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Abstract

This paper investigates the presence of a new interferometric signal in multilooked Synthetic Aperture Radar (SAR) interfero-
grams which cannot be attributed to atmospheric or earth surface topography changes. The observed signal is short-lived and
decays with temporal baseline; however, it is distinct from the stochastic noise usually attributed to temporal decorrelation. The
presence of such fading signal introduces a systematic phase component, particularly in short temporal baseline interferograms.
If unattended, it biases the estimation of Earth surface deformation from SAR time series.

The contribution of the mentioned phase component is quantitatively assessed. For short temporal baseline interferograms, we
quantify the phase contribution to be in the regime of 5 rad at C-band. The biasing impact on deformation signal retrieval is
further evaluated. As an example, exploiting a subset of short temporal baseline interferograms which connects each acquisition
with the successive 5 in the time series, a significant bias of -6.5 mm/yr is observed in the estimation of deformation velocity
from a four-year Sentinel-1 data stack. A practical solution for mitigation of this physical fading signal is further discussed;
special attention is paid to the efficient processing of Big Data from modern SAR missions such as Sentinel-1 and NISAR.
Adopting the proposed solution, the deformation bias is shown to decrease to -0.24 mm/yr for the Sentinel-1 time series.

Based on these analyses, we put forward our recommendations for efficient and accurate deformation signal retrieval from large

stacks of multilooked interferograms.
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Deformation with SAR Interferometry

Homa Ansari, Francesco De Zan, Alessandro Parizzi

Abstract—This paper investigates the presence of a new in-
terferometric signal in multilooked Synthetic Aperture Radar
(SAR) interferograms which cannot be attributed to atmospheric
or earth surface topography changes. The observed signal is
short-lived and decays with temporal baseline; however, it is
distinct from the stochastic noise usually attributed to temporal
decorrelation. The presence of such fading signal introduces
a systematic phase component, particularly in short temporal
baseline interferograms. If unattended, it biases the estimation
of Earth surface deformation from SAR time series.
The contribution of the mentioned phase component is quantita-
tively assessed. For short temporal baseline interferograms, we
quantify the phase contribution to be in the regime of 5 rad at
C-band. The biasing impact on deformation signal retrieval is
further evaluated. As an example, exploiting a subset of short
temporal baseline interferograms which connects each acquisition
with the successive 5 in the time series, a significant bias of -
6.5 mm/yr is observed in the estimation of deformation velocity
from a four-year Sentinel-1 data stack. A practical solution for
mitigation of this physical fading signal is further discussed;
special attention is paid to the efficient processing of Big Data
from modern SAR missions such as Sentinel-1 and NISAR.
Adopting the proposed solution, the deformation bias is shown
to decrease to -0.24 mm/yr for the Sentinel-1 time series.
Based on these analyses, we put forward our recommendations
for efficient and accurate deformation signal retrieval from large
stacks of multilooked interferograms.

Index Terms—Big Data, deformation estimation, differential
interferometric synthetic aperture radar (DInSAR), distributed
scatterers, error analysis, near real time processing, phase incon-
sistencies, signal decorrelation, time series analysis.

I. INTRODUCTION

AS an established geodetic technique for Earth surface
deformation monitoring, the accuracy of the Interfero-

metric Synthetic Aperture Radar (InSAR) time series analysis 
should be well quantified and the potential error sources must 
be known. Any uncertainty in the accuracy of InSAR products 
compromises their reliability in sensitive applications.

  Persistent Scatterer Interferometry (PSI) is among the pio- 
neering techniques for improving the accuracy of InSAR [1]
in deformation retrieval. Exploiting the phase stable Persistent 
Scatterers (PS) within the time series, PSI avoids a major limi- 
tation of InSAR, namely the signal decorrelation [2]. Using the 
high Signal to Noise Ratio (SNR) PS measurements, another 
error source of InSAR is mitigated through the separation of 
the atmospheric signals from the deformation. PSI technique 
has been perfected since its invention and its accuracy has 
been studied thoroughly [3].

  The authors are with the German Aerospace Center (DLR), Remote 
Sensing Technology Institute (IMF), 82234 Wessling, Germany (email:
homa.ansari@dlr.de).

The low density of PS in non urban areas motivated the
invention of complementary techniques to PSI. These methods
exploit partially decorrelating areas in time series analysis.
Referred to as Distributed Scatterers (DS), such areas pertain
to an ensemble of natural scatterers which share similar
scattering characteristics. A variety of methods have been put
forward to allow the use of DS in deformation estimation, with
Small BAseline Subset algorithm (SBAS) [4] and SqueeSAR
[5] as the overarching approaches. The shortcoming of natural
scatterers of DS is their inherent phase noise caused by signal
decorrelation. Common to all DS techniques, spatial averag-
ing, or multilooking, is employed to reduce this stochastic
noise in the interferograms.

The purpose of this paper is to investigate the accuracy
of multilooked interferograms with regards to DS techniques.
Different studies have been dedicated to the validation of
DS with independent geodetic techniques, such as Global
Navigation Satellite Systems (GNSS) measurements (see e.g.
[6]). Being spatially sparse, such independent measurements
restrict the comprehensive study of the DS behavior. Here we
consider a different validation approach to reveal a peculiar
systematic signal in multilooked interferograms. If unattended,
the mentioned signal can severely bias the deformation es-
timates of DS. We investigate the accuracy of deformation
estimates in the presence of this signal to highlight the role of
different DS techniques in either exacerbation or mitigation of
deformation bias.

Following the theoretical background of section II, we
design different comparison approaches in section III, to shed
light on the following propositions:
• the multilooked interferograms reveal a systematic signal

which cannot be explained by the topographic or atmo-
spheric variations and interfere in the accurate estimation
of the deformation. Such signals are short-lived and decay
with the temporal baseline, rendering the short temporal
baseline interferograms to be more error-prone. Hereafter
we refer to this effect as the fading signal to reflect that it
is inherently a short-lived but physical phase contribution;

• at interferogram level, the magnitude of the signal can
be small as compared to the well-known InSAR error
sources such as atmospheric perturbations. However, the
propagation of this negligibly small error through the
time series of interferograms compromises the accuracy
of deformation;

• focusing on two conventional InSAR deformation prod-
ucts, the estimates of surface displacement time series
and displacement velocity are both compromised in the
presence of the fading signal;

• the fading signal may be induced by different physical

This is a pre-print version submitted to IEEE Transactions on Geoscience and Remote Sensing
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phenomena. The understanding of the source of this sig-
nal and its modeling is a current research topic [7], [12],
[13]. Lacking a generic model to explain the behavior
of fading signal makes the calibration of these errors
intricate;

• using the temporal data redundancy within the time
series, i.e. by exploiting all possible interferograms, the
fading signal is significantly mitigated in the multilooked
interferograms. This mitigation improves the accuracy of
both displacement time series and displacement velocity
estimates.

After the careful examination of these propositions in section
IV, we put forward our suggestions for achieving accurate
deformation monitoring with DS in section V.

II. TECHNICAL BACKGROUND

A. Single-look versus Multilooked Observations

In a time series of n Synthetic Aperture Radar (SAR) acqui-
sitions, each pair of a so called master and slave acquisitions
allow the formation of an interferogram. The latter is the phase
difference between the two complex valued images, relative to
the master acquisition. For each choice of master acquisition,
n − 1 common-master interferograms exist within the time
series. In total, n(n − 1)/2 multimaster interferograms may
be formed for each time series. As the target of geodetic
applications, Earth surface deformation is estimated from all
or a subset of these interferograms. Therefore, the accuracy of
the deformation estimates is governed by the quality and the
number of the exploited interferograms.

In this work, we distinguish between two types of obser-
vations in interferograms: single-look versus the multilooked
interferometric phases. The former is for instance related to
the PS, where the single complex valued pixels are exploited
within the time series. The latter observations are the result of
spatial averaging as common for DS regions.

For the case of PS, the multimaster interferograms of the
single-look observations are highly redundant. A mere subset
of n−1 common-master interferograms allows the reconstruc-
tion of all possible interferogram combinations within the time
series e.g.:

for PS : ∆φik = W(∆φim −∆φkm) (1)
→ ∆φimk = W(∆φim −∆φkm −∆φik) = 0.

Here W(x) = mod{x + π, 2π} − π, m indexes the master
acquisition and ∆φimk is an indicator for the consistency of
phase components within the time series [7].

As the second category of observations, DS are charac-
terized by homogeneous areas which undergo signal decor-
relation. Therefore the single-look observations within the DS
region have low SNR. The remedy in improving the SNR is
to perform spatial averaging within homogeneous DS region
and form multilooked observations. All advanced DS-InSAR
techniques employ multilooking, although some techniques
attempt to include the high-frequency signals [8] or use
data-adaptive and thereby feature-preserving methods [5], [9].
Although effective in noise reduction, multilooking changes
the statistical properties of the interferograms. It reduces the

redundancy among the n(n−1)/2 interferogram combinations,
such that (1) no longer holds. A residual component is ob-
served among each three arbitrary multilooked interferograms
i.e.:

for DS : ∆φimk = W(∆φim + ∆φmk + ∆φki) 6= 0; (2)

implying that the phase information of the DS regions is
inconsistent among arbitrary interferograms. Two effects may
be observed for the DS phases:
• E{∆φimk} = 0 reflecting stochastic noise caused by

signal decorrelation;
• E{∆φimk} 6= 0 indicating a variant systematic signal

among the multilooked interferograms;
where E shows the statistical expectation of the accompanied
random variable.

The former stochastic effect translates to noise in the
deformation estimates. More critical is the latter systematic
effect which may be present in a subset of the interferograms
and therefore revealed in certain interferogram triplets. The
systematic effects introduce an fading signal in the affected
multilooked interferograms. If present and not mitigated prop-
erly, they are interpreted as deformation and bias the estimates.

The peculiar fading signal is raised by multilooking and
absent in single-look observations. Therefore the discrepancy
between the single-look and multilooked observations can be
used to investigate firstly the presence of the fading signals
and finally their impact on biasing the deformation estimates.
This rationale is adopted throughout this paper and expanded
in section III-B and III-C.

As the target for geodetic application, the atmospheric and
surface deformation signals are consistent within arbitrary
interferograms [7], i.e. ∆φimk = 0 holds for the phase
components corresponding to these signals. The reason is that
these physical sources uniformly affect all scatterers within
the DS region, therefore their net residual effect vanishes
in E{∆φimk} [7], [10]. To safeguard against the fading
signals, one needs to retrieve the consistent component of the
interferograms or in other words reconstruct the consistency
among them.

B. Reconstruction of consistency
One approach to reconstruct the consistency is to discover

the physical source of the fading signals, accurately model
their scattering behavior, and thereby phase contribution, and
compensate the corresponding phase from the multilooked
interferograms. As one source of the fading signals, we refer
the reader to the variation in the moisture content of the
scattering media. The effect of moisture on InSAR is studied
and modeled in [12]. Based on the proposed moisture model,
the corresponding phase contribution is estimated from the
residual phase of (2) in [13]. The multilooked interfero-
grams may further be compensated by the estimated moisture-
induced phase to form consistent interferograms [13]. The
consistency in this case is reconstructed via calibrating the
fading signal’s phase component.

As the analysis of this paper reveals, the mentioned moisture
model does not suffice in explaining the observed inconsisten-
cies (see section IV-E), rendering the calibration ineffective.
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Fig. 1: Different levels of data exploitation within interferogram stacks. Top
sketch mimics SAR images with dots and the exploited interferograms with
arcs; the sketch below shows the corresponding SCM where diagonal elements
refer to the images and the filled off-diagonals represent the employed
interferograms. Images are assumed to be temporally sorted. (a) partial
exploitation of the data with short temporal baseline interferograms of up
to band bw, and (b) the full exploitation of the interferograms with full SCM.

To explain the observed fading signal of our data set, in
section IV-E we propose an alternative model to moisture
variation. This analysis serves as an example to show that
for a an effective calibration we either need to perform a
comprehensive research on various possible physical sources
of inconsistencies and design case-specific models to explain
the interferometric phase of each source; or to design a generic
model applicable to all possible sources of inconsistencies. In
both cases, further studies on various test sites are inevitable.
This model-based approach in reconstruction of consistency is
subject to comprehensive research, hence, as of present, still
inapt for systematic deformation monitoring.

A practical approach in reconstruction of consistency is to
retrieve the consistent components of the phase within the time
series, i.e. by explicitly imposing the condition of ∆φimk = 0
among all the n(n−1)/2 interferograms within the time series.
This approach is initially designed to reduce the stochastic
noise within the interferogram stack [5], [11]. However, as it
will be revealed by the analysis of this paper, it significantly
reduces the effect of systematic phase inconsistencies as well.
Referred to as phase linking, the method is explained in section
II-C. Phase linking does not consider a specific model for the
fading signal, it rather gains robustness to such signals by
exploring the temporal data redundancy of the interferograms.
The success of phase linking in unbiased reconstruction of
the consistency may lie in exploiting a sufficient number of
interferograms in large data stack, and/or in the nature of the
fading signals which are short-lived and tend to decorrelate
over long time spans. The examination of these theses is
beyond the scope of this paper. Within the scope of this paper,
we substantiate that phase linking is an efficient and practical
solution to reconstruct the consistency.

C. Phase linking techniques
After its pioneering authors, we define phase linking as

the estimator which retrieves n − 1 independent common-
master interferograms from the partially redundant n(n−1)/2
multimaster interferograms [11]. Here we shortly introduce
phase linking.

Without loss of generality, we concentrate on one DS region
(see [5], [9] for algorithmic details of the DS region selection).
The DS is comprised of an ensemble of spatially homoge-
neous region of p pixels in a time series of n SAR images,
arranged in a matrix Z ∈ Cn×p. Based on the central limit
theorem, Z follows the zero-mean n-variate Complex Circular
Gaussian (CCG) distribution [2]. Under the validity of this
distribution, the sample covariance matrix, or its normalized
version Sample Correlation Matrix (SCM), suffices for the
full description of the DS. The SCM, denoted by C, is a
Hermitian matrix whose off diagonal elements pertain to all
possible multilooked interferograms Iik within the time series
and their corresponding coherence Γik, i.e:

∠Cik = Iik = ∆φik (3)
|Cik| = Γik (4)

Various phase linking approaches are defined based on differ-
ent modeling of the SCM [14], [15]. In an earlier work, we
proposed a computationally efficient approach to phase link-
ing called Eigen-decomposition-based Maximum-likelihood-
estimator of Interferometric phase (EMI) [14]. This proposal
decreases the computational cost by reformulating phase esti-
mation into the following Eigen-decomposition problem [14]:

φ̂ =∠(argminvi{v
H
i (C ◦ Γ−1) vi}); (5)

subject to vHi vi = 1

and vHi vk = 0;

where vi is an arbitrary complex vector of size n × 1 and ◦
is the Hadamard product.
φ̂ is a vector of n wrapped phase values. It contains the

consistent interferometric phase component within the ex-
ploited interferograms. This phase information is used for the
retrieval of the deformation signal. EMI allows the convenient
estimation of this phase series by taking the smallest Eigen
vector of the matrix C ◦ Γ−1.

Note that, as common in InSAR, the estimation of absolute
phase is ambiguous. An arbitrary image in the time series is
selected as a reference scene, its phase is set to zero and the
remaining phases are measured relative to this arbitrary datum.

III. METHODOLOGY IN ACCURACY ASSESSMENT

In this section we explain our experiments to reveal the
existence and impact of the phase errors in multilooked
interferograms. The design of these experiments is based on
the following rationale:
• any systematic discrepancy between the single-look and

multilooked observations is an indicator of fading signals
(see section II-A);

• should inconsistent systematic effects exist within the
multilooked interferograms, the deformation estimates
vary depending on which interferograms are exploited.
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Fig. 2: displacement velocity maps of three different DS processing schemes (a) E-StBAS5 with bw = 5 (b) E-StBAS10 with bw = 10 (c) EMI using full
SCM; as compared to (d) the benchmark PSI processing. The reference scene and reference point are identical in all maps.

As the benchmark of the experiments, we perform PSI to
retrieve the deformation based on single-look observations.
Exploiting various combination of multilooked interferograms,
we further perform multiple processing rounds to investigate
the impact on deformation estimates. In the first processing
round, we exploit all possible interferograms within the time
series as explained in section II-C. In the following processing
rounds, we test the ingestion of different subsets of the
interferograms; the corresponding estimator for this processing
is introduced in section III-A.

As explained in section III-B, the resulting deformation
estimates from the different processing schemes are evaluated
against the benchmark PSI to study the estimation bias. In
section III-C, we expand on our experiments to reveal the
existence of the fading signals in multilooked interferograms
and quantify their magnitude and impact on the deformation
estimates.

A. Enhanced Short Temporal Baseline Subset Algorithm

To allow the ingestion of different subsets of interferograms
and evaluate the impact on the deformation estimates, we
designed a variation of the SBAS technique of [4]. The
difference with respect to the conventional SBAS is two-fold:
• the baseline constrain is only imposed on the temporal

separation between the acquisition pairs;
• phase linking is performed on the chosen interferogram

subset. Deformation estimation follows based on the
wrapped phase estimates.

Refraining from unwrapping the interferograms and perform-
ing phase linking on the subset instead, the designed approach
is less prone to the propagation of phase unwrapping errors.
To reflect these difference with the conventional method, we
refer to this approach as Enhanced Short temporal BAseline
Subset algorithm (E-StBAS).

The chosen interferogram subset is comprised of bw number
of shortest temporal baseline interferograms per acquisition in
the time series. Such that the total number of the exploited
interferograms reads as:

m =
bw

2
(2n− bw − 1) (6)

Compared to the conventional phase linking, here a band
matrix will replace the full SCM (see Fig. 1). The bandwidth
of the matrix is defined by the parameter bw. The consistent
phase based on these interferograms is reconstructed via the
following iterative optimization:

φ̂
p

i = ∠

(
1

bw

bw∑
k=1

Γi,i+k exp(j∆φi,i+k − jφ̂
p−1

i+k )

)
(7)

The iterations can be initialized by the largest Eigen vector of
the band matrix Cbw, i.e.:

φ̂
0

= ∠(argmaxvi{v
H
i C

bwvi}); (8)

subject to vHi vi = 1,

and vHi vk = 0.

In practice (8) provides a sufficient approximation such that
the iteration by (7) is unnecessary. As in section II-A, φ̂ con-
tains the consistent interferometric phase component within
the exploited subset. This phase information is used for the
retrieval of the deformation signal.

B. Evaluation of Deformation Bias

Retrieving the consistent phase series for DS using either
EMI or E-StBAS, the standard PSI processing [1], [16] is
employed on the high SNR DS to initially mitigate the
atmosphere and eventually estimate the deformation [5]. Two
products may be retrieved from the deformation signal, namely
the relative displacement time series of size n−1 per DS, and
more concisely the modeled displacement velocity as a single
parameter per DS.

The intention is to evaluate the accuracy of both DS-derived
products. We opt for the PS deformation measurements as the
benchmark for validation.

The performance evaluation is conducted as following: a
spatial grid of size 1 km2 is chosen for down-sampling both
displacement time series and displacement velocity maps.
Signal stationarity is assumed within this spatial window.
For all PS and DS within the defined reference grid cells,
a weighted average of the deformation signal substitutes the
sparse estimates. The weighting is based on the a posteriori
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coherence of PS [16] and DS [5]. For the latter scatterers,
the clutter is disregarded using a constant false alarm rate
detector. Following this approach the down-sampled DS and
PS deformations are directly comparable. From this point on,
the calculation of the estimation bias in deformation products
is straight-forward:

εd(x,y) = 〈dDS(x,y)〉 − 〈dPS(x,y)〉 (9)

here 〈.〉 shows the mentioned weighted averaging operator,
x, y are the spatial coordinates of the down-sampled grid and
εd is the evaluated bias. Subscript d can represent either the
displacement values in the time series or the displacement
velocity.

This evaluation will result in a time series of displacement
bias as well as the overall displacement velocity bias for the
entire time series. Both biases are calculated over the down-
sampled spatial grid.

C. Evaluation of Interferometric Phase bias

We intend to track the bias in displacement velocity to
the exploited multilooked interferograms. We firstly introduce
a measure to quantify the interferometric phase bias which
pertains to the fading signals. Using error propagation we
introduce a second measure to calculate the expected displace-
ment velocity bias from the phase biases.

In the introduction of our first measure, we assume to know
the interferometric phase ∆φ̃ which is free of the systematic
and stochastic inconsistencies (see section II-A). Knowing
this phase, the error of the multilooked interferograms can
be evaluated for each DS at each interferogram, i.e.:

ε∆φik
(x,y) = ∆φik(x,y)−∆φ̃ik(x,y). (10)

Here ∆φ shows the multilooked phases over DS regions,
subscripts i, k refer to the master and slave acquisition index
and x, y are the spatial coordinates of the DS. The phase ∆φ̃
can be substituted e.g. by high SNR single-look observations
(see section IV-D for the practical approach to evaluation of
phase error).

In principle one can estimate the phase bias from the
phase errors by allowing an averaging operator on a chosen
ensemble; the averaging is necessary to reduce the stochastic
noise. In our bias estimation, we choose a temporal averaging
within the time series. The averaging is performed on the
calculated phase error of each DS within the interferograms
with identical time lag l separation from their respective master
scene. A normalization with respect to the temporal baseline
of the interferograms is further considered. Following the
temporal averaging and baseline normalization, the intended
measure reads as:

δl(x,y) =
1

n− l

n−l∑
i=1

ε∆φi,i+l
(x,y)

∆ti,i+l
. (11)

δl is the average phase bias of each DS region per time lag
l. The temporal normalization allows the direct comparison of
the calculated phase biases without the concern for their vari-
able temporal baseline. It as well eases the error propagation

TABLE I: Summary of the compared approaches for the estimation of
displacement velocity. PSI is used for the evaluation of bias and dispersion.

Phase
Estimation

SCM
Bandwidth

bw

Estimation
Bias

[mm/yr]

Estimation
Dispersion

[mm/yr]
E-StBAS5 5 −6.50 2.58

E-StBAS10 10 −3.05 1.55

EMI full SCM −0.24 0.70

from the interferogram level to the displacement velocity, as
explained in the following.

We further quantify the expected bias in the displacement
velocity given the biases of interferograms by introducing
a second measure. To commence, let us simplify the phase
reconstruction of (7) by assuming uniform weighting, i.e.
∀i, k ∈ {1, ..., n} : Γik = 1. Further, we assume the phase
errors are small enough that the small-angle approximation
holds i.e. ∠ exp (jε∆φ) ≈ ε∆φ. Furthermore, the mentioned
temporal normalization of (11) is necessary to propagate the
phase bias to displacement velocity bias. Following the mean
propagation law for linear models [17], the displacement
velocity bias reads as:

εdvel (x,y) =
1

bw

λ

4π

bw∑
k=1

δk(x,y), (12)

where λ is the radar wavelength. To recapitulate, the intro-
duced error propagation assumes that:
• the present phase error of the multilooked observations

is small;
• all interferograms are equally weighted in phase estima-

tion.
The first simplification holds for short temporal baselines
where the decorrelation noise is negligible enough not to vio-
late the small-angle approximation. The second simplification
is more likely to have an effect on the estimation of the phase
and displacement velocity bias. Nevertheless, εdvel provides a
mean to verify the evaluated biases of section III-B with the
predicted displacement velocity bias from the phase errors in
multilooked interferograms. In case of positive verification, we
may conclude that the cause of deformation biases stems from
the multilooked interferograms and rule out other plausible
sources in raising the deformation biases.

IV. ANALYSIS OF BIASES

For the study of the biases, a test site is chosen in the
island of Sicily-Italy. The test site is regularly monitored
by Sentinel-1 A and B, providing abundant data. The land
cover is heterogeneous to observe the behavior of different
DS types. The area is investigated by different studies, such as
[18], [19], which potentially allows independent performance
comparison.

The data set is comprised of 184 acquisitions from Octo-
ber 2014 to September 2018 of descending track. It covers
approximately 15000 km2.

Following the introduced methods in section III, the biases
in displacement time series and velocity as well as the multi-
looked interferograms are studied in this section.
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(a) (b) (c)

Fig. 3: Displacement velocity bias εdvel estimated according to (9) for (a) E-StBAS5, (b) E-StBAS10, (c) EMI using full SCM.

A. The comparison scenarios

The intention is to define a scientifically credible experi-
ment which can isolate the impact of multilooked phases on
deformation estimation.

We perform three different DS analysis for deformation
retrieval. All steps of the processing and the corresponding
latent parameters are kept identical, the only difference is in
consistency reconstruction (see section II-B). With reference
to section II-C and III-A, different number of interferograms
and different phase estimation methods are used to retrieve the
consistent interferograms, namely:

• E-StBAS with bandwidth of five;
• E-StBAS with bandwidth of ten;
• EMI performing phase linking on full SCM.

The defined experiment is summarized in table I.
Identical to the three cases, Interferometric Wide Area Pro-

cessing (IWAP) chain [20] is used for deformation estimation,
the estimation of consistent interferograms is integrated in this
chain. As the first step toward DS processing, the statistically
homogeneous ensembles surrounding each pixel are detected.
The amplitude-based Anderson-Darling statistical similarity
test [9] with false alarm rate of 5% is chosen as the detection
method. The search window for the test comprises of 25
and 7 looks in range and azimuth direction, respectively. The
effective number of look is however approximately half in
each direction. The homogeneous ensembles are exploited for
adaptive multilooking of the direct interferograms as well as
estimation of the SCM at DS region. A constant false alarm
rate detector is further used to detect the signal bearing DS and
exclude the low quality regions from the deformation analysis
[21]. The latter regions pertain to fast decorrelating scatterers
such as water bodies and dense vegetation.

Beside the above-mentioned three DS comparison cases, we
perform a conventional PSI [16] and treat the result as the
benchmark for our analysis to follow.

Note that in the overall four processing rounds, the reference
scene and reference point are identical. Moreover, the latent

Fig. 4: Empirical PDF of displacement velocity bias evaluated by (9), reported
for the three DS processing schemes. The first µ and second σ order moments
of these Empirical PDFs indicate the overall bias and dispersion of the velocity
estimates, respectively. The increase in the number of exploited interferograms
improves the overall accuracy of deformation estimation.

parameters are kept identical or chosen in data-driven fashion,
to ensure the credibility of the comparisons.

Fig. 2 shows the retrieved displacement velocity map of
these four described schemes. In the following sections, the
results are quantitatively analyzed.

B. Bias in displacement velocity

We are interested in the quantitative error of the displace-
ment velocity maps reported in Fig. 2. Following the described
method in section III-B, the PS scheme is taken as the
benchmark. According to (9), the discrepancy between the
velocity estimated by each three DS schemes are evaluated
against this benchmark over a down-sampled grid. Fig. 3
depicts the evaluated εdvel of each scheme over the test site. Fig.
4 depicts the Empirical probability density function (PDF) of
the accumulated discrepancies over the entire test site. The first
and second order moment of these PDFs provide a measure
for the overall bias and dispersion of each method in the
estimation of the displacement velocity. These performance
indicators are summarized in table I.
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(a)

(b)

(c)

Fig. 5: The box-whisker plots of displacement error for each acquisition in the time series, with respect to its temporal baseline, presented for different DS
processing schemes of (a) E-StBAS5, (b) E-StBAS10, and (c) EMI scheme on full SCM. The bias and dispersion of the displacement estimates is inferred
from the boxplot. Both performance measures improve by including more interferograms in phase estimation.

As revealed by the comparisons, both the bias and dis-
persion decrease when more interferograms are exploited for
phase and consequently deformation estimation. The overall
performance of E-StBAS techniques is observed to be worse
than the achievable precision of 1-2 mm/yr for Sentinel-1 data

stacks [22], [23], while the exploitation of full covariance
matrix helps EMI in retaining this potential performance.
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C. Bias in displacement time series

We further extend the bias analysis by evaluating the dis-
crepancy in the displacement time series. The latter time series
is the outcome of spatiotemporal phase unwrapping and the
removal of the estimated topographic and atmospheric signal
components.

Similar to the previous section and following the method of
section III-B, the displacement bias between each DS scheme
and the benchmark PSI result is evaluated for each available
time epoch. The displacement bias is therefore evaluated per
acquisition and over the down-sampled grid via (9).

For a compact visualization of the temporal behavior, box-
whisker diagrams are chosen here. Each diagram represents
the spatially accumulated bias measures for each acquisition
in the stack. The diagram provides a robust presentation
of the distribution of univariate data. The box represents
the 50% concentration of the data. The whiskers show the
extent of distribution within 80% confidence interval. The
box-whisker diagram concisely depicts the following robust
statistical measures:
• median: marked by the central line of the box. It is a

robust measure of the average displacement bias;
• interquartile range: visible from the length of the rectan-

gular box. It is a robust measure for the dispersion of the
displacement estimates;

• skewness: inferred from the asymmetry between the
upper and lower parts of box-whisker around the median.
Skewness is the third moment of data as a measure for
the normality of the distribution of displacement error.
A skewed distribution indicates a systematic discrepancy
between the PS and DS.

Fig. 5 depicts the box-whiskers for the three compared DS
schemes. The average displacement bias of each acquisition is
provided in Fig. 6. The following conclusions are drawn from
the three mentioned figures:
• both the bias and dispersion of the displacement es-

timates increase with the temporal baseline. The error
propagation is more severe where less interferograms are
exploited;

• a prevailing linear trend is observed for E-StBAS5 and
10, implying the persistent presence of physical source
of bias in the DS over the entire time series;

• the overall skewness of the box-whiskers reduces in EMI,
as compared to E-StBAS5 and E-StBAS10, indicating the
reduced systematic errors in EMI;

• a small periodic trend is observed which may be at-
tributed to the moisture variations [7], [13];

• exploiting all multimaster interferograms and applying
EMI for the reconstruction of consistency significantly
reduces the bias in displacement estimation.

D. Tracking the bias to multilooked interferograms

Up to this point, we observed an increased bias in the dis-
placement velocity as well as a prevailing presence of a linear
physical signal in the displacement time series. The observed
signals are absent in the result of single-look PS measurements

Fig. 6: Temporal trends of the average bias in displacement estimation for
the three compared DS schemes. top: the overall trend, bottom: the periodic
behavior resulted from the removal of the linear trends. The linear variation of
the displacement bias prevails the periodic changes. This implies the negligible
effect of seasonal variations of the phase which are attributed to the moisture
variation.

and fade when exploiting all the interferograms within the time
series, therefore they can not be justified as surface topography
change. In this section we seek for the cause of this linear trend
in the direct multilooked interferograms and attempt to predict
the error budget in displacement velocity from the phase bias
of the mentioned interferograms.

Following the method of section III-C, the focus here is on
the quantification of interferometric phase bias at varied time
lags. Note that according to (10) and (11), ∆φ̃ is required
for the evaluation of the phase error. From the analysis of the
previous subsections, we observed a negligible sub-millimetric
discrepancy between the single-look PS measurements and
the estimated phases of EMI approach. Therefore, we may
approximate the single-look PS phases by the estimated phases
based on the full SCM, i.e. the EMI result, and use the latter
as the benchmark ∆φ̃ for the evaluation of phase bias. Having
this benchmark, δl is evaluated for ∀l ∈ {1, ..., 10}. Fig.
7.a and b depict an example of the estimated phase biases
for l = 1 and l = 10. These time lags correspond to the
average temporal baseline of 8 and 78 days, respectively (we
resorted to the calculation of the average temporal baseline for
each time lag, due to the irregular temporal acquisition of the
images). The empirical PDF of the spatially accumulated δl

measures for variable time lags are provided in Fig. 7.c.top, the
bottom figure provides the evolution of the average phase bias
over time. From these observation, we conclude that the short
temporal interferograms, with smaller time lag l, are more
biased as compared to the longer baselines. This observed
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(a) l = 1 (b) l = 10 (c)

Fig. 7: Evaluation of systematic phase bias for different interferograms via δl of (11) (a) overall bias for temporal lag of l = 1 equivalent to average temporal
baseline of 8 days, (b) overall bias for temporal lag of l = 10 equivalent to average temporal baseline of 78 days, (c) top: empirical PDF of spatially
accumulated δl measures per time lag and bottom: the average phase bias as a function of the temporal baseline. Contrary to the general perception, the
shorter temporal baseline, and therefore more coherent, interferograms are observed to be more biased. The bias decreases with temporal baseline.

(a) l = 1 (b) l = 10 (c)

Fig. 8: Evaluated observed bias in slant range corresponding to the systematic phase bias of Fig. 7.a and b. for temporal lag of (a) l = 1 equivalent to average
temporal baseline of 8 days, (b) l = 10 equivalent to average temporal baseline of 78 days. (c) top: empirical PDF of spatially accumulated δrl measures per
time lag and bottom: the average phase bias as a function of the temporal baseline. The biases are sub-millimetric and small compared to the atmospheric
perturbations. The propagation of these small biases compromises the performance of E-StBAS processing schemes.

trend will assist us in the proposal of a simple physical model
for the source of phase biases in section IV-E.

According to section III-C, the phase bias of multilooked
interferograms is propagated to the displacement velocity
estimates via (12). From the integration of the δl measure
and their proper normalization and conversion, εdvel is further
evaluated for the two processing schemes of E-StBAS5 and
E-StBAS10. Fig. 9 shows the predicted displacement velocity
bias based on the observed phase biases. The empirical PDF
of the accumulated εdvel measures in Fig. 9.c provides the
average bias of these processing schemes over the test site. The

predicted bias reads as 5.43 and 3.38 mm/yr for the E-StBAS5
and 10 respectively. Comparing these biases to the empirical
values from the bias estimates of table I confirms that the
measured biases in the deformation estimates are caused by
the interferometric phase biases. Note that the discrepancy
between the predicted and the empirical displacement velocity
bias is due to two approximations: firstly the underlying
simplification of the error propagation scheme (explained in
section III-C) and secondly the approximation of ∆φ̃ by the
reconstructed phases of EMI. The sign change between the
predicted and empirical values only stems from the difference
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(a) bw = 5 (b) bw = 10

(c)

Fig. 9: The predicted error in displacement velocity via εdvel of (12): (a) E-StBAS5 scheme, (b) E-StBAS10 scheme, and (c) the empirical PDF of spatially
accumulated error measures. The deformation velocity bias is predicted as 3.38 and 5.43 mm/yr for E-StBAS10 and E-StBAS5, respectively. These values
corroborate the empirical biases of -3.05 and -6.50 mm/yr with our real data analysis, as seen in Fig. 4 and table I. The sign change between the predicted
and empirical values only stems from the difference in the convention for setting the direction of positive displacement.

in the convention for setting the direction of positive displace-
ment.

E. Modeling of phase bias

Having corroborated the presence of a systematic bias in
multilooked interferograms, in this section we seek a model
that can explain the fading signals and the corresponding phase
biases. Upon comprehensive study of such models, they may
be used in model-based reconstruction of phase consistency
as explained in section II-B.

Our first attempt in modeling was to explain the bias
with the moisture model of [12]. However the sign of the
deformation bias is not justifiable with the moisture model.
If there is a bias from the moisture cycle, this should appear
as a motion towards the satellite. This happens because the
typical behavior is for soils to get wet fast and dry slowly.
Our non-linear model for the moisture phase, confirmed by
observations in real data, predicts that the cumulative phase
change corresponding to a certain moisture change is larger
if the change is observed through many small steps that
if it happens suddenly or through larger steps. Therefore
slow drying (moving apparently towards the satellite) should
prevail over fast wetting. If a moisture bias is present, it is
overshadowed by some other biasing signal.

An alternative hypothesis is that we are observing biomass
growth, with an apparent motion away from the satellite which
introduces extra range delay. Based on this hypothesis, a model
is proposed which is comprised of two parts; that is, a linear
systematic phase variation ρφ and a temporal decorrelation to
explain the vanishing bias with longer baselines.

To introduce this model, consider the temporal decorrelation
model of [24]:

Γi,k = (γ0 − γ∞) exp(−|δti,k|/τ) + γ∞; (13)

with γ0 and γ∞, respectively, as the short-term decaying and
long-term persistent coherence of an arbitrary interferogram;
δt as its temporal baseline and τ as the signal correlation
length. This model is generalized to include the systematic
phase variation:

Isys
i,k = (γ0−γ∞) exp(j ρφ δti,k) exp(−|δti,k|/τ)+γ∞ (14)

where ρφ corresponds to rate of phase variation in radians over
time. The phase of this complex model explains the observed
phase bias in an arbitrary interferogram pair.

In Fig. 9.c.bottom we modeled the observed average phase
bias 〈δl〉, considering the average temporal baseline for each
time lag. Using the simple model of (14), a weak systematic
signal with short and long term coherence of 0.28 and 0.21,
correlation length of τ = 19.5 days and variation of ρφ = 0.03
rad/day is captured in the data set.

The modeled apparent motion of 0.03 rad/day corresponds
to almost 50 mm/yr of extra range delay. Converted to
water, which must be the main responsible for the delay, it
totals 5.3 mm/yr (= 5.3 l/(m2yr) or kg/(m2yr)) of water,
assuming a relative dielectric constant of 80. This seems to
be a reasonable figure for a first plausibility check of the
proposed biomass growth model. A more realistic model needs
to relate water to total or dry biomass and to consider that the
interferometric phases are implicitly weighted by backscatter
intensities. Nonetheless, the simple model of (14) provides an
approximation and justifies the correct sign of the phase bias.

The generalization, validation and use of this proposed
model for the calibration of phase biases is subject to further
research.

V. DISCUSSION AND RECOMMENDATIONS

In this paper we primarily focused on the observation of a
peculiar systematic signal in InSAR. Concluding that:
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• multilooked interferograms reveal a short-lived, system-
atic phase component which cannot be attributed to
atmospheric or surface topography variations. This sys-
tematic phase component is absent in single-look phase
observations;

• phase biases are larger for shorter temporal baseline,
albeit more coherent, interferograms;

• the magnitude of the phase bias in each multilooked
interferogram may be deemed small, especially com-
pared to the atmospheric perturbations. However, with
the attenuation of atmospheric phase and the propagation
of the interferograms phase bias within the time series,
the corresponding error for the displacement velocity
estimation is alarming;

• the propagation of even small phase biases in long time
series compromises the accuracy of displacement velocity
maps from an achievable sub-millimetric to centimetric
per year level.

Studying the effect of the observed signal for interferogram
time series, we established that:
• the redundancy of multimaster interferograms is de-

creased as the result of the present systematic signals;
• exploiting the temporal data redundancy in large time

series yields a degree of robustness of the phase retrieval
algorithms to such phase errors;

• the major role in the gained robustness is played by the
inclusion of the long temporal baseline interferograms in
phase retrieval.

Moreover, we shortly discussed the possibility of modeling the
phase biases:
• for the region under study, the systematic phases comprise

of a prominent linear and a much lower magnitude
periodic signal;

• the periodic phase may be attributed to the change in
moisture variation of the subsurface medium;

• a complex decorrelation model is proposed as an approx-
imation of the linear systematic trend;

• the proposed decorrelation model helps in the interpreta-
tion of the physical phenomenon behind the systematic
phase component. However, as of present, we lack ad-
equate experimentation and validation of this simplified
model for the calibration of phase biases;

• the observed fading signals are specific to the chosen test
site. Understanding the physical sources of these signals
in multilooked interferograms is subject to comprehensive
research;

• due to the lack of comprehensive research thus far, the
use of model-free phase linking in the mitigation of
phase errors is one of the most viable approaches in
safeguarding against the fading signals.

As hypothesized, the presence of fading signal compromises
the accuracy of InSAR in deformation analysis. This problem
is highly exacerbated for Big Data processing. Common
practice in such processing is to mostly exploit short temporal
baseline interferograms [19], [25], [26]. The logic behind such
data exploitation is to reduce the number of interferograms by
using the most coherent, and thereby highest SNR, observa-
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(a) (b) (c) 
Fig. 10: Efficient exploitation of Big Data stacks using the Sequential
Estimator [27]. With reference to Fig. 1, the sequential estimator divides
the data stack into isolated batches. Between batches, the lost information
is retrieved by the formation of compressed images (shown by the dot in
between the two fully connected networks) and the artificial interferograms
depicted with the respective arcs and dark shaded in the SCM. The dashed arcs
represent the contribution of isolated batches in formation of the compressed
images. Following this rationale, the full SCM of Fig. 1.b is recursively
approximated to avoid redundant calculations while retaining the accuracy
in phase estimation.

tions in the time series. However, the analysis of this paper
proves that these interferograms are the most affected by the
inconsistent fading signals and therefore the least reliable for
deformation retrieval. This observation challenges the quality
of the short temporal interferograms and warns against solely
using these observations.

Should the small baseline processing scheme be desired for
deformation retrieval, we recommend to safeguard against the
impact of systematic phase biases by:

• exploiting the long temporal baseline interferograms
along with the short ones to decrease the overall phase
error;

• predicting deformation error budgets following the anal-
ysis of section III-C and according to (12); choosing the
optimum number of interferograms (i.e. the bw param-
eter) for achieving a desired accuracy. The phase series
pertaining to single-look PS could be the benchmark for
such error prediction.

According to our experiments, however, the choice of optimum
number of interferograms for reliable deformation estimates is
land cover dependent. For a single test site, various number of
optimum interferograms may be discovered for different types
of DS. Furthermore, the additional analysis on the optimum
number of interferograms increases the computational burden
of processing.

For reliable deformation monitoring, we advocate the use
of phase linking on full SCM. This approach is fully data-
adaptive. Contrary to the general belief, phase linking can
be computationally efficient. According to our extensive wide
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area processing experience, partially reported in [28], [29],
EMI provides a viable efficient solution for phase linking
and does not pose a challenge for Big Data processing. To
avoid the redundant computations of phase linking in stream
processing of large time series, we further recommend our pro-
posal of sequential estimator [27] (see Fig. 10). The sequential
estimator is based on data compression, it significantly reduces
the number of exploited interferograms while retaining the
capability to robustly reconstruct the consistency. The accuracy
of this sequential algorithm is studied and proven to retain the
millimeter per year level target [28].

Our final recommendation for insuring the accuracy in
deformation monitoring is to introduce a new intermediate
product level for InSAR, namely the reconstructed consistent
wrapped phase series using EMI and the sequential estimator.
The envisioned product would:
• contain the consistent physical signal components such

as, but not limited to, atmospheric variations and surface
displacements;

• significantly reduce the interferometric phase bias and
stochastic noise, thereby enhance the reliability of InSAR
for deformation retrieval;

• reduce the amount of interferometric data from the n(n−
1)/2 pairwise interferograms within the data stack to a
time series of n−1 higher quality and, optionally, down-
sampled interferograms;

• provide a unified product for accurate deformation mon-
itoring to the user community.

This paper was dedicated to the analysis of C-band SAR.
The magnitude of fading signals, and hence the corresponding
errors, are expected to increase with the wavelength. Therefore
larger effects are expected and observed for L-band SAR [7],
rendering the introduced phase product even more essential to
L-band.
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