλ ∗ CntI(GetS(s, 1, k))e ∈ N∗ is trivial;

When k = p1 + 1, p1 + 2, ..., p1 + q1 − 1,
q1 = dλ ∗ p1e ⇒ CntO(GetS(s, 1, k)) = k − p1 ≤ q1 − 1 < q1 = dλ ∗ p1e =
dλ ∗ CntI(GetS(c, 1, k))e as p1 = CntI(GetS(s, 1, k)).

(3) n ≥ 2. p1 ≥ 2. By Corollary 3.35,
CntO(c) = dλ ∗ CntI(c)e ∧
CntO(GetS(s, 1, k)) < dλ ∗ CntI(GetS(s, 1, k))e, k = 1, 2, ..., |s| − 1.
⇔ s ∈ SetRD. ¤

Next, we use CntO(·) and CntI(·) to restate sufficient and necessary
condition for s ∈ SetRD as follows:
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Corollary 3.37. (Form Corollary.) s ∈ {I, O}≥1 is a reduced dynamics,
if and only if

(1) |s| = 1, s = O; Or,
(2) |s| ≥ 2,

{
CntO(s) = dλ ∗ CntI(s)e,

CntO(s′) < dλ ∗ CntI(s′)e, s′ = GetS(s, 1, i), i = 1, 2, ..., |s| − 1.
(4)

Proof It is straightforward due to Corollary 3.30, Theorem 3.31, Corollary
3.32, Corollary 3.35 and Corollary 3.36. ¤

Finally, we obtain following Inverse Theorem as a summary.

Theorem 3.38. (Inverse Theorem.)
(1) If |s| = 1, s = O, then ∃x ∈ [0]2 such that RD[x] = O.
(2) If |s| ≥ 2, s = Ip1Oq1Ip2Oq2 ...IpnOqn , pi, qi ∈ N∗, i = 1, 2, ..., n, n ∈ N∗,
CntO(s) = dλ ∗ CntI(s)e,
CntO(s′) < dλ ∗ CntI(s′)e, s′ = GetS(s, 1, k), k = 1, 2, ..., |s| − 1.

then ∃x ∈ [−∑n
i=1 AiBiCi−1]Cn ∧ x > Ψ ∗ 2

∑n
i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi

such that RD[x] = s

where Ai = 3pi − 2pi, Bi = (3
∑i

j=1 pj)−1 mod Cn, Ci = 2
∑i

j=1(pj+qj), C0 = 1,
Ψ =

∏n
i=2 aib1 +

∏n
i=3 aib2 + ... +

∏n
i=n−1 aibn−2 +

∏n
i=n aibn−1 + bn, ai =

3pi

2pi+qi
, bi = 3pi−2pi

2pi+qi
.

Proof It is straightforward due to Theorem 3.29 and Form Corollary (Corol-
lary 3.37). ¤

Following corollary states that SetRD can be constructed by generating s ∈
{I, O}≥1 that satisfies requirements algorithmically instead of by conducting
concrete Collatz transformations for enumerated starting integers.

Corollary 3.39. SetRD = {O} ∪ {s|s ∈ {I, O}L, L ∈ N∗, L ≥ 2,
CntO(s) = dλ ∗ CntI(s)e,
CntO(s′) < dλ ∗ CntI(s′)e, s′ = GetS(s, 1, i), i = 1, 2, ..., L− 1}.

Proof It is straightforward due to Corollary 3.37. ¤
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Following corollary states the relations between CntI(s) and CntO(s) +
CntI(s) = |s|, s ∈ SetRD. Indeed, CntI(s) is the count of (3 ∗ x + 1)/2 that
equals the count of 3∗x+1 computation, and CntO(s)+CntI(s) equals the
total count of x/2 computation in reduced dynamics.

Corollary 3.40. If s ∈ SetRD, then
(1) D ≥ dlog2 3 ∗ Ue, where U = CntI(s), D = |s|;
(2) 3U < 2D.

Proof (1) When s = O, U = 0, D = 1. 1 > dlog2 3 ∗ 0e = 0 by Corollary
3.39.

When s 6= O, s ∈ SetRD ⇒ D = CntO(s) + CntI(s) = dlog2 1.5 ∗
CntI(s)e+ CntI(s) = dlog2 1.5 ∗ Ue+ U = dlog2 3 ∗ Ue by Corollary 3.39.

In summary, s ∈ SetRD ⇒ D ≥ dlog2 3∗Ue, and note that “>” is obtained
when and only when s = O.

(2) D ≥ dlog2 3 ∗ Ue ⇒ D ≥ log2 3U ⇒ 3U ≤ 2D ⇒ 3U < 2D. ¤

Corollary 3.41. s ∈ SetRD, |s| ≥ 2
⇒ 3CntI(GetS(s,1,i)) > 2i, i = 1, 2, ..., |s| − 1.

Proof Let s′ = GetS(s, 1, i), i = 1, 2, ..., |s| − 1. Obviously, |s′| = i.
s ∈ SetRD

⇒ CntO(s′) < dlog2 1.5 ∗ CntI(s′)e ∵ Corollary 3.37
⇒ CntO(s′) < log2 1.5 ∗ CntI(s′) ∵ log2 1.5 6∈ Q, CntI(s), CntO(s) ∈ N∗
⇒ CntO(s′) + CntI(s′) < log2 3 ∗ CntI(s′)
⇒ |s′| < log2 3 ∗ CntI(s′) ⇒ 2|s

′| < 3CntI(s′)

⇒ 3CntI(GetS(s,1,i)) > 2i. ¤

Example 3.42. By using the conclusion in Form Corollary (Corollary 3.37),
CntO(s) can be computed from CntI(s) directly as follows:

(1) s ∈ {I, O}≥1, s ∈ SetRD, CntI(s) = 1 ⇒ CntO(s) = dλ ∗ CntI(s)e =
dλ ∗ 1e = dlog2 1.5 ∗ 1e = d0.58496250 ∗ 1e = 1.

(2) s ∈ {I, O}≥1, s ∈ SetRD, CntI(s) = 2 ⇒ CntO(s) = dλ ∗ CntI(s)e =
dλ ∗ 2e = dlog2 1.5 ∗ 2e = d0.58496250 ∗ 2e = 2.

(3) s ∈ {I, O}≥1, s ∈ SetRD, CntI(s) = 3 ⇒ CntO(s) = dλ ∗ CntI(s)e =
dλ ∗ 3e = dlog2 1.5 ∗ 3e = d0.58496250 ∗ 3e = 2.

(4) s ∈ {I, O}≥1, s ∈ SetRD, CntI(s) = 4 ⇒ CntO(s) = dλ ∗ CntI(s)e =
dλ ∗ 4e = dlog2 1.5 ∗ 4e = d0.58496250 ∗ 4e = 3.
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Due to Inverse Theorem (Theorem 3.38), each s ∈ SetRD cannot map to
more than one residue class with the module 2|s|. Thus, a function called
Invrs can be defined as follows:

Definition 3.43. Function Invrs(·). Invrs : s → rs takes as input
s = O or
s = Ip1Oq1Ip2Oq2 ...IpnOqn ∈ {I, O}≥2, pi, qi ∈ N∗, i = 1, 2, ..., n, n ∈ N∗
CntO(s) = dlog2 1.5 ∗ CntI(s)e,
CntO(s′) < dlog2 1.5 ∗ CntI(s′)e, s′ = GetS(s, 1, k), k = 1, 2, ..., |s| − 1,
and outputs
r = [0]2 when s = O, or
r = ([−∑n

i=1 AiBiCi−1]2|c| ∩ {x|x > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
}) when |s| ≥ 2,

where Ai = 3pi − 2pi, Bi = (3
∑i

j=1 pj)−1 mod Cn, Ci = 2
∑i

j=1(pj+qj), C0 = 1,
Ψ =

∏n
i=2 aib1 +

∏n
i=3 aib2 + ... +

∏n
i=n−1 aibn−2 +

∏n
i=n aibn−1 + bn,

ai = 3pi

2pi+qi
, bi = 3pi−2pi

2pi+qi
.

The following corollary states that Invrs(·) is injective. It is straightfor-
ward because the reduced dynamics of a starting integer is unique (Proposi-
tion 2.19).

Corollary 3.44. ∀s1, s2 ∈ SetRD, s1 6= s2 ⇒ r1 6= r2, where r1 = Invrs(s1)
and r2 = Invrs(s2).

Proof It is straightforward by proving converse-negative proposition.
r1 = r2 ⇒ RD[x ∈ r1] = RD[x ∈ r2] ⇒ s1 = s2. ¤

If Invrs(·) is surjective, then Collatz conjecture will be true. That is,
if

⋃
s∈SetRD

Invrs(s) = N∗, then Collatz conjecture will be true. However,
it is difficult to be proved because each residue class is partial due to the
requirement of {x|x > Ψ ∗ 2

∑n
i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
}.

(Thanks to the Period Theorem that is proved in my another paper [8],
this requirement can be omitted. Besides, all above conclusions, e.g., Subset
Theorem (Theorem 3.3), Prefix-free Theorem (Theorem 3.31), Form Corol-
lary (Corollary 3.37), and Inverse Theorem (Theorem 3.38), can be observed
in my proposed tree-based graph to present reduced dynamics [5].)
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4. Conclusion

We use RD[x] to denote the reduced dynamics of x, which is represented
by a sequence of computation of “I” or “O”, where “I” denotes (3 ∗ x + 1)/2
and “O” denotes x/2.

This paper discovered and proved two major facts as follows:
(1) The relation between the count of x/2 (i.e., “O”) and the count of

(3 ∗ x + 1)/2 (i.e., “I”) in any reduced dynamics is proved by Form Corollary
(Corollary 3.37). That is, given any s ∈ {I, O}≥1, the sufficient and necessary
condition for s ∈ SetRD is as follows:

(i) |s| = 1, s = O;
(ii) |s| ≥ 2, CntO(s) = dλ ∗ CntI(s)e, λ = log2 1.5

CntO(s′) < dλ ∗ CntI(s′)e, s′ = GetS(s, 1, i), i = 1, 2, ..., |s| − 1.
Therefore, any reduced dynamics can be generated by guaranteeing suffi-

cient and necessary condition in Form Corollary, instead of by enumerating
all integers one by one and computing concrete Collatz transformations step
by step. That is,

SetRD = {O} ∪ {s|s ∈ {I, O}L, L ∈ N∗, L ≥ 2, CntO(s) = dλ ∗CntI(s)e,
CntO(s′) < dλ ∗ CntI(s′)e, s′ = GetS(s, 1, i), i = 1, 2, ..., L− 1}.

If CntO(s) = dλ ∗ CntI(s)e, then reduced dynamics will be available.
That is, if and only if the count of “O” is larger than λ = log2 1.5 times
the count of “I”, then reduced dynamics will be available (i.e., transformed
integer will be less than starting integer immediately).

The count of x/2 equals CntO(s)+CntI(s) and the count of 3∗x+1 equals
CntI(s). CntO(s) + CntI(s) = dλ ∗ CntI(s)e + CntI(s) = dλ ∗ CntI(s) +
CntI(s)e = d(λ + 1) ∗ CntI(s)e. In other words, if and only if the count
of x/2 computation over the count of 3 ∗ x + 1 computation is larger than
λ+1 = log2 1.5+1 = log2 3 = ln 3/ ln 2, then transformed integer will be less
than starting integer.

(2) Given a reduced dynamics, a residue class of starting integer can be
derived by Inverse Theorem (Theorem 3.38). That is, given s ∈ SetRD, a
residue class r can be calculated from s directly by proposed formula (algo-
rithm), such that RD[x ∈ r] = s where the module of r is 2|s| (for sufficient
large x).
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Appendix

4.1. The Proof of Lemma 3.20
Proof Due to Lemma 3.19, only the last requirement is needed to check.
That is, Ip1Oq1Ip2Oq2 ...Ipn(x) ∈ [0]2qn .

When n = 1, c = Ip1Oq1 . By Lemma 3.9, Ip(x) ∈ [0]2q ⇔ x ∈ [(3p)−1 ∗
2p − 1]2p+q , which is exactly identical with x ∈ [−A1B1C0]C1 where
A1 = 3p1 − 2p1 , C1 = 2

∑1
j=1(pj+qj) = 2p1+q1 ,

B1 = (3
∑1

j=1 pj)−1 mod C1 = (3p1)−1 mod 2p1+q1 , C0 = 1, because
x ∈ [−A1B1C0]C1 = [−(3p1 − 2p1) ∗ (3p1)−1]2p1+q1 = [(3p1)−12p1 − 1]2p1+q1 .

Next, suppose n ≥ 2.
(1) Ip1Oq1(x) = Oq1(Ip1(x))

= ((3
2
)p1(x + 1)− 1)/2q1 ∵ Eq.2

= 3p1

2p1+q1
(x + 1)− 1

2q1
= 3p1

2p1+q1
x + 3p1

2p1+q1
− 1

2q1
= 3p1

2p1+q1
x + 3p1−2p1

2p1+q1

= a1x + b1, where a1 = 3p1

2p1+q1
, b1 = 3p1−2p1

2p1+q1
.

(2) Similarly, Ip2Oq2(x) = a2x + b2, where a2 = 3p2

2p2+q2
, b2 = 3p2−2p2

2p2+q2
.

(3) Similarly, IpiOqi(x) = aix + bi, where ai = 3pi

2pi+qi
, bi = 3pi−2pi

2pi+qi
, i =

1, 2, ...n. Obviously, ai > 0, bi > 0. Indeed, x ∈ N∗ and IpiOqi(x) ∈ N∗, thus,
ai, bi ∈ N∗.

(4) Ip1Oq1Ip2Oq2(x) = Ip2Oq2(Ip1Oq1(x))
= a2Xc + b2 (Let Xc = a1x + b1)
= a2(a1x + b1) + b2 = a2a1x + a2b1 + b2.

(5) Observe IpiOqiIpi+1Oqi+1(x) = ai+1(aix + bi) + bi+1

= ai+1aix + ai+1bi + bi+1, i = 1, 2, ..., n− 1.
IpiOqiIpi+1Oqi+1Ipi+2Oqi+2(x) = ai+2(ai+1aix + ai+1bi + bi+1) + bi+2

= ai+2ai+1aix + ai+2ai+1bi + ai+2bi+1 + bi+2, i = 1, ..., n− 2.
(6) Next, we prove following result by induction:
Ip1Oq1Ip2Oq2 ...Ipn−1Oqn−1IpnOqn(x)

= an...a1x + an...a2b1 + an...a3b2 + ... + anbn−1 + bn

(6.1) n = 1. Ip1Oq1(x) = a1x + b1, as desired in (1).
(6.2) (Proof from n = i to n = i + 1.)
Suppose n = i, Ip1Oq1Ip2Oq2 ...IpiOqi(x)

= aiai−1...a1x + aiai−1...a2b1 + aiai−1...a3b2 + ... + aibi−1 + bi.
Let’s check n = i + 1,
Ip1Oq1Ip2Oq2 ...IpkOqiIpi+1Oqi+1(x)

= Ipi+1Oqi+1(aiai−1...a1x + aiai−1...a2b1 + aiai−1...a3b2 + ... + aibi−1 + bi)
= ai+1(aiai−1...a1x + aiai−1...a2b1 + aiai−1...a3b2 + ... + aibi−1 + bi) + bi+1

= ai+1ai...a1x + ai+1ai...a2b1 + ai+1ai...a3b2 + ... + ai+1aibi−1 + ai+1bi + bi+1.
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Therefore, Ip1Oq1Ip2Oq2 ...Ipn−1Oqn−1IpnOqn(x)
= an...a1x + an...a2b1 + an...a3b2 + ... + anbn−1 + bn.

(7) Due to (6), Ip1Oq1Ip2Oq2 ...Ipn−1Oqn−1(x)
= an−1...a1x + an−1...a2b1 + an−1...a3b2 + ... + an−1bn−2 + bn−1

=
∏n−1

i=1 aix +
∏n−1

i=2 aib1 +
∏n−1

i=3 aib2 + ... +
∏n−1

i=n−1 aibn−2 + bn−1.
(8) Ipn(x) = (3

2
)pn(x + 1)− 1, due to Eq. 2.

(9) Ip1Oq1Ip2Oq2 ...Ipn(x) ∈ [0]2qn

⇔ Ipn(
∏n−1

i=1 aix+
∏n−1

i=2 aib1 +
∏n−1

i=3 aib2 + ...+
∏n−1

i=n−1 aibn−2 + bn−1) ∈ [0]2qn

⇔ (3
2
)pn(

∏n−1
i=1 aix+

∏n−1
i=2 aib1+

∏n−1
i=3 aib2+...+

∏n−1
i=n−1 aibn−2+bn−1+1)−1 ∈

[0]2qn

⇔
(3

2
)pn(

∏n−1
i=1 aix+

∏n−1
i=2 aib1+

∏n−1
i=3 aib2+...+

∏n−1
i=n−1 aibn−2+bn−1+1) ∈ [1]2qn

⇔
3pn(

∏n−1
i=1 aix +

∏n−1
i=2 aib1 +

∏n−1
i=3 aib2 + ... +

∏n−1
i=n−1 aibn−2 + bn−1 + 1) ∈

[2pn ]2qn+pn

⇔∏n−1
i=1 aix+

∏n−1
i=2 aib1+

∏n−1
i=3 aib2+...+

∏n−1
i=n−1 aibn−2+bn−1+1 ∈ [(3pn)−12pn ]2qn+pn

⇔∏n−1
i=1 aix ∈ [−(

∏n−1
i=2 aib1 +

∏n−1
i=3 aib2 + ... +

∏n−1
i=n−1 aibn−2 + bn−1 + 1) +

(3pn)−12pn ]2qn+pn .
Besides, (3pn , 2qn+pn) = 1, thus (3pn)−1 mod 2qn+pn exists.
Calculate following results one by one as preparations.
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



n−1∏
i=1

ai =
n−1∏
i=1

3pi

2pi+qi
=

3
∑n−1

i=1 pi

2
∑n−1

i=1 (pi+qi)
,

(
n−1∏
i=2

ai)b1 = (
n−1∏
i=2

3pi

2pi+qi
) ∗ 3p1 − 2p1

2p1+q1
=

3
∑n−1

i=2 pi

2
∑n−1

i=2 (pi+qi)
∗ 3p1 − 2p1

2p1+q1

=
(3p1 − 2p1)3

∑n−1
i=2 pi

2
∑n−1

i=1 (pi+qi)
,

(
n−1∏
i=3

ai)b2 = (
n−1∏
i=3

3pi

2pi+qi
) ∗ 3p2 − 2p2

2p2+q2
=

3
∑n−1

i=3 pi

2
∑n−1

i=3 (pi+qi)
∗ 3p2 − 2p2

2p2+q2

=
(3p2 − 2p2)3

∑n−1
i=3 pi

2
∑n−1

i=2 (pi+qi)
,

(
n−1∏

i=k

ai)bk−1 = (
n−1∏

i=k

3pi

2pi+qi
) ∗ 3pk−1 − 2pk−1

2pk−1+qk−1
=

3
∑n−1

i=k pi

2
∑n−1

i=k (pi+qi)
∗ 3pk−1 − 2pk−1

2pk−1+qk−1

=
(3pk−1 − 2pk−1)3

∑n−1
i=k pi

2
∑n−1

i=k−1(pi+qi)
, k = 2, 3, ..., n− 1.

(5)
Especially, when k = n− 1,

∏n−1
i=k aibk−1 =

∏n−1
i=n−1 aibn−1−1 = an−1bn−2

= 3pn−1

2pn−1+qn−1
∗ 3pn−2−2pn−2

2pn−2+qn−2
= (3pn−2−2pn−2 )3pn−1

2pn−1+qn−1+pn−2+qn−2
.

Recall bi in (3), bn−1 = 3pn−1−2pn−1

2pn−1+qn−1
.

Thanks to above preparations, we can continue the calculation as follows:
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n−1∏
i=1

aix ∈ [−(
n−1∏
i=2

aib1 +
n−1∏
i=3

aib2 + ... +
n−1∏

i=n−1

aibn−2 + bn−1 + 1) + (3pn)−12pn ]2qn+pn ,

⇔

(
3

∑n−1
i=1 pi

2
∑n−1

i=1 (pi+qi)
) ∗ x ∈ [−(

(3p1 − 2p1)3
∑n−1

i=2 pi

2
∑n−1

i=1 (pi+qi)
+

(3p2 − 2p2)3
∑n−1

i=3 pi

2
∑n−1

i=2 (pi+qi)
+ ...

+
(3pn−2 − 2pn−2)3pn−1

2pn−1+qn−1+pn−2+qn−2
+ bn−1 + 1) + (3pn)−12pn ]2qn+pn ,

⇔

(3
∑n−1

i=1 pi) ∗ x ∈ [(−(3p1 − 2p1)3
∑n−1

i=2 pi

2
∑n−1

i=1 (pi+qi)
− (3p2 − 2p2)3

∑n−1
i=3 pi

2
∑n−1

i=2 (pi+qi)
− ...

− (3pn−2 − 2pn−2)3pn−1

2pn−1+qn−1+pn−2+qn−2
− bn−1 − 1 + (3pn)−12pn)2

∑n−1
i=1 (pi+qi)]

2qn+pn∗2
∑n−1

i=1
(pi+qi)

,

⇔
(3

∑n−1
i=1 pi) ∗ x ∈ [−(3p1 − 2p1)3

∑n−1
i=2 pi − (3p2 − 2p2)3

∑n−1
i=3 pi2p1+q1 − ...

−(3pn−2 − 2pn−2)3pn−12p1+q1+...+pn−3+qn−3 − 3pn−1 − 2pn−1

2pn−1+qn−1
2

∑n−1
i=1 (pi+qi)

−2
∑n−1

i=1 (pi+qi) + (3pn)−12pn2
∑n−1

i=1 (pi+qi)]
2

∑n
i=1

(pi+qi) ,

⇔
x ∈ [−(3p1 − 2p1)3

∑n−1
i=2 pi(3

∑n−1
i=1 pi)−1 − (3p2 − 2p2)3

∑n−1
i=3 pi2p1+q1(3

∑n−1
i=1 pi)−1 − ...

−(3pn−2 − 2pn−2)3pn−12p1+q1+...+pn−3+qn−3(3
∑n−1

i=1 pi)−1

−(3pn−1 − 2pn−1)2
∑n−2

i=1 (pi+qi)(3
∑n−1

i=1 pi)−1

−2
∑n−1

i=1 (pi+qi)(3
∑n−1

i=1 pi)−1 + (3pn)−12pn2
∑n−1

i=1 (pi+qi)(3
∑n−1

i=1 pi)−1]
2

∑n
i=1

(pi+qi) ,

⇔
x ∈ [−(3p1 − 2p1)(3p1)−1 − (3p2 − 2p2)(3p1+p2)−12p1+q1 − ...

−(3pn−2 − 2pn−2)(3p1+p2+...+pn−2)−12p1+q1+...+pn−3+qn−3

−(3pn−1 − 2pn−1)(3
∑n−1

i=1 pi)−12
∑n−2

i=1 (pi+qi)

−(3
∑n−1

i=1 pi)−12
∑n−1

i=1 (pi+qi) + (3pn)−12pn(3
∑n−1

i=1 pi)−12
∑n−1

i=1 (pi+qi)]
2

∑n
i=1

(pi+qi) .

(6)

(3
∑n−1

i=1 pi)−1 mod 2
∑n

i=1(pi+qi) exists, since ((3
∑n−1

i=1 pi)−1, 2
∑n

i=1(pi+qi)) = 1.

34



Recall that (3pn)−1 is the inverse module 2qn+pn . However,
(3pn)−1 ∗ 3pn ≡ 1 mod 2

∑n
i=1(pi+qi)

⇒ (3pn)−1 ∗ 3pn = k ∗ 2
∑n

i=1(pi+qi) + 1, k ∈ N
⇒ (3pn)−1 ∗ 3pn = k ∗ 2qn+pn ∗ 2

∑n−1
i=1 (pi+qi) + 1, k ∈ N

⇒ (3pn)−1 ∗ 3pn ≡ 1 mod 2qn+pn . Thus, when (3pn)−1 is the inverse module
2

∑n
i=1(pi+qi), it is also the inverse module 2qn+pn . Formally, ∀a, k, k′ ∈ N∗, k′|k,

a−1∗a ≡ 1 mod k ⇒ k|(a−1∗a−1) ⇒ k′|k|(a−1∗a−1) ⇒ a−1∗a ≡ 1 mod k′.
Therefore, all inverse in above last equation can be module 2

∑n
i=1(pi+qi).

Let Ai = 3pi − 2pi , Bi = (3
∑i

j=1 pj)−1 mod Cn, Ci = 2
∑i

j=1(pj+qj), i =
1, 2, ..., n, n, i, j ∈ N∗.

Besides, it is obvious that (3pi)−1 ∗ Bi−1 = Bi, (2
pi+qi) ∗ Ci−1 = Ci, i =

2, 3, ..., n.
Therefore,
x ∈ [−A1B1 − A2B2C1 − A3B3C2 − ... − An−1Bn−1Cn−2 − Bn−1Cn−1 +

(3pn)−1Bn−12
pnCn−1]Cn

= [−A1B1−A2B2C1−A3B3C2−...−An−1Bn−1Cn−2−Bn−1Cn−1+2pnBnCn−1]Cn

= [−A1B1C0 − A2B2C1 − A3B3C2 − ... − An−1Bn−1Cn−2 − 3pnBnCn−1 +
2pnBnCn−1]Cn

= [−A1B1C0 − A2B2C1 − A3B3C2 − ...− An−1Bn−1Cn−2 − AnBnCn−1]Cn

= [−∑n
i=1 AiBiCi−1]Cn , C0 = 1.

In summary, 



x ∈ [−
n∑

i=1

AiBiCi−1]Cn ,

Ai = 3pi − 2pi ,

Bi = (3
∑i

j=1 pj)−1 mod Cn,

Ci = 2
∑i

j=1(pj+qj), C0 = 1.

(7)

¤

4.2. Examples for Deriving x from RD[x]
Example 4.1.

(1) RD[x] = I2O2. p = 2, q = 2.
x ∈ [(32)−1∗22−1]22+2 ⇒ x ∈ [9−1∗4−1]16 ⇒ x ∈ [9∗4−1]16 ⇒ x ∈ [3]16.
Obviously, 3 > 32−22

22+2−32 = 9−4
16−9

= 5/7.

(2) RD[x] = I3O2. p = 3, q = 2.
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x ∈ [(33)−1 ∗ 23− 1]23+2 ⇒ x ∈ [27−1 ∗ 8− 1]32 ⇒ x ∈ [19 ∗ 8− 1]32 ⇒ x ∈
[23]32.

Obviously, 23 > 33−23

23+2−33 = 27−8
32−27

= 19/5 = 3.8.
Therefore, x ∈ [23]32.

(3) RD[x] = I5O3. p = 5, q = 3.
x ∈ [(35)−1 ∗ 25 − 1]25+3 ⇒ x ∈ [243−1 ∗ 32− 1]256

⇒ x ∈ [32 ∗ 59− 1]256 ⇒ x ∈ [95]256.
Obviously, 95 > 35−25

25+3−35 = 243−32
256−243

= 211/13 ≈ 16.23.

Example 4.2.

(1) RD[x] = I4O2I2O2. Thus, p1 = 4, q1 = 2, p2 = 2, q2 = 2. n = 2.

Ai = 3pi − 2pi, Bi = (3
∑i

j=1 pj)−1 mod Cn, Ci = 2
∑i

j=1(pj+qj),
A1 = 3p1 − 2p1 = 34 − 24 = 81− 16 = 65,

A2 = 3p2 − 2p2 = 32 − 22 = 9− 4 = 5,
C1 = 2p1+q1 = 24+2 = 26 = 64,
C2 = 2p1+q1+p2+q2 = 24+2+2+2 = 210 = 1024,
B1 = (3p1)−1 mod C2 = (34)−1 mod 1024 = 81−1 mod 1024 = 177,
B2 = (3p1+p2)−1 mod C2 = (34+2)−1 mod 1024 = (36)−1 mod 1024 =
729−1 mod 1024 = 361,
[−A1B1C0 − A2B2C1]C2 = [−65 ∗ 177 ∗ 1− 5 ∗ 361 ∗ 64]1024
= [−11505− 115520]1024 = [−127025]1024 = [975]1024.

Obviously,
Ψ = (3p1−2p1 )3

∑n
i=2 pi

2
∑n

i=1
(pi+qi)

+ (3p2−2p2 )3
∑n

i=3 pi

2
∑n

i=2
(pi+qi)

+ ... + (3pn−1−2pn−1 )3pn

2pn+qn+pn−1+qn−1
+ 3pn−2pn

2pn+qn

= (34−24)32

24+2+2+2 + 32−22

22+2 = (81−16)∗9
1024

+ 5
16

= 585
1024

+ 5
16

= 905
1024

.

975 > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi

= Ψ ∗ 24+2+2+2

24+2+2+2−34+2 = Ψ ∗ 1024
1024−729

= 905
1024

∗ 1024
295

= 905
295

.

(2) RD[x] = I4OIOIO2. Thus, p1 = 4, q1 = 1, p2 = 1, q2 = 1, p3 = 1, q3 = 2.
n = 3.

Ai = 3pi − 2pi, Bi = (3
∑i

j=1 pj)−1 mod Cn, Ci = 2
∑i

j=1(pj+qj),
A1 = 3p1 − 2p1 = 34 − 24 = 81− 16 = 65,

A2 = 3p2 − 2p2 = 31 − 21 = 1,
A3 = 3p3 − 2p3 = 31 − 21 = 1,
C1 = 2p1+q1 = 24+1 = 25 = 32,
C2 = 2p1+q1+p2+q2 = 24+1+1+1 = 27 = 128,
C3 = 2p1+q1+p2+q2+p3+q3 = 24+1+1+1+1+2 = 210 = 1024,
B1 = (3p1)−1 mod C3 = (34)−1 mod 1024 = 81−1 mod 1024 = 177,
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B2 = (3p1+p2)−1 mod C3 = (34+1)−1 mod 1024 = (35)−1 mod 1024 =
243−1 mod 1024 = 59,
B3 = (3p1+p2+p3)−1 mod C3 = (34+1+1)−1 mod 1024 = (36)−1 mod 1024 =
729−1 mod 1024 = 361,
[−A1B1C0−A2B2C1−A3B3C2]C3 = [−65∗177∗1−1∗59∗32−1∗361∗128]1024
= [−59601]1024 = [815]1024.

Obviously,
Ψ = (3p1−2p1 )3

∑n
i=2 pi

2
∑n

i=1
(pi+qi)

+ (3p2−2p2 )3
∑n

i=3 pi

2
∑n

i=2
(pi+qi)

+ ... + (3pn−1−2pn−1 )3pn

2pn+qn+pn−1+qn−1
+ 3pn−2pn

2pn+qn

= (34−24)31+1

24+1+1+1+1+2 + (31−21)31

21+1+1+2 + 31−21

21+2 = (81−16)9
1024

+ 1∗3
32

+ 1
8

= 585
1024

+ 3
32

+ 1
8

= 585+96+128
1024

= 809
1024

.

815 > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi
= Ψ ∗ 24+1+1+1+1+2

24+1+1+1+1+2−34+1+1

= Ψ ∗ 1024
1024−729

= 809
1024

∗ 1024
295

= 809
295

.

(3) RD[x] = I4OIOIOIO2. Thus,
p1 = 4, q1 = 1; p2 = 1, q2 = 1; p3 = 1, q3 = 1; p4 = 1, q4 = 2; n = 4.

Ai = 3pi − 2pi, Bi = (3
∑i

j=1 pj)−1 mod Cn, Ci = 2
∑i

j=1(pj+qj),
A1 = 3p1 − 2p1 = 34 − 24 = 81− 16 = 65,

A2 = 3p2 − 2p2 = 31 − 21 = 1,
A3 = 3p3 − 2p3 = 31 − 21 = 1,
A4 = 3p4 − 2p4 = 31 − 21 = 1,
C1 = 2p1+q1 = 24+1 = 25 = 32,
C2 = 2p1+q1+p2+q2 = 24+1+1+1 = 27 = 128,
C3 = 2p1+q1+p2+q2+p3+q3 = 24+1+1+1+1+1 = 29 = 512,
C4 = 2p1+q1+p2+q2+p3+q3+p4+q4 = 24+1+1+1+1+1+1+2 = 212 = 4096,
B1 = (3p1)−1 mod C4 = (34)−1 mod 4096 = 81−1 mod 4096 = 2225,
B2 = (3p1+p2)−1 mod C4 = (34+1)−1 mod 4096 = (35)−1 mod 4096 =
243−1 mod 4096 = 2107,
B3 = (3p1+p2+p3)−1 mod C4 = (34+1+1)−1 mod 4096 = (36)−1 mod 4096 =
729−1 mod 4096 = 3433,
B4 = (3p1+p2+p3+p4)−1 mod C4 = (34+1+1+1)−1 mod 4096 = (37)−1 mod 4096 =
2187−1 mod 4096 = 3875,
[−A1B1C0 − A2B2C1 − A3B3C2 − A4B4C3]C4

= [−65 ∗ 2225 ∗ 1− 1 ∗ 2107 ∗ 32− 1 ∗ 3433 ∗ 128− 1 ∗ 3875 ∗ 512]4096
= [−2635473]4096 = [2351]4096.

Obviously,
Ψ = (3p1−2p1 )3

∑n
i=2 pi

2
∑n

i=1
(pi+qi)

+ (3p2−2p2 )3
∑n

i=3 pi

2
∑n

i=2
(pi+qi)

+ ... + (3pn−1−2pn−1 )3pn

2pn+qn+pn−1+qn−1
+ 3pn−2pn

2pn+qn

37



= (34−24)31+1+1

24+1+1+1+1+1+1+2 + (31−21)31+1

21+1+1+1+1+2 + (31−21)31

21+1+1+2 + 31−21

21+2

= (81−16)27
4096

+ 1∗9
128

+ 1∗3
32

+ 1
8

= 1775
4096

+ 9
128

+ 3
32

+ 1
8

= 1775+288+384+512
4096

= 2959
4096

.

2351 > Ψ ∗ 2
∑n

i=1(pi+qi)

2
∑n

i=1
(pi+qi)−3

∑n
i=1

pi

= Ψ ∗ 24+1+1+1+1+1+1+2

24+1+1+1+1+1+1+2−34+1+1+1 = Ψ ∗ 4096
4096−2187

= 2959
4096

∗ 4096
1909

= 2959
1909

.
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