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Abstract

Since temperature rise in electric machines is mainly

due to power losses during electro-mechanical power conversion, temperature estimation is highly attached to power loss

modelling. In this contribution, an extended iron loss model is introduced with a direct identification methodology in the

context of temperature estimation. The iron loss model is implemented as part of a fourth-order lumped-parameter thermal

network (LPTN), which is parametrised using empirical measurements and global identification. Once parameters are identified

using training data, the LPTN model is validated using three unseen profiles cross-validation. Satisfactory estimation is achieved

with the average mean squared error of 2.1 K2 and the error bias close to zero.
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Abstract—Since temperature rise in electric machines is mainly
due to power losses during electro-mechanical power conver-
sion, temperature estimation is highly attached to power loss
modelling. In this contribution, an extended iron loss model is
introduced with a direct identification methodology in the context
of temperature estimation. The iron loss model is implemented
as part of a fourth-order lumped-parameter thermal network
(LPTN), which is parametrised using empirical measurements
and global identification. Once parameters are identified using
training data, the LPTN model is validated using three unseen
profiles cross-validation. Satisfactory estimation is achieved with
the average mean squared error of 2.1 K2 and the error bias
close to zero.

Index Terms—lumped-parameter thermal network, system
identification, iron loss, condition monitoring

I. INTRODUCTION

Permanent magnet synchronous machines (PMSMs) are
preferred machines for automotive applications because of
their high power and torque densities. However, they are par-
ticularly vulnerable to high temperature because of the thermal
property of the PM material. The magnetic flux produced by
the PM decreases with increasing temperature and very high
temperature can even cause permanent demagnetization [1].
Similar to any machine constructed with insulation coated
coils, high temperature can cause damage to the insulation
varnish and eventually shortened the device’s life-time. Hence,
temperature monitoring is crucial to reserve the machine safe
and long-lasting. Besides, knowing the operating temperature
in real-time is important in the drive control system in or-
der to tune the controller’s temperature-dependent parameters
accordingly.

It is possible to measure the temperature of stationary parts
of the machine using contact-type temperature sensors. Yet, it
requires slip-ring or brushes to read measurement data from
a spinning rotor. Wireless telemetry methods are available but
they are costly and affect the robustness of the machine in
the case of highly utilized traction PMSM. Generally, direct
temperature measurement is an infeasible solution for automo-
tive application due to difficulties to maintain or replace the

embedded temperature sensors in case of failure. Alternative
machine-model based temperature estimation techniques are
available with a general category of flux observer, invasive
and lumped-parameter thermal network (LPTN) methods [2].
In the flux observer method, PM flux is estimated using flux
observers and it is mapped to the corresponding temperature.
The invasive method is carried out by injecting high-frequency
signal (voltage or current) via an inverter and observing mag-
net temperature deviation reflected on the current response.
The first drawback of both methods is, they are restricted
estimating only the PM temperature. Second, both methods
require real-time terminal voltage value which requires a
precise model of both the machine and inverter. Temperature
estimation using LPTN is another desirable method in which a
heat transfer process inside electric machines streamlined into
a simplified thermal equivalent circuit.

In a general context, the temperature rise in an electric ma-
chine is due to power losses during electro-mechanical power
conversion. Winding and core losses are the most significant
ones for LPTN application. Mechanical and windage losses
are neglected since their contribution is relatively small for
highly utilised traction motors. The core losses can be further
divided into hysteresis and eddy current losses. For real-time
drive application, winding losses can be calculated for a given
winding resistance and measured current. Whereas, a usual
approach to determine iron losses is measuring total power
losses and subtracting winding losses. Hence, all errors in the
determination of total and winding losses directly add up an
error in the iron losses values.

Measuring total losses requires further measurement de-
vices, though exact power meters are expensive and maybe
not available. In addition, it demands extra effort and time to
make measurements over large speed and load range. In spite
of measurement resources, allocating the total core losses is
a challenging task since it is difficult to measure the power
loss distribution. Even with electromagnetic finite element
analysis (FEA), only rough estimations are acquired. In [12]
an analytical iron loss approach is introduced using a two-term



iron loss equation to calculate the total iron losses and divide
them among machine components using constant dividing
parameters. However, constant hysteresis and eddy current
coefficients are applicable only for purely alternating flux and
it is important to consider the effect of rotational flux which
depends on geometry and construction of considered volume
unit.

The aim of this contribution is estimating important motor
temperatures using a low-order LPTN model with an extended
iron loss model. It also provides a direct identification method-
ology of this spatial loss model in the context of temperature
estimation. Instead of total core losses, individual core losses
are calculated for each dominant temperature node by adapting
the two-term core loss density equation for electric drive
application. Uncertain parameters are tuned in their possible
searching space using particle swarm optimisation (PSO) to
minimise the estimation error in comparison to empirical
measurements. Once parameters are identified using training
data, the LPTN model is cross-validated using unseen load
profiles.

A. Lumped-parameter thermal network (LPTN)

An electric machine, which is a non-homogeneous thermal
body, can be represented as a combination of temperature
nodes connected via thermal resistances to each other and
external thermodynamic conditions [3]. For LPTN model with
n temperature nodes, the xth node can be modelled using (1).
Where Cx is the thermal capacity of the considered volume
element, Px is the heat power generated and Rxy is the thermal
resistance between the considered node x and the neighbouring
nodes y with their respective temperatures ϑx and ϑy .

Cx
∂ϑx
∂t

= Px +

n∑
y=1
y 6=x

ϑy − ϑx
Rxy

(1)

According to [2], [4], [5] the LPTN model can be named
white box, light-grey box or dark-grey box models depending
on the number of nodes n and prior knowledge of material
and geometrical data of the machine. In a white box, the
machine geometry is divided into fine meshes (very large n)
and their temperature is predicted using heat transfer theory
equations solely based on material and geometrical data.
The light-grey box method follows the same approach of
material and geometrical data-based heat transfer equations,
yet the medium level of discretisation ( 5-15 nodes) enables
this method some degree of parameter optimisation using
empirical measurements. In the dark-grey box method, only
the most dominant heat paths are modelled (2-5 nodes) with
limited knowledge of system geometry and material data.
Hence, any low-order LPTN model lays in the third category,
where parameters are identified using experimental training.
Although a higher level of discretisation is advantageous to
estimate a hot-spot temperature of different components of the
motor, it leads to a large differential equation system which
is not feasible for real-time temperature prediction. Low and
medium-order LPTN models are demonstrated as favourable

methods of estimating the machine temperature for electric
drive application in real-time [5]. A low-order LPTN model
is parametrised by roughly calculating model parameters and
optimise them using empirical measurements.

B. Low-order LPTN model

Besides the usual state-space representation in most of the
literatures, a real-time temperature estimation using LPTN can
be implemented as shown in Fig. 1. The time derivative term in
(1) is now discretised using Euler forward method with sam-
pling time Ts and sampling index k. The thermal capacitance
Cx of each node is considered as an invariant parameter over
different operating points of the machine for a given specific
heat capacity cx and mass mx. The power loss Px depends on
the operating point of the machine, it is a function of speed and
load conditions. The thermal resistance Rxy can be divided
into conductive and convective thermal resistances depending
on whether the heat transfer is due to temperature difference
between two nodes representing solid material or it involves a
mass flow of fluid. Conductive thermal resistances are assumed
as constant values while convective thermal resistances are
modelled as a function of exogenous variables such as the
motor speed or temperature of the fluid involved. The effect
of radiation-based heat transfer is neglected as it has only
a minor impact on the overall thermal motor behaviour [1].
In general, estimating temperature using a low-order LPTN
model is mainly modelling thermal resistances and power
losses as a function of machine parameters and measurement
signals.
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Fig. 1: General schematic of LPTN model for real-time
temperature estimation. ω is angular speed of the machine,
i is measured current and ϑ̂ is estimated temperature.

A four-node (n = 4) LPTN model for a PMSM is proposed
with dominant temperature nodes of stator winding ϑSW ,
stator yoke ϑSY , stator tooth ϑST and permanent magnet
ϑPM as shown in Fig. 2. The coolant temperature ϑC is the
temperature of water entering a stator cooling water jacket
and ϑA is the ambient air temperature. One of the main
reasons to choose these nodes is their availability to measure
point temperature. Thermal resistances between nodes ϑSW ,
ϑSY and ϑST are conductive thermal resistances which are
modelled in white box modelling using (2). However, effective
conduction length l, effective cross-section area A and thermal
conductivity λ are not certain values. Hence, in low-order
LPTN, thermal resistances RSY,SW , RSY,ST and RSW,ST are



generally considered as constant parameters whose values are
to be disclosed using parameter identification.

A convective thermal resistance is commonly expressed by
(3), such that h is a non-linear heat transfer coefficient and
A is the contact surface area between the fluid and the solid
bodies. However, h is a function of fluid speed and temperature
depending on whether the type of convective heat transfer
is forced or natural one [7]. In [4], [5], this dependency is
explained and consequently, the following convective thermal
resistances are derived.

The thermal resistances connecting the water jacket with
the stator yoke RSY,C is given by (4). RSY,C,0 is thermal
resistance at the reference temperature ϑC,0 and αSY,C < 0 is
temperature coefficient to represent temperature dependency
of kinematic viscosity of the coolant. However, both RSY,C,0
and αSY,C are not precisely known, so their values are
subjected to parameter identification. It is also assumed that
the water jacket is thermally in contact with the permanent
magnet via bearing and shaft. Here, the thermal resistance
depends both on the fluid temperature and speed of the shaft.
Hence, the thermal resistance RC,PM is roughly formulated
as (5), whereRx,C0, Rx,C1, Rx,C2 and Rx,C3 are part of
the parameter identification. The heat transfer through air-
gap between stator and rotor is also a forced convective heat
transfer which depends on rotor speed. Consequently, thermal
resistances RST,PM , RSW,PM and RPM,A can be expressed
using (6) [2], where Rx,y,0, bx,y and ax,y are subjected to
parameter identification.

Rx,y =
lx

λxAx
+

ly
λyAy

(2)

Rconv =
1

hA
(3)

RSY,C = RSY,C,0[1 + αSY,C(ϑC − ϑC,0)] (4)

RPM,C =Rx,C0 +Rx,C1(
n

nmax
) +Rx,C2(

ϑ

ϑmax
)

+Rx,C3(
ϑ

ϑmax
)(

n

nmax
)

(5)

Rx,y = Rx,y,0e
− n

nmax
1

bx,y + ax,y (6)

Fig. 2: Schematic of proposed LPTN model

II. POWER LOSS MODEL

In connection with the considered LPTN model, vital ma-
chine losses can be divided into winding losses and iron losses.
Correspondingly, PSW is the winding loss and PST , PSY
and PPM are considered as iron losses. The winding loss
is calculated using the winding resistance and the measured
current using (7) considering temperature, skin and proximity
effects [8]. Hence, the parameters Rdc, αCu, αac,1, αac,2
and βCu are unknown values to be determined using system
identification.

PSW =3Rdc(ϑSW,0)I
2[(1 + αCu(ϑSW − ϑSW,0))

+
αac,1(

n
nmax

) + αac,2(
n

nmax
)2

(1 + αCu(ϑSW − ϑSW,0))βCu
]

(7)

An extended iron loss model which is independent of the
winding loss model is proposed as shown in Fig. 3. First, the
iron loss at a fixed temperature Pi(ϑ0, i, ω) is calculated as
a function of measured current and angular speed. Then, a
linear temperature effect is formulated to attain Pcore(ϑ, i, ω)
at any temperature ϑ. A proposed iron loss model is based on a
simplified two-term iron loss density equation (8), considering
the first harmonic of flux density inside machine core, with
frequency f and peak value Bm. The coefficients kh(f,Bm, ϑ)
and ke(f,Bm, ϑ) are the hysteresis loss and the eddy current
loss coefficients respectively.
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Fig. 3: Schematic of proposed extended iron loss model

Generally, (8) is only applicable for a small volume element
of machine core material investigation (e.g. FEA). Hence, it
needs adaptation for macroscopic application with the help of
parameter identification. In case of PMSM, f can be found
from measured angular speed ω using (9), but Bm inside the
machine components cannot be simply defined. Hence, a rough
estimate of the fundamental component of flux density using
lumped parameters such as measured current is calculated. The
first assumption is relating Bm with maximum flux φm using
(10), where A is an effective area perpendicularly crossed by
magnetic flux.

pFe = kh(f,Bm, ϑ)fB
2
m + ke(f,Bm, ϑ)f

2B2
m (8)

f =
ω

2π
(9)

Bm =
φm
A

(10)



Then, the maximum flux can be calculated using the syn-
chronous frame flux equation (11). Such that, φd is a d-axis
flux as a function of d-axis current id and PM flux, whereas φq
is a q-axis flux as a function of q axis current iq . Consequently,
Bm can split in to d and q component as shown (12) and (13).
In the vein of magnetic saturation, flux density due to stator
current is modelled using (14), where mB,i is a linear current-
flux slope to be determined using parameter identification. The
resulting flux-current relation of (14) is shown in Fig. 4 for
different values of mB,i. Whereas, the flux density due to
permanent magnet BPM is part of the parameter identification.

φm =
√
φ2d(id, φPM ) + φ2q(iq) (11)

Bd = BPM +B(id) (12)

Bq = B(iq) (13)

B(i) = mB,i(
i

imax
)e−

i
imax (14)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Fig. 4: Flux density due to stator current model considering
core saturation

Both hysteresis and eddy current loss coefficients in (7)
are not constant values in order to address excess losses
and non-sinusoidal components of flux density. First, their
dependency on Bm is modelled using polynomial equations
(15) and (16). Here, the polynomial coefficients ah and ae are
not part of the parameter identification in order to minimise
the number of parameters to be identified, since a large
number of parameters can cause over-fitting. Instead, a curve-
fitting is made to Epstein measurement results in [9], [10] for
different frequencies and machine core materials. Then, two
separate average polynomial coefficients are derived for high
frequency (fh=1000 Hz) and low frequency (fl=50 Hz) as
shown in Tab. I. Then, the two polynomials are interpolated
to the machine’s range of frequencies using (17) which results
variable coefficients kh(Bm) and ke(Bm) as shown in Fig. 5.
Temperature dependency of both coefficients is formulated
using (18), where αk is a constant value to be identified using
parameter identification. Since pFe is power loss mass density,
the actual iron losses in the considered volume unit is given
by (19), where m is one of the parameters to be identified.

kh(Bm) = ah0 + ah1Bm + ah2B
2
m (15)

ke(Bm) = ae0 + ae1Bm + ae2B
2
m + ...+ ae5B

5
m (16)

k(f,Bm) =
f

fmax
k(fh, Bm) + (1− f

fmax
)k(fl, Bm) (17)

kϑ = kϑ0(1 + αk(ϑ− ϑ0)) (18)

PFe = mpFe (19)
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Fig. 5: kh(f,Bm, ϑ0),ke(f,Bm, ϑ0) adaptation for extended
iron loss model.

III. PARAMETER IDENTIFICATION

A vector of uncertain parameters p is tuned in its possible
searching space vector using particle swarm optimisation
(PSO) to minimise a maximum likelihood cost function given
by (20). The estimation error e(k, p) is a vector column of
the four temperature nodes given as (21) and (22) sampling
index k. Where, ϑ(k) is measured temperature and ϑ̂(k, p)
is estimated temperature. A global optimisation using PSO is
preferred since the LPTN model discussed above is non-linear
and parameter varying which may cause convergence to the
local minimum for other gradient based optimisations.

J(p) = det(

N∑
k=1

e(k, p)e(k, p)T ) (20)

e(k, p) = [eSY (k, p), eSW (k, p), eST (k, p), ePM (k, p)]T

(21)
e(k, p) = ϑ(k)− ϑ̂(k, p) (22)

The most important parameters in relation to the considered
low-order LPTN model are defined with analytical formulation
of a white box model in section II. This results in a total of
43 constant valued parameters as shown in Tab. II. Hence,
the MATLAB global optimisation toolbox with a swarm of
430 particles is used to search the global minimum. Possible



TABLE I: ke(Bm) and ke(Bm) polynomial coefficients for high frequency (fh=1000 Hz) and low frequency (fl=50 Hz)

Polynomial ah0 in ah1 in ah2 in
coefficients W/kg/T2/Hz W/kg/T3/Hz W/kg/T4/Hz

Value at fh 2.40 ×10−2 -5.17×10−2 6.21×10−2

Value at fl 4.62 ×10−2 -8.54×10−2 6.21×10−2

Polynomial ae0 in ae1 in ae2 in ae3 in ae4 in ae5 in
coefficients W/kg/T2/Hz2 W/kg/T3/Hz2 W/kg/T4/Hz2 W/kg/T5/Hz2 W/kg/T6/Hz2 W/kg/T7/Hz2

Value at fh -8.79 ×10−5 46.46×10−5 -89.27×10−5 72.97×10−5 -24.49×10−5 12.12×10−5

Value at fl -1.02 ×10−5 6.54×10−5 -20.44×10−5 31.34×10−5 -19.46×10−5 11.04×10−5

TABLE II: Identified parameters and their corresponding values

Variable Identified Value Searching Range Remark

Thermal
capacitances
(Cx)

CSY 6.838 × 103 J/K [3.70 × 103 8.54 × 103]J/K
CST 1.607 × 103 J/K [356.82 8.56 × 103]J/K
CSW 3.589 × 103 J/K [832.13 7.49 × 103]J/K
CPM 6.352 × 103 J/K [1.28 × 103 1.28 × 104]J/K

Conductive thermal
resistances

RSY,ST 0.0136 K/W [0.0051 0.1428]K/W
RSY,SW 0.216 K/W [0.0242 0.579]K/W
RSW,ST 0.0158 K/W [0.0115 0.3696]K/W

Convective thermal
resistances

RSY,C,0 0.0168 K/W [0.012 0.018] K/W variables in RSY,CαSY,C -0.002 1/K [-0.015 0]1/K

RPM,C0 1.98 K/W [0 2] K/W

variables in RPM,C
RPM,C1 0.99 K/W [-1.5 1] K/W
RPM,C2 0.99 K/W [-1.5 1] K/W
RPM,C3 2.50 K/W [-3 3] K/W

RPM,ST0 6.97 K/W [0 7] K/W
variables in RPM,STbPM,ST 0.0413 [0.001 2] K/W

aPM,ST 0.565 K/W [0.001 1] K/W

RPM,SW0 0.804 K/W [0 7] K/W
variables in RPM,SWbPM,SW 0.261 [0.001 2.5]

aPM,SW 0.081 K/W [0.001 1.5] K/W

RPM,A0 0.863 K/W [0 7] K/W
variables in RPM,AbPM,A 0.19 [0.001 2]

aPM,A 0.104 K/W [0.001 1] K/W

Power losses

αac1 0.617 [0 0.8]

variables in PSW

αac2 0.950 [0 0.95]
RS0 0.016 Ω [0.01225 0.017] Ω
βCu 1.711 [0.001 3]
αCu 0.001 1/K [0 0.0049] 1/K

mB,i,ST 0.603 T [0.6000 2.4000] T

variables in PST

BPM,ST 0.908 T [0.6000 1.2000] T
mST 2.589 Kg [2 5] Kg
αkh,ST 0.012 1/K [-0.12 0.12 ]
αke,ST -0.0185 1/K [-0.12 0.12 ]

mB,i,SY 2.372 T [0.6000 2.4000] T

variables in PSY

BPM,SY 1.104 T [0.6000 1.2000] T
mSY 2.29 Kg [2 5] Kg
αkh,SY -0.119 1/K [-0.12 0.12]1/K
αke,SY -0.117 1/K [-0.12 0.12] 1/K

mBd,i,ST 0.603 T [0.6000 2.4000] T

variables in PSY

mBq,i,ST 2.4000 T [0.6000 2.4000] T
mPM 2.06 Kg [2 5] Kg
BPM,PM 1.2000 T [0.6000 1.2000]T
αkh,PM -0.0259 1/K [-0.12 0.12] 1/K
αke,PM 0.005 1/K [-0.12 0.12] 1/K



searching interval boundaries are defined using rough estima-
tion of a white box model, see Tab. II. Moreover, the MATLAB
PSO is combined with fmincon as a hybrid function if in
case the PSO give up earlier than finding the global optimum,
gradient-based optimisation will take over.

Regarding experimental data sets, 140 hours measurement
data are collected considering all possible and relevant operat-
ing points of the machine with sampling time 0.5 s. The data
set is available in a mildly normalised form at [13]. Most of
the data sets are used as a training data set in the PSO process
while three of them are reserved for cross-validation. A time
series of scheduling parameters such as speed, current and
water and ambient air temperatures from the training data set
are applied to the LPTN model to retrieve parameters which
minimise the cost function J . The optimization took 48hr
using parpool MATLAB toolbox and 172 computing nodes
of Paderborn university’s parallel computing centre PC2. The
identified parameters and their corresponding values are given
in Tab. II.

IV. CROSS-VALIDATION

Once parameters are identified using the training data set,
the LPTN model is validated using unseen profile cross-
validation. For this purpose, three data profiles with dynamic
speed and loading conditions are chosen as shown in Fig. 6,
8 and 10. A large speed range from zero to the machine’s
maximum speed with different accelerations and decelerations
is covered. In the meanwhile, the load torque is incorporated
in both motoring and generating modes from no load to
maximum rated torque.

In the same figure, estimated and measured temperatures
of the four temperature nodes are compared for the given
speed and load profiles. The estimation error time series show
satisfactory estimation is achieved with the worst temperature
error of less than 9 ◦C. The estimation error bias for the three
temperature nodes ϑSY , ϑSW and ϑST are close to zero as
shown in the error histogram of Fig. 7, 9 and 11. Yet, the
error bias of ϑPM indicates there is still a room for the LPTN
model improvement.

V. CONCLUSION

An extended iron loss model is presented as part of low-
order LPTN for PMSM temperature estimation by adapting
the two-term iron loss density equation. A hysteresis and eddy
current losses which are a function of magnetic flux density
and frequency are formulated as a function of measured
current and speed with the help of system identification.
The estimation performance is tested with different unseen
profiles cross validation. Acceptable temperature estimation is
achieved with the average mean squared error of 2.1 K2 and
the error bias close to zero, aside from measuring total power
loss and storing it in lookup table as part of the estimator
model.

This avoids expensive power loss measurement devices and
the time and effort to measure total power loss over large
operating points of the machine. Furthermore, it provides a

direction to real-time iron loss estimation using measured
current and angular speed in relation to temperature estimation
application. Compared to the gold standard of achieving Gaus-
sian distributed white noise estimation error with minimum
variance, further investigation on the extended loss model
in addition to passive parameters identification of the LPTN
models is rewarding since the overall optimal model topology
seems been not found yet.
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Fig. 6: LPTN validation with unseen profile. (—measured temperature,—estimated temperature,—error temperatures— unseen
cross-validation profile), Profile 1
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Fig. 7: Histogram of estimation error. (— Normalised probability density function (pdf), —Gaussian distribution), Profile 1
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