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Abstract

With the emergence of Internet of Things that allows communications and local computations, and with the vision of Indus-

try 4.0, a foreseeable transition is from centralized system planning and operation toward decentralization with interacting

components and subsystems, e.g., self-optimizing factories. In this paper, a new “price-based” decomposition and coordination

methodology is developed to efficiently coordinate subsystems such as machines and parts, which are described by Mixed-Integer

Linear Programming (MILP) formulations, in a distributed and asynchronous way. To ensure low communication requirements,

exchanges between the “coordinator” and subsystems are limited to “prices” (Lagrangian multipliers) broadcast by the coor-

dinator, and to subsystem solutions sent to the coordinator. Asynchronous coordination, however, may lead to convergence

difficulties since the order in which subsystem solutions arrive at the coordinator is not predefined as a result of uncertainties

in communication and solving times. Under realistic assumptions of finite communication and solve times, convergence of our

method is proved by innovatively extending Lyapunov Stability Theory. Numerical testing of generalized assignment prob-

lems through simulation demonstrates that the method converges fast and provides near-optimal results, paving the way for

self-optimizing factories in the future.
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Abstract—With the emergence of Internet of Things that allows 

communications and local computations, and with the vision of 

Industry 4.0, a foreseeable transition is from centralized system 

planning and operation toward decentralization with interacting 

components and subsystems, e.g., self-optimizing factories.  In this 

paper, a new “price-based” decomposition and coordination 

methodology is developed to efficiently coordinate subsystems 

such as machines and parts, which are described by Mixed-Integer 

Linear Programming (MILP) formulations, in a distributed and 

asynchronous way.  To ensure low communication requirements, 

exchanges between the “coordinator” and subsystems are limited 

to “prices” (Lagrangian multipliers) broadcast by the coordinator, 

and to subsystem solutions sent to the coordinator.  Asynchronous 

coordination, however, may lead to convergence difficulties since 

the order in which subsystem solutions arrive at the coordinator is 

not predefined as a result of uncertainties in communication and 

solving times. Under realistic assumptions of finite communication 

and solve times, convergence of our method is proved by 

innovatively extending Lyapunov Stability Theory. Numerical 

testing of generalized assignment problems through simulation 

demonstrates that the method converges fast and provides near-

optimal results, paving the way for self-optimizing factories in the 

future.  Accompanying CPLEX codes and data are included. 

 

Note to practitioners—In view of a foreseeable transition toward 

self-optimizing factories whereby machines and parts have 

communication and computational capabilities, a novel 

distributed and asynchronous method to coordinate distributed 

subsystems is developed. Under realistic assumptions of finite 

communication and solve times, method convergence is proved. 

Numerical testing of generalized assignment problems through 

simulation demonstrates that the method converges fast and 

provides near-optimal results, paving the way for self-optimizing 

factories in the future.  Accompanying CPLEX codes and data are 

included.   

 
Index Terms—Distributed and Asynchronous Algorithms, 

Surrogate Lagrangian Relaxation, Self-Optimizing Factories, 

Mixed-Integer Linear Programming Problems   

I. INTRODUCTION 

ith the emergence of Internet of Things [1, 2] empowered 

by smart sensors together with advanced computation 

and communication technologies, and with the vision of 

Industry 4.0 [3, 4], a foreseeable transition is from centralized 

system planning and operation toward decentralization, e.g., 

self-optimizing factories with interacting components and 

subsystems.  Within these futuristic factories, machines and 

parts are coordinated through 5G networks to meet certain 

objectives such as on-time delivery.  In manufacturing, 

examples of operations optimization problems include 

planning, scheduling and dispatching problems [5, 6].  

Scheduling problems are solved before each shift and require 

short solving times such as a few minutes, and online 

dispatching of a part to a machine may require a few seconds.  

Because of the many possible interconnections among parts, 

operations and machines, efficient communication scheme is 

required to prevent bandwidth overloading.  This motivates the 

need for efficient coordinated operations of subsystems while 

ensuring high computational and communication efficiency.   

 Within manufacturing, machine and part subsystems are 

frequently formulated as mixed-integer linear programming 

(MILP) subproblems.  Traditionally, to coordinate MILP 

subproblems, Lagrangian relaxation (LR) [7-11] has been used 

by exploiting problem separability in manufacturing problems 

such as job-shop scheduling [10] and in power systems 

problems such as unit commitment [11].  Within standard LR, 

multipliers (or “shadow prices”) are updated using subproblem 

solutions based on levels of violation of relaxed constraint using 

subgradient methods [12-13].  Because of exploitation of 

decomposability, the LR method is a good candidate for 

coordinating distributed subsystems whereby a coordinator 

updates multipliers and only needs to know solutions of 

subproblems associated with distributed subsystems.  However, 

standard LR methods suffer from major convergence 

difficulties such as high computational effort, zigzagging of 

multipliers and the need to know the optimal dual values.  

Moreover, since standard LR requires solving all subproblems 

to update multipliers, the LR method is synchronous.  When the 

number of subproblems is large, synchronous coordination may 

lead to inefficient time management since “fast” subproblem 

solvers will likely spend significant amount of time waiting for 

synchronization.   

 Some the above difficulties have been overcome within 

subgradient incremental methods [14, 15], Alternate Direction 

Method of Multipliers (ADMM) [16-21], surrogate subgradient 

method [22], and surrogate Lagrangian relaxation (SLR) [23-

24, 49].  The distributed and asynchronous incremental 

subgradient method [15] for optimizing convex dual functions 

consisting of a large number of components, which arise within 

Lagrangian relaxation framework with a large number of 

subproblems, overcomes the synchronization difficulty.  

However, the method imposes the requirement that all 
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subproblem solutions arrive to the coordinator with the same 

“long-term” frequency on average.  ADMM [16-21], a 

decomposable version of the Method of Multipliers (frequently 

referred to as “Augmented Lagrangian Relaxation” (ALR) [25, 

26]), aims at accelerating convergence of traditional LR by 

penalizing constraint violations by using quadratic penalty 

terms and by decomposing relaxed problems arising in ALR to 

reduce computational effort.  However, when it comes to 

coordination of MILP subproblems, ADMM does not converge.  

Our recent SLR method [23, 24, 49] has overcome major 

convergence difficulties of standard Lagrangian Relaxation 

such as high computational effort, zigzagging of multipliers, 

and the need to know the optimal dual value for convergence.  

In [49], it has been demonstrated that the method is capable of 

efficiently coordinating thousands of subsystems.  These 

methods will be reviewed in more detail in Section II.     

 In this paper, a novel distributed and asynchronous “price-

based” decomposition and coordination method based upon the 

SLR method will be developed to efficiently coordinate 

distributed MILP subsystems within futuristic self-optimizing 

factories in Section III.  Within the framework, multiple 

distributed subsystems and one coordinator have computation 

and communication capabilities.  Information exchanges 

between the coordinator and subsystems are limited to “prices” 

(Lagrangian multipliers) broadcast by the coordinator and to 

subsystem solutions sent to the coordinator to avoid excessive 

data transfer within the system.  While asynchronous 

coordination avoids the synchronization issue, it leads to major 

convergence difficulties: 1) because of uncertainties in solving, 

communication and multiplier-updating times, the order in 

which subsystem solutions arrive to the coordinator is 

uncertain, and 2) subsystem solutions are obtained based on 

multipliers of different vintages, and multipliers may not 

converge.  To overcome these difficulties while ensuring fast 

speed, rather than requiring the “long-term” frequency 

requirement as in [15], convergence is proved under a 

“freshness” assumption, whereby a coordinator can update 

multipliers without waiting for “slow” subproblems as long as 

all subproblem solutions arrive to the coordinator at least once 

within a finite number of iterations.  Our novel idea to establish 

convergence is through the novel use of the Lyapunov energy 

function defined as the square of the distance from the current 

prices to the optimum with the idea of forcing this function to 

approach zero thereby ensuring that prices approach their 

optimal values.  Although not monotonically decreasing as 

required by traditional Lyapunov methods for convergence  

[27], an upper bound is innovatively established as an envelope 

of Lyapunov functions for all possible (uncertain) trajectories 

of multipliers (“prices”) that result from uncertain sequences of 

subproblem solutions arriving at the coordinator.  Based on the 

contraction mapping concept whereby distances between 

multipliers at consecutive iterations decrease, it is then proved 

that this upper bound approaches zero.     

 In section IV, by simulating asynchronous update of 

multipliers, two examples are presented.  The first small 

example is to show that Lyapunov functions within of the new 

method while non-monotonic, approach zero fast.  The second 

example is based on generalized assignment problems, which 

can be viewed as simplified problems that arise within factories.  

These results demonstrate that the new method converges fast. 

With such effective distributed and asynchronous coordination, 

the method has valuable implications for future self-optimizing 

factories to coordinate machines or parts.      

 

II. LITERATURE REVIEW 

 In this section, standard Lagrangian Relaxation (LR) will 

be reviewed in subsection II.A.  In subsection II.B, the 

distributed asynchronous incremental subgradient method as 

well as asynchronous ADMM, both are version of LR tailored 

for asynchronous coordination, will be reviewed and their 

limitations will be presented.  In subsection II.C, our recent 

Surrogate Lagrangian relaxation will be reviewed as a 

promising approach for the development of an efficient 

asynchronous coordination method.  Since this paper deals with 

coordination of MILP subsystems, branch-and-cut, an MILP 

method, will be reviewed in subsection II.D. Methods that do 

not support distributed coordination, such as heuristics 

methods, or the distributed methods that require continuity of 

problems will not be reviewed.   

A. Standard Lagrangian Relaxation.  

Traditionally, to solve MILP problems, Lagrangian relaxation 

[7-11] has been used to exploit problem separability.  

Specifically, in manufacturing, to solve job-shop scheduling, 

machine capacity coupling constraints are relaxed to 

decompose the problem into part subproblems [10].  In power 

systems, to solve unit commitment problems, system demand 

coupling constraints are relaxed to decompose the problem into 

individual unit subproblems [11].  Within standard LR, 

multipliers (or “shadow prices”) are updated after receiving 

subproblem solutions based on levels of violation of relaxed 

constraint using subgradient methods [12-13].  Because of 

exploitation of decomposability, the LR method is a good 

candidate for coordinating distributed subsystems whereby a 

coordinator updates multipliers and only needs to know 

solutions of subproblems associated with distributed 

subsystems.  However, standard LR methods suffer from major 

convergence difficulties.  Because of the presence of discrete 

variables, the dual function is non-smooth polyhedral concave 

[28, p. 670, Proposition 7.1.2].  Therefore, gradients may not 

exist and subgradients are used.  As a result, multipliers may 

suffer from zigzagging across ridges of the dual function [23, p. 

192, Fig. 1; 29, p. 594, Fig. 1].  Also, convergence proof as well 

as practical implementations require the knowledge of the 

optimal dual value, which is unknown and is typically 

adaptively adjusted in practice as in “subgradient-level” 

methods [30] or incremental subgradient methods [31].  

However, these adjustments are inefficient and convergence is 

slow as demonstrated in [23, pp. 195-196, 199, Figs. 3-5, 7].   

B. Distributed and Asynchronous Coordination Methods.  

Distributed Asynchronous Incremental Subgradient 

Method.  To optimize non-smooth dual functions consisting of 

a large number of components, which arise within the LR 

framework, in a distributed and asynchronous manner, a 

distributed asynchronous incremental subgradient method was 

developed [15].  The method requires that all subproblem 

solutions arrive to the coordinator with the same “long-term” 
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frequency on average, and convergence was proved using the 

diminishing stepsizing rule.  Moreover, convergence was 

proved under the assumption that the subgradient is split into 

individual components and each component is updated 

independently rather than updating the subgradient as a whole.  

Under this scheme, convergence may be slow in situations 

whereby there are “fast” and “slow” subsystems solvers 

because “fast” subsystems may spend significant amounts of 

time to satisfy the “long-term” frequency requirement.   

 

Alternate Direction Method of Multipliers. ADMM, a 

decomposable version of the Method of Multipliers [25, 26]  

(frequently referred to as “Augmented Lagrangian Relaxation” 

(ALR)), aims at accelerating convergence of traditional LR by 

penalizing constraint violations by using quadratic penalty 

terms and by decomposing relaxed problems arising in ALR to 

reduce computational effort.  Within the method, to alleviate 

the issues associated with synchronization, two conditions are 

used: 1) “partial barrier,” which allows the coordinator to 

update multipliers after receiving solutions from one or few 

subsystems and 2) “bounded delay,” which requires solutions 

from every subsystem to arrive at the coordinator at least once 

within a finite number of coordinator iterations [21, 32]. The 

main difficulty of ADMM is that it can guarantee convergence 

for convex problems only [21, p. 419].  When solving non-

convex problems, ADMM does not convergence [33, p. 73].  

When coordinating MILP subproblems, which are non-convex, 

ADMM does not converge because stepsizes within the method 

do not approach zero.  However, stepsizes are required to 

approach zero to guarantee convergence when optimizing non-

smooth dual functions [13, 23].  Moreover, quadratic penalties 

make the resulting relaxed problem nonlinear, which cannot be 

solved by MILP solvers.  While penalty terms can be linearized 

[34], the minimum of penalties is typically not preserved 

through such linearization and performance of the method is 

degraded.  Furthermore, penalties terms are a part of each 

subproblem formulation, but these terms involve decision 

variables from multiple subproblems.  Therefore, additional 

communication requirements are entailed.  For example, in 

power systems, communication requirements among 

subsystems [21, 35] are needed.   

C. Surrogate Lagrangian Relaxation Method 

All major difficulties of standard LR such as high 

computational effort required to solve all subproblems, 

zigzagging of multipliers and the requirement of the knowledge 

of the optimal dual value, have been overcome within our recent 

surrogate Lagrangian relaxation (SLR) [23-24, 49].  Within the 

method, it is not necessary to spend the effort to optimally 

subproblems.  Rather, it is sufficient to optimize subproblems 

subject to the simple “surrogate optimality condition” [23, p. 

178, eq. 12], guaranteeing that “surrogate dual” values 

approach dual values [23, p. 181].  Convergence is proved 

without requiring the knowledge of the optimal dual value.  

This was achieved with a constructive process based on the 

contraction mapping concept whereby distances between 

Lagrange multipliers decrease at consecutive iterations, and as 

                                                           
1 The convex hull is the smallest convex set that encloses feasible solutions of 

a problem.   

a result, multipliers converge to a unique limit.  At the same 

time, stepsizes are kept sufficiently large to avoid premature 

algorithm termination.  Additionally, a constructive stepsizing 

formula satisfying these criteria has been developed.  When 

solving large-scale problems, such as unit commitment problem 

arising in power systems [49], the method demonstrated high 

efficiency in the coordination of thousands of power generating 

units.  SLR thus satisfies high computational efficiency 

requirement because of much improved convergence over 

standard LR, and low communication requirements because 

subsystems are not required to communicate with each other.  

The method has been shown to outperform other previous 

methods including coordination methods such as ADMM [24].   

D. MILP Method: Branch-and-cut  

The main premise behind branch-and-cut [36] is that if the 

convex hull1 of an MILP is obtained, the problem reduces to 

solving a linear programming problem.  Owing to linearity of 

the problem, the surface of the convex hull is polyhedral [41], 

and vertices of the convex hull are feasible solutions to the 

original MILP problem.  Because of finite numbers of variables 

and constraints, the number of vertices is finite and linear 

programming methods such as simplex methods converge to 

the optimal feasible solution within a finite number of iterations 

[37, p. 6].  However, the convex hull generally cannot be 

obtained.  After relaxing integrality requirements, branch-and-

cut solves the LP-relaxed problem [37].  Attempting to obtain 

feasible solutions, branch-and-cut uses “cuts” to cut off LP 

regions that contain fractional vertices without cutting off 

feasible solutions.   While cuts generally require an infinite 

number of iterations to define facets of the convex hull, branch-

and-cut resorts to branch-and-bound [38, 39] after a finite 

number of iterations when “tailing off” of cuts occurs [40, p. 

349].  Since the number of fractional vertices that correspond 

to integer variables is finite, the number of branching operations 

required to obtain optimal feasible solutions is also finite.  

III. CONVERGENCE OF DISTRIBUTED AND ASYNCHRONOUS 

SURROGATE LAGRANGIAN RELAXATION 

 In subsection III.A, an MILP problem formulation of a 

system consisting of several distributed subsystems is 

presented.  In subsection III.B, a Distributed and Asynchronous 

Surrogate Lagrangian Relaxation (DA-SLR) is developed.  In 

subsection III.С, convergence of DA-SLR is proved.   

A. Distributed MILP Subsystems  

Consider a system consisting of one coordinator and I 

distributed subsystems.  Each subsystem is subject to its local 

linear constraints, which will not be considered for simplicity 

and ease of presentation.  The entire system is subject to system-

wide coupling constraints, which couple individual subsystems 

and the MILP formulation of a system can be written as follows:  

 

1

min ( )
I

i i
x i

f x


 ,  
 

(1) 

 
subject to 

1

( ) 0
I

i i
i

g x


  ,  
 

(2) 
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where xi = (yi, zi)  Xi  ℝ𝑁𝑖
𝑟
ℤ𝑁𝑖

𝑧 , Xi are closed and bounded 

sets, x = (x1,…,xI) = (y, z)  X  ℝ𝑁𝑟
ℤ𝑁𝑧

, y = (y1,…,yI)  ℝ𝑁𝑟
, 

z = (z1,…,zI)  ℤ𝑁𝑧
, with ℝ denoting the set of real numbers, ℤ 

denoting the set of integers.  Functions fi: Xi  ℝ and gi: Xi  
ℝ𝑚 are linear.  It is assumed that a set of feasible solutions that 

satisfy (1)-(2) is non-empty.  To rule out possible irregularities 

such as linear dependence of gradients of active constraints in 

the continuous subspace ℝ𝑁𝑟
, it is assumed that gradient 

vectors of active inequality constraints with respect to 

continuous variables y only are linearly independent at a local 

minimum x* = (y*, z*) of (1) [42].   

B. Distributed and Asynchronous Surrogate Lagrangian 

Relaxation  

As discussed in Sections II, separability of the problem is 

exploited by relaxing coupling constraints (2) by introducing 

Lagrangian multipliers T = (1, …, m) ℝ𝑚 and decomposing 

the resulting relaxed problem into individual subproblems: 

   min ( ) ( )
j

T

j j j j
x

f x g x .  (3) 

It is assumed that subsystems have computational and 

communication capabilities.  Namely, subsystems are capable 

of solving their own subproblem (3) and to send the resulting 

solution to the coordinator.   

Within the SLR framework, as discussed in Section II, it is 

not necessary to spend the effort to fully optimize subproblems. 

Rather, it is sufficient to stop optimization after the “surrogate” 

optimality condition for subproblems [23, eq. 57] is satisfied at 

iteration k+1: 

            1 1 1 1 .
T T

k k k k k k
j j j j j j j jf x g x f x g x        (4) 

This condition is not the necessary requirement in a sense that 

if a subproblem is solved to optimality and the best solution 

found is the same as the most recent subproblem solution, i.e.,
1k k

j jx x  , then, although this solution does not satisfy (4), the 

algorithm can proceed.  To coordinate subsystems, it is also 

assumed that the coordinator has capability to receive 

subproblem solutions, update multipliers  

 1 ( ), 0,1,...k k k ks g x k     ,   (5) 

and broadcast them to all subproblems.  Here  

 1

1:

( ) ( ) ( )
I

k k k
i i j j

i i j

g x g x g x

 

  . 
 

(6) 

are “surrogate” subgradient directions that are obtained instead 

of subgradient directions after receiving solutions from one or 

few subproblems. If inequality constraints are present in the 

formulation, multipliers are updated according to (5) with 

subsequent projection onto the positive orthant.    

 Within the asynchronous framework, subproblems are 

assumed to be solved without waiting for other subproblems to 

finish, and coordinator updates multipliers asynchronously 

without waiting for all subproblem solutions to arrive.  

Multipliers (5) will be updated using stepsizes sk that satisfy 

[23, p. 180, eqs. 21a and 21b], which are derived based on the 

contraction mapping concept and are set as: 

 1 1( )
, 0 1, 1,2,...

( )

k k

k
k kk

s g x
s k

g x
 

 

     
 

(7) 

with 

 
1 1

1 , 1 , 1, 0 1, 1,2,3,...k p r
p M r k

Mk k
         . (8) 

For notational convenience, superscripts k of multipliers 

and subproblems will denote coordinator-updating iterations 

and superscripts of subproblems will denote the most recent 

subproblem solution available to the coordinator at iteration k. 

 

To ensure that stepsizes (7) are well-defined, the following 

Assumption is required.   

 

Assumption 1. Boundedness of surrogate subgradients.  
Surrogate subgradients satisfy the following condition:  

 ( )kg x < C < .   (9) 

This assumption is realistic for MILP problems defined 

over a closed and bounded set.  Indeed, surrogate subgradients 

are essentially levels of constraints violations.  Since constraints 

are linear and each variable is defined over a closed and 

bounded set, constraint violations are finite.  

Unlike the subgradient method, whereby zero subgradients 

imply that the optimum is obtained and the algorithm terminates 

with the optimal primal solution, within SLR, zero surrogate 

subgradient implies that there are no constraint violations and 

that a feasible solution is obtained, but it does not imply zero 

subgradient.  Therefore, this solution is not guaranteed to be 

optimal.  In this case, an iteration is skipped without updating 

multipliers (5) and stepsizes (7)-(8). 

Figure 1 illustrates the asynchronous update by using one 

coordinator and three subproblems, and the difficulties caused 

by asynchronous updating of multipliers.  After obtaining a 

solution to the first subproblem, coordinator updates the 

multipliers without waiting for other solutions to arrive and 

broadcasts the updated multipliers to all subproblems.  

Subproblem 1 can then start solving the problem once receiving 

updated multipliers.  Then, after third subproblem is solved, and 

its solution arrives at the coordinator, the coordinator once 

again updated multipliers and broadcasts their values to all 

subproblems, and so on.  While asynchronous coordination 

avoids the synchronization issue, it leads to major convergence 

difficulties: 1) because of uncertainties in solving, 

communication and multiplier-updating times, the order in 

which subsystem solutions arrive to the coordinator is 

uncertain, and 2) subsystem solutions are obtained based on 

multipliers of different vintages, and multipliers may not 

converge. For example, as demonstrated in Fig. 1, at 

coordinator iteration 4, 𝑥1
3 is obtained using 𝜆2, 𝑥2

4 is obtained 

using 𝜆0 and 𝑥3
2 is obtained using 𝜆1.  As a result, there may be 

convergence difficulties.  In the following subsection, under 

realistic “freshness” assumption, convergence of the DA-SLR 

method will be proved.    

 



Fig. 1. Distributed and Asynchronous implementation of Surrogate Lagrangian Relaxation  

 

C. Convergence of Distributed and Asynchronous Surrogate 

Lagrangian Relaxation   

Convergence of Distributed and Asynchronous Surrogate 

Lagrangian Relaxation (DA-SLR) is proved in three stages.  In 

Stage 1, it is proved that “surrogate” dual values approach dual 

values and multipliers approach the optimum “infinitely often” 

(Propositions 1-4).  In Stage 2, the Lyapunov function is 

introduced as the square of distances from multiplies to the 

optimum, and the upper bound on Lyapunov functions is 

developed (Propositions 5-6).  In Stage 3 it is proved that the 

upper bound on Lyapunov functions approaches zero thereby 

leading to convergence of multipliers (Proposition 7).   

 

Stage 1. Convergence of “surrogate” dual values to dual 

values   

 

It is assumed that subproblem solving times as well as 

communication times are finite, which is equivalent to the 

following “freshness” Assumption:  

 

Assumption 2. Freshness. There exists D > 0 such that within 

any consecutive D coordinator multiplier-updating iterations, 

all subproblem solutions arrive to the coordinator at least once.  

 

Indeed, if solving and communication times are bounded, then 

each subproblem solution should arrive at the coordinator at 

least once within a finite number of iterations.  

Since subproblems are solved subject to the “surrogate” 

optimality condition (4), rather than obtaining dual values as 

within standard LR, “surrogate” dual values are obtained, 

which are generally above the dual surface.  To prove this, 

Propositions 1-2 will first prove that subproblem solutions 

satisfying (4) converge their optimal values.   

 

Proposition 1. Convergence to optimal subproblem 

solutions for fixed .  Assuming that subproblem solutions 

satisfy the surrogate optimality condition (4), for each 

subproblem j and there exist finite K’j such that the subproblem 

solution is optimal for multiplier values : 

  
'

*jK

j jx x  .  (11) 

 

Proof: As explained in subsection II.D, an optimal subproblem 

solution is obtained by branch-and-cut within a finite number 

of steps.  A subproblem-feasible solution satisfying (4) is also 

obtained within a finite number of steps.  Since multipliers are 

assumed to be constant here, (4) implies the decrease of 

subproblem objective function.   Essentially, branch-and-cut 

will continue to search along the unexplored nodes of the 

branch tree trying to find a lower objective function value until 

the subproblem-optimal solution is obtained. □ 

  

The limitation of Proposition 1 is that it is proved for a 

fixed set of multipliers.  Within DA-SLR, multipliers are 

updated, and, therefore, the objective functions of subproblems 
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(3) will change.  In turn, this will affect the optimal solution of 

a subproblem.  Proposition 2 removes this limitation.   

 

Proposition 2. Convergence to optimal subproblem 

solutions.  Assuming that subproblem solutions satisfy (4), then 

for each subproblem j there exist finite Kj (> K’j) such that 

solution to subproblem j is optimal for multiplier values jK
 : 

  *j jK K

j jx x  .  (11) 

 

Proof: As proved in Proposition 1, for K’
j and fixed

'
jK

 , a 

subproblem-optimal solution is
'

*( )jK

jx  .  What remains to prove 

is that when multipliers are updated, there exist Kj (> K’j) such 

that optimal solutions at 
'
jK

 and jK
 are the same:  

    
'

* *j jK K

j jx x  .  (12) 

To prove (12), introduce the following operator:  

      ( ) ( ) arg min ( ) ( )
j

T T

j j j j j j j j
x

A f x g x f x g x    .  (13) 

Because subproblems are defined over bounded sets Xj, 

solutions are finite and the following inequality holds:  

   ( ) ( )
T

j j j jA f x g x   .  (14) 

The operator A is thus bounded [43].  Therefore, there exists a 

finite constant C’A > 0 such that the following inequality holds:  

      '( ) ( ) ( ) ( )
T T

j j j j A j j j jA f x g x C f x g x    .  (15) 

To establish (12), consider the following norm:      

    
'

* *j jK K

j jx x  .  (16) 

Using (13), equation (16) can be rewritten as:  

    
'

( ) ( ) ( ) ( )j j

T T
K K

j j j j j j j jA f x g x A f x g x 
   

    
  

.  (17) 

Because Xj is bounded, subproblem objective functions (3) take 

on finite values, therefore, the following inequality also holds: 

 

   

   

   

'

'

'

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) .

j j

j j

j j

T T
K K

j j j j j j j j

T T
K K

A j j j j j j j j

T T
K K

A j j

A f x g x A f x g x

C f x g x f x g x

C g x

 

 

 

   
     

  

   
     

  

 
 

 

  (18) 

Here, CA is a finite positive constant.  Using the Cauchy-

Schwarz inequality, equation (18) becomes: 

 
   

'

'

( ) ( ) ( ) ( )

( ) .

j j

j j

T T
K K

j j j j j j j j

K K

A j j

A f x g x A f x g x

C g x

 

 

   
     

  



  (19) 

Since gj(xj) is a component of constraint violations, Assumption 

1 is applicable, therefore: 

    
' '

* * .j j j jK K K K

j j Ax x C C        (20) 

Since stepsizes (7)-(8) approach zero [23], there exist iteration  

K’
j and Kj such that for any  > 0 the following inequality holds:  

  
'

2 '

jK

A j j

s
C C K K





.  (21) 

Therefore, 

  
 

 
'

'
1

2 '
.

j
j j

i
j

K
j jK K i i

i K AA j j

C K K
g x s

C CC C K K

 
 








   


  (22) 

From (20) and (22) is follows that 

    
'

* * .j jK K

j jx x      (23) 

As reviewed in Section II, subproblem convex hulls contain a 

finite number of vertices, each corresponding to a feasible 

solution. Moreover, it can be assumed that distances between 

any two adjacent vertices are greater than .  Therefore, optimal 

solutions at iterations K’
j and Kj are the same and (12) holds.  

Since it takes a finite number of iterations to obtain  
'

* jK

jx 

without updating multipliers, it will also take a finite number of 

iterations to obtain  * jK

jx   when multipliers are updated. □ 

 

Proposition 3.  Convergence of “surrogate” dual values to 

dual values.  With stepsizing formula (7)-(8), Lagrange 

multipliers (5) converge to a unique fixed point 

 k  ,  (24) 

(not necessarily *), and surrogate dual values approach dual 

values:  

  ( , )kL x q  , (25) 

where 

 ( ) min ( , )
x X

q L x 


 ,  (26) 

is a dual value obtained by solving all subproblems optimally 

and 

  
1

( , ) ( ) ( )
I Tk k k

i i
i

L x f x g x 


  ,  (27) 

is a “surrogate” dual value obtained after solving one or few 

subproblems subject to the surrogate optimality condition (4).  

 

Proof: As proved in [23], stepsizes (7)-(8) approach zero. To 

prove that surrogate dual values approach dual values, consider 

first the surrogate optimality condition for one subproblem j:  

            1 1 1 1 .
T T

k k k k k k
j j j j j j j jf x g x f x g x        (28) 

By using (5), inequality (28) can be rewritten as:  

 
     

       

1 1 1

2

.

T
k k k

j j j j

T
k k k k k

j j j j j j

f x g x

f x g x s g x





   

 

 (29) 

The inequality (29) can then be equivalently rewritten as: 

 
           

 

1 1 1

2

.

T T
k k k k k k

j j j j j j j j

k k
j j

f x g x f x g x

s g x

      
 (30) 

As stepsizes approach zero, there exists 𝜅 so that for all k > 𝜅 

and all 𝜀 > 0, the following inequality holds:  

 
           

 

1 1 1

2
2.

T T
k k k k k k

j j j j j j j j

k
j j

f x g x f x g x

g x C

 

 

     



 (31) 

Therefore,       
T

k k k
j j j jf x g x  forms a convergent sequence: 

            
T Tk k k

j j j j j j j jf x g x f x g x      .  (32) 
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Indeed, as proved in Propositions 1-2, subproblem solutions 

approach a limit, which here is denoted as 
jx .  Moreover, the 

situation whereby 

    
T

k k
j jg x    (33) 

is impossible.  Multipliers cannot grow without bound because 

that would imply that there is always positive or always 

negative constraint violation,2 implying infeasibility of (1)-(2), 

which is impossible.  From Assumption 2, within any 

consecutive D iterations, all subproblem solutions arrive to the 

coordinator at least once.  Moreover, by Propositions 1-2, 

subproblem feasible solutions are obtained within a finite 

number of iterations.  Therefore, optimal solutions to all 

subproblems are obtained within a finite number of iterations, 

implying that “surrogate” dual values approaches dual values:  

  ( , )kL x q  as 0ks  .                          □  (34) 

 

Proposition 4. “Rate of Convergence” [23, p. 187]. When 

stepsizes are updated per (7)-(8), there exists  > 0 and the 

following condition is satisfied “infinitely often” 

 2
* *( , ) ,k k kq L x k       .  

(35) 

Here   is an infinite subset of natural numbers. 

 

Proof: If condition (35) is not satisfied infinitely often for  > 

0, then starting from iteration 𝜅, the following inequality holds:  

 2
* *( , ) ,k k kq L x k        . (36) 

There are three cases:  

 

Case 1: The left-hand side of (36) is negative.  Surrogate dual 

values are greater than q* for all k > 𝜅, which contradicts 

Proposition 3 that states that surrogate dual values approach 

dual values. 

 

Case 2: The left hand-side of (36) is positive, and 
* ( , )k kq L x    for some 0   and k’ > k > 𝜅, then there exists 

'

2
* '

0
k




 
 


, and the following condition holds:  

 2
* ' ' ' * '( , )k k kq L x      .  (37) 

There is a contradiction with (36) because in this case it is 

possible to find ' 0   that satisfies (35).  

 

Case 3: The left hand-side of (36) is positive, but infinitesimally 

small, * ( , )k kq L x    for all 0  , then surrogate dual values 

approach q*.  Since, by Proposition 3, surrogate dual values 

approach dual values, then dual values approach the optimal 

dual value and convergence to the optimum is immediate.  □ 

 

Stage 2. Development of an upper bound for Lyapunov 

functions  

 

In this Stage, the Lyapunov function is defined as  

  
2

*k kV     ,  
(38) 

                                                           
2 If there are inequality constraints, then the violation would be positive.  

which is the square of the distance from current to optimal 

multipliers.  Because subproblem solving times and 

subproblem-coordinator communication times are uncertain, 

different sequences of subproblem solutions arriving at the 

coordinator lead to different trajectories of multipliers.  As a 

result, the exact representation of the Lyapunov function is 

unknown.  To resolve this issue, an upper bound of the 

Lyapunov function is derived in Propositions 5-6 as an 

envelope of all possible Lyapunov functions for any sequence 

of subproblems arriving to the coordinator.  Two inequalities 

are derived based on whether condition (38) holds or not in 

Proposition 5.  In Proposition 6, these inequalities are combined 

to derive an upper bound on all possible Lyapunov functions.  

 

Proposition 5. As proved in [23, p. 187], under condition (35) 

and assuming that stepsizes are “sufficiently small” 1/ (2 )ks 

the following inequality holds:  

 2 2 2
* 1 * 2(1 2 ) ( ) ( )k k k k ks s g x          . (39) 

If condition (35) is not satisfied or stepsizes are not “sufficiently 

small” 1/ (2 )ks  , then the following inequality holds: 

  
2 2

* 1 *

2

1 ( )

1
( ) ( ) ( ) , 0.

k k k k k

k k k k

k

s g x

s g x g x

    




     

 
   
 

 

 

(40) 

 

Proof: Inequality (39) has been derived in [23, Proposition 2.5]. 

To derive inequality (40) consider 

 

 

2
* 1

2 2
* * 22 ( ) ( ) ( ) .

k

k k k k k ks g x s g x

 

   

 

   

 

 

(41) 

By using the Cauchy-Schwarz inequality, (41) becomes: 

 2
* 1

2 2
* * 22 ( ) ( ) ( ) .

k

k k k k k ks g x s g x

 

   

 

    

 

 

(42) 

The right-hand side of (42) contains the Lyapunov function 
2

* k  at iteration k as well as its square root * k  .  In 

order to express the inequality (42) in terms of the Lyapunov 

function, the basic inequality 2 21
2ab a b


   [15] is used and 

the inequality (42) becomes 

 2 2 2
* 1 * *

2
2 2

( )

1
( ) ( ) ( ) ( ) .

k k k k k k

k k k k

k

s g x

s g x s g x

      



      


 

 

(43) 

Therefore, 

  
2 2

* 1 *

2

1 ( )

1
( ) ( ) ( ) .

k k k k k

k k k

k

s g x

s g x g x

    



     

 
  
 

     

 

(44) 

 

In Proposition 6 below, an upper bound on Lyapunov 

functions at iteration k+1 in terms of Lyapunov functions at 

iteration 0 is derived by induction taking into account all 

possible realizations of Lyapunov functions.   
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Proposition 6. Upper bound for Lyapunov functions. The 

following upper bound is valid for Lyapunov functions:  

 
 

     

     

2
1 * 0

0

1 2

0 1

2

1

1
, 1,

k
k i

i

kk
j j j l

j
j l j

k k k

k

V P

s g x g x P

s g x g x k

  











  



 

  

  
    

  

 
  

 

 

 

(45) 

where  1 2i iP s    if condition (35) holds at iteration i, and 

  1i i i iP s g x   otherwise.  

 

Proof: Proof will follow by induction by first proving that the 

equation is true when k = 1, then assuming it is true for k, 

showing it is true for k+1. 

 

Before starting the induction, consider the situation 

whereby k = 0.  If condition (35) is satisfied, then inequality 

(39) holds for k = 0:   

      
222 2

* 1 * 0 0 0 01 2s s g x         . (46) 

If (2356) is not satisfied, then inequality (40) holds for k = 0:  

   

     

2 2
* 1 * 0 0 0 0

2
0 0 0 0

0

1

1
, 0.

s g x

s g x g x

    




    

 
  

 

 

 

(47) 

Since the term      
2

0 0 0

0

1
s g x g x



 
 

 
which appears in (47) 

is greater than    
22

0 0s g x which appears in (46), the following 

expression is the upper bound for 
2

* 1  :  

 

     

2 2
* 1 * 0 0

2
0 0 0 0

0

1
, 0,

P

s g x g x

   




   

 
  

 

 

  

(48) 

where  0 01 2P s    if condition (35) holds at k = 0, and 

  0 0 0 01P s g x   if condition (35) does not holds at k = 0.  

The inequality (48) is indeed an upper bound of 
2

* 1   

because if condition (35) does not hold, then (48) reduces to 

(47), and if condition (35) holds, then (48) reduces to (46) plus 

a positive extra term
   

2
0 0

0

s g x


.   

 

Following the same logic, the following holds for k = 1:  

 
     

     

     

22 2
* 2 * 1 1 1 1 1

1

22
* 0 0 1 0 0 0 1

0

2
1 1 1

1

1

1

1
,

P s g x g x

P P s g x g x P

s g x g x

   


 




 
      

 

 
    

 

 
 

 

 (49) 

where  1 11 2P s    if condition (35) holds at k = 1, and 

  0 1 1 11P s g x   if condition (35) does not holds at k = 1.  

Inequality (49) is indeed the same as inequality (45) for k = 1.  

What remains to prove is that assuming that (45) holds at 

iteration k, it also holds for k+1: 

 

     

     

12 2
* 2 * 0

0

12

0 1

2
1 1 1

1

1

1
.

k
k i

i

kk
j j j l

j
j l j

k k k

k

P

s g x g x P

s g x g x

   












  

  





 

   

  
    

  

 
 

 

 

 

(50) 

The validity of (50), will be derived using the same logic as that 

used in deriving (48). Consider the following inequality: 

 

     

2 2
* 2 * 1 1

2
1 1 1

1

1
,

k k k

k k k

k

P

s g x g x

   



  

  



   

 
 

 

 

 

(51) 

After substituting the expression for 
2

* 1k   from (45) into 

(51) one obtains the following inequality:  

 

     

     

     

2
* 2

2
* 0

0

1 2
1

0 1

2

2
1 1 1

1

1

1

1
.

k

k
i

i

kk
j j j l k

j
j l j

k k k

k

k k k

k

P

s g x g x P P

s g x g x

s g x g x

 

 














  

  





 

 

 
  
 
 

           
  

   
  

 
  

 

 

 

(52) 

The inequality (52) simplifies to the following: 

 

     

     

     

12 2
* 2 * 0

0

1 2
1

0 1

2
1

1

2
1 1 1

1

1

1

1
.

k
k i

i

kk
j j j l k

j
j l j

k k k k

k

k k k

k

P

s g x g x P P

s g x g x P

s g x g x

   















  





  





 

   

   
      

   

 
  

 

 
 

 

 

 

(53) 

After further simplifications, the inequality (53) becomes: 

 

     

     

12 2
* 2 * 0

0

12

0 1

2
1 1 1

1

1

1
.

k
k i

i

kk
j j j l

j
j l j

k k k

k

P

s g x g x P

s g x g x

   












  

  





 

   

  
    

  

 
 

 

 

 

(54) 

The inequality (54) is the sought-for inequality (45). 

 

Stage 3. Convergence of the upper bound to zero.   

In this Stage, it is proved that the upper bound on the 

Lyapunov function defined in (45) asymptotically approaches 

zero, thereby leading to convergence of multipliers to 𝜆∗.   
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Proposition 7. Proof of Convergence. If stepsizes are updated 

per (7)-(8), then 𝜆𝑘 → 𝜆∗ as 𝑘 → ∞.  

 

Proof: In order to prove that 𝜆𝑘 → 𝜆∗, it is necessary to prove 

that the upper bound on Lyapunov function (right-hand side of 

(45)) approaches zero.  This leads the Lyapunov function to 

converge to zero and to the convergence of multipliers.   

Since 𝜆∗ that maximizes the dual function (26), is assumed 

to exist, the term 
2

* 0   is finite.  Therefore, it is sufficient 

to prove that the following expression approaches zero:  

    
1 1 1

0 0: / 0:

1 ( ) 1 2
k k k

i i i k i

i i i i i

P s g x s 
  

     

     , 
 

(55) 

where ℵ is the set is iteration numbers whereby inequality (39) 

holds, and  is the set of natural numbers.   

 To prove that (55) approaches zero, the stepsizing formula 

(7)-(8) is plugged in first, then the resulting function is upper-

bounded by using standard functions and their asymptotical 

representation, then, though algebraic manipulations, the 

condition for i is derived to ensure that (55) approaches zero.  

By exploiting the fact that set ℵ  is a proper subset of natural 

numbers   and that each term  1 ( )i i is g x  is greater 

than 1, the following inequality holds: 

    

 

1 1

0: / 0:

1 1
0 0

0: 1 0:

1 ( ) 1 2

1 2 ( ) 1 2 .

k k
i i i i

i i i i

k i k
i i

j
i i j i i

s g x s

s g x s

 

  

 

    

 

    

 

  

  

  
   

  

 

 

(56) 

Assuming that condition (35) is satisfied at least every N (< ∞) 

iterations the entire expression (56) is upper-bounded as:  

    

 

1 1

0: / 0:

1
0 0

0: 1

0 0
1 /

0 1

1 ( ) 1 2

1 2 ( )

( )
1 2 .

( )

k k
i i i i

i i i i

k i
i

j
i i j

k N iN

j i
i j

s g x s

s g x

s g x

g x

 

 




 

    



  

  

 

 

 

 

  

  
   

  

 
    

  
 

 

 

(57) 

If such N does not exist and condition (35) does not hold 

infinitely often, then there is a contradiction with Proposition 3.  

To prove that the right-hand side of (57) approaches zero, 

consider 𝛼𝑘 from (8) which asymptotically behaves as 1 −
1

𝑀𝑘
 

as 𝑘 → ∞ [23], therefore, asymptotically, the right hand-side of 

(57) becomes 

 
0 0

0: 1

0 0

0 1

1
1 2 1 ( )

( )1
1 2 1 .

( )

i
i

i i N j

iN

i
i j

s g x
Mj

s g x

Mj g x







  



 

 

 

  
     

  

  
   
   

 

 

(58) 

The product 
1

1
1

i

j Mj


 
 

 
can be expressed in terms of a 

“Pochhammer function,” [44] which asymptotically behaves as 
1

1
1

M
M

i
M




  
     

 [44] where 𝛾 is the Euler’s gamma function.  

Therefore, asymptotically, (58) approaches the following 

expression:   

 

 

0 0 0 0

1 1
0 0

2 ( ) 2 ( )
1 1 .

11 ( )

i

i i iN
M M

s g x s g x

MM g x iNi
MM

 



 

 

 

   
   
    
     
           

 (59) 

After regrouping terms, (59) becomes 

 

 

0 0

1
1

1

0 0

1

2 ( )
1

1

2 ( )
1

1
( )

i
jN

i N jN
M

j

jN
M

s g x

M
i

M

s g x

M
g x jN

M









  









  
  
   
       
   
 
  
  
  

   
   
   

. 

 

(60) 

After expanding the inner product, and ignoring involving 
(𝑗)−2/𝑀 and higher order terms, (60) becomes 

 

 

0 0 0 0

1 1
11

2 ( ) 2 ( )
1 .

11 ( )

i
jN

i N jNj jN
M M

s g x s g x

MM g x jNi
MM

 





  



 
 
  
   
       

 

 

(61) 

To ensure that products involve terms less than 1 each, consider  

 

 

0 0

1

1 ,...,

1 1

2 ( )
1

1

max

( )(1 )

ij

i N jN jN

jN
M M

s g x

M

M

N

g x jNN jN










  



 
  

  
  
  

  
  

  
     

. 

 

(62) 

To ensure that every terms is less than 1, consider  

 

 

1

1

(1 )
,

( )

1 ,..., , 1,2,....

M
i

jN
M

N jN

N g x jN

i N jN jN j




 


   

 

 

(63) 

The second term of the right-hand side of (45) also approaches 

zero, because it involves similar products as in (55), and the 

proof follows exactly the same logic. The last term in the right-

hand side of (45) approaches zero because stepsizes approach 

zero.  □                           

IV. NUMERICAL TESTING 

The purpose of this section is to demonstrate performance 

of the Distributed and Asynchronous Surrogate Lagrangian 

Relaxation (DA-SLR) method.  In Example 1, a small integer 

linear problem is considered to demonstrate that the Lyapunov 

function approaches zero fast.  In Example 2, a generalized 

assignment problem with 20 machines and 1600 jobs is 

considered to demonstrate capability of DA-SLR to solve large-

scale optimization problems fast with near-optimal 

performance.  Because of difficulties associated with other 

methods as reviewed in Literature Review, subsection II.B and 

space limitations, comparison of DA-SLR is performed against 

its sequential version – SLR [23] only, which, in turn, has been 

shown to outperform other previous coordination methods in 

[24].  The DA-SLR method is implemented using IBM ILOG 

CPLEX Optimization Studio Version: 12.7.1.0 on a PC with 

3.10GHz Intel(R) Xeon(R) CPU and 32G RAM.   
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Example 1.  A Small Integer Programming Problem. 

Consider the following integer optimization problem   

  
 

1 2 3 4 5 6

1 2 3 4 5 6
, , , , ,

min 2 3 2 3
x x x x x x

x x x x x x


       (64) 

 

1 2 3 4 5 6

1 2 3 4 5 6

. .

3 5 3 5 26 0,

2 1.5 5 2 0.5 16 0,

0 3, 1,...,6.i

s t

x x x x x x

x x x x x x

x i

      

      

  

 

 

(65) 

After constraints (65) are relaxed by using multipliers 1 and 

2, the Lagrangian function becomes  

 1 2 3 4 5 6 1 2

1 2 3 4 5 6

1 1 2 3 4 5 6

2 1 2 3 4 5 6

( , , , , , , , )

2 3 2 3

( 3 5 3 5 26)

( 2 1.5 5 2 0.5 16).

L x x x x x x

x x x x x x

x x x x x x

x x x x x x

 







     

       

      

 

 

(66) 

The relaxed problem is then separated into six individual 

subproblems, one for each variable:  

 
1

1 1 1 2 1

1

min{ 2 },

. .0 3,

x
x x x

s t x

 


 

 
 

2

2 1 2 2 2

2

min{2 3 1.5 },

. .0 3,

x
x x x

s t x

 


 

 
 

3

3 1 3 2 3

3

min{3 5 5 },

. .0 3,

x
x x x

s t x

 


 

 
 

4

4 1 4 2 4

4

min{ 2 },

. .0 3,

x
x x x

s t x

 


 

 
 

5

5 1 5 2 5

5

min{2 3 0.5 },

. .0 3,

x
x x x

s t x

 


 

 
 

6

6 1 6 2 6

6

min{3 5 },

. .0 3.

x
x x x

s t x

 


 

 
 

 

(67) 

 

Derivation of dual function and optimal multipliers. Since 

the purpose of this example is to demonstrate convergence of 

multipliers to their optimal values, the knowledge of the dual 

function and optimal multipliers is needed.  The dual function 

is obtained by minimizing the Lagrangian function (66) by 

using software Mathematica [45], which allows symbolic 

manipulations.  Because of technical limitations that do not 

allow performing symbolic minimization with respect to 6 

integer variables, the dual function is obtained iteratively.  The 

Lagrangian function is minimized over {x1, x2, x3} and the 

resulting function is minimized over {x4, x5, x6}. The analytical 

expression for the dual function then becomes:    

                                                           
3 https://5g.co.uk/guides/how-fast-is-5g/ 

 

 1 2 3 4 5 6

1 2 1 2 3 4 5 6 1 2
, , , , ,

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1

( , ) min ( , , , , , , , )

26 16 ,  if 0.6,  2 1

6 20 4 ,  if 0.6,  2 1

21 4 15.5 ,  if 3 1.5 2,  5 3

18 2 2 ,  if 5 3,  2 1,  3

x x x x x x
q L x x x x x x   

     

     

     

      

 

    

     

     

      2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

0.5 2

30 19 18.5 ,  if 5 3,  2 1,  3 0.5 2

9 11 ,  if 0.6, 5 3, 2 1

18 4 2 ,  if 5 3, 3 0.5 2

15 5 11 ,  if 0.6,  2 1, 3 0.5 2

24 13 6.5 ,  if 



       

       

     

       

 

 

       

       

     

       

  1 2 1 2 1 2

1 2 1 2 1 2

3 1.5 2,  2 1,  3 0.5 2

30 22 8 ,  if 3 0.5 2,  2 1

0,  otherwise. 

     

     















     
      



(68) 

By maximizing the dual function (68) over 1 and 2 in 

Mathematica, the optimal dual value and optimal multipliers are 

obtained as:  
* *
1 2( , ) 15.6q    , with *

1 0.6  and *
2 0  .             (69) 

 

Initialization. The stepsize is initialized by using [23, eq. (76), 

p. 190], whereby the optimal dual value q* from (69), rather 

than its estimate, is used.  Multipliers are initialized at zero. 

 

Simulation. Because of the lack of distributed computing and 

communicating facilities, asynchronous coordination is 

simulated by simulating subproblem-solving, multiplier-

updating, and communication times.  Simulated solving an 

updating times are based on real times obtained by SLR first.    

According to the SLR results, subproblem solving times 

range from 2 millisecond (ms) to 115 ms with an average value 

of 5.36 ms.  The multiplier-updating time is either 0 or 1 ms 

with an average value of 0.036 ms (the updating time is very 

short and the time resolutions within OPL CPLEX is 1 ms).  

Subproblem-solving and multiplier-updating times, thus, 

follow empirical distributions, which for simulation purposes 

are used to generate solving and updating times using discrete 

random number generators in MS Excel [48].  Communication 

time between the coordinator and subproblem solvers is 

randomly generated following a uniform distribution U[0.95, 

1.05] as the average wireless 5G speed is 1 ms.3  Based on the 

above data, absolute arrival times (time when one subproblem 

solver finishes solving one subproblem + communication time) 

of subproblem solutions are computed.  Based on these absolute 

time stamps, a sequence of subproblem solution arrivals to the 

coordinator is obtained.  Given solution arrival times, the 

sequence, and the multiplier-updating time, the set of latest 

subproblem solutions used to update multipliers at each 

coordinator iteration is determined.  Then the time of multiplier 

arrivals to each subproblem solver is obtained.  Given the time 

when one subproblem solver starts solving, appropriate 

multipliers to be used are also determined based on multiplier 

arrival times.  In simulations, subproblems are solved and 

multipliers are updated based on simulated sequences, which 

are, in turn, based on empirical distributions as described above.  

To test robustness of the method DA-SLR, 10 testing cases are 

generated following the above procedure.  To demonstrate 

https://5g.co.uk/guides/how-fast-is-5g/
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convergence of DA-SLR when there is a “slow” subsystem, 

another testing case with one “slow” subproblem solver is also 

considered.  The solving time of the “slow” subproblem solver 

is assumed to range from 20 ms to 450 ms.  Other five 

subproblem solver remain the same.  For comparison purposes, 

one more testing case with a “slow” subsystem is also generated 

for sequential SLR.      

 

Results. Distances from multipliers to the optimum, which are 

square a square roof of Lyapunov functions, for DA-SLR 

(average, minimum and maximum over 10 cases) and SLR are 

shown in Fig. 2.  The results for the case with a “slow” 

subsystem are shown in Fig. 3. 

 
Fig. 2. Distances from multipliers to the optimum (square root of Lyapunov 

function) within DA-SLR and SLR  

 

As demonstrated in Fig. 2, average as well as minimum and 

maximum values of Lyapunov functions within DA-SLR while 

non-monotonic, approach zero fast.  Moreover, distances to the 

optimum within DA-SLR approach zero faster, as compared to 

those within SLR.   

 
Fig. 3. Distances from multipliers to the optimum (square root of Lyapunov 

functions) within DA-SLR and SLR for a system with one “slow” subsystem; 
comparison with results of Fig 2.  

 

As demonstrated in Fig. 3, when there is a “slow” 

subsystem, distances to the optimum within DA-SLR also 

approach zero.  While in this case, the Lyapunov function 

approaches zero slower than within the system without “slow” 

subsystems, and still faster than within SLR.      

 

Example 2.  Generalized Assignment Problems [23, 24, 46, 

47]. The Generalized Assignment Problem (GAP) can be 

viewed as a futuristic and albeit simplified optimization 

problem that arises within “factories of tomorrow,” whereby 

each machine or a job will have computational and 

communicational capabilities.  The DA-SLR method will then 

serve as a foundation for self-optimization to efficiently 

coordinate machines and jobs.   

 

Problem formulation. Mathematically, the generalized 

assignment problem is formulated in the following way:  

 ,

, ,
1 1

min
i j

I J

i j i j
x i j

g x
 

  ,  

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    , 
(70) 

 , ,
1

. . , 1,...,
I

i j i j j
i

s t a x b j J


   , (71) 

 ,
1

1, 1,...,
J

i j
j

x i I


   , (72) 

where I is the number of jobs and J is the number of machines, 

ai,j is the time required by machine j to perform job i, and gi,j is 

the cost of assigning job i to machine j.  Capacity constraints 

(71) ensure that the total amount of time required by the jobs to 

be performed on machine j does not exceed its available time 

bj.  Assignment constraints (71) ensure that each job is to be 

performed on one and one machine only.     

 

Relaxed problem. After relaxing assignment constraints (72), 

the relaxed problem is formulated in a separable form as follows 

[23]:    

 

   
, ,

, ,
1 1 1

min , min
i j i j

I J J

i j i i j i
x x i j i

L x g x  
  

     , 

, ,
1

. . , 1, ...,
I

i j i j j
i

s t a x b j J


  

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    . 

(73) 

 

Subproblems. The above relaxed problem (73) is decomposed 

into J individual machine subproblems, and subproblem j is 

formulated as follows: 

 
 

,

, ,
1

min
i j

I

i j i i j
x i

g x


  , , ,
1

. . ,
I

i j i j j
i

s t a x b


 

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    . 
(74) 

These subproblems are solved using branch-and-cut 

implemented in CPLEX.  The simulation follows the same 

process as that explained in Example 1.  The resulting 

subproblem solving times follow uniform distributions U[0.15, 

0.20], and updating times follow U[0.01, 0.02].  

Communication times follow the same 5G assumption with 

uniform distribution U[0.95, 1.05].   

 

Initialization. The stepsize is initialized by using [23, eq. (76), 

p 190], whereby an estimate of the optimal dual value q* is used.  

This estimate is obtained by solving (70)-(72) after relaxing 

integrality requirements.  Initial values of multipliers are 

obtained based on heuristic initialization rules following [47], 

whereby the second highest cost of assigning a job is used.   
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Results. Because this example is complicated, optimal 

multipliers are difficult to obtain.  Therefore, Lyapunov 

functions are not plotted.  Rather, dual values and feasible costs 

obtained by using DA-SLR and SLR and are plotted in Fig. 4 

 
Fig. 4. Performance of DA-SLR and comparison against SLR using 

parameters M = 75 and r = 0.05 for solving the GAP d201600 instance 

 

 Fig. 4 demonstrates performance of DA-SLR for the GAP 

d201600 instance with 20 machines and 1600 jobs.  The dual 

value is obtained every 500 iterations by solving all 

subproblems to optimality.4  As shown in Fig. 4, with 

asynchronous coordination, a feasible cost 97,852 is obtained 

with a duality gap of 0.0316% after 78 seconds.  This 

demonstrates that DA-SLR converges and finds high-quality 

solutions significantly fast.  As shown in Fig. 4, within SLR, 

the best feasible cost 97,855 is obtained with a duality gap of 

0.0332% after 950 seconds. 

 
Fig. 5. Performance of DA-SLR and comparison against SLR using 

parameters M = 75 and r = 0.05 for solving the GAP d201600 instance 

 

As demonstrated in Fig. 5, within DA-SLR surrogate 

subgradient norms reduce fast, and faster than within its 

sequential SLR version.   

                                                           
4 It is expected that surrogate dual value approach dual values at convergence, 

but for demonstration purposes, dual values are obtained every 500 iterations.  

V. CONCLUSION 

 In anticipation of trends toward self-optimizing factories, 

there is a need for efficient asynchronous price-based 

coordination of distributed subproblems.  The novel distributed 

and asynchronous Surrogate Lagrangian Relaxation is 

developed and convergence is proved based on the novel use of 

Lyapunov energy function without requiring its strict 

monotonic decrease for convergence.  Numerical results 

demonstrate that the novel approach converges fast.  With this 

effective distributed and asynchronous coordination, the 

method has a strong potential to be used in future self-

optimizing factories to coordinate machines and in future power 

systems to efficiently coordinate distributed energy resources.   

REFERENCES  

1. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, 

“Internet of Things: A Survey on Enabling Technologies, Protocols, and 

Applications,” in IEEE Communications Surveys and Tutorials, vol. 17, no. 4, 
pp. 2347-2376, Fourthquarter 2015. doi: 10.1109/COMST.2015.2444095  

2. S. Li, L.D. Xu, and S. Zhao, “The internet of things: a survey,” Inf. Syst. 

Front., vol. 17, no. 2, pp. 243–259, 2015. https://doi.org/10.1007/s10796-014-
9492 

3. J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture 

for industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18–23, 
Jan. 2015  

4. T. Stock and G. Seliger, “Opportunities of sustainable manufacturing in 

industry 4.0,” Procedia CIRP, vol. 40, pp. 536–541, Jan. 2016. 
5. A. Giret, D. Trentesaux, and V. Prabhu, “Sustainability in manufacturing 

operations scheduling: A state of the art review,” J. Manuf. Syst., vol. 37, pp. 

126–140, 2015.  
6. C. Gahm, F. Denz, M. Dirr, and A. Tuma, “Energy-efficient scheduling in 

manufacturing companies: A review and research framework,” Eur. J. Oper. 

Res., vol. 248, no. 3, pp. 744–757, 2016.  
7. M. L. Fisher, “Optimal solution of scheduling problems using Lagrange 

multipliers, Part I,” Operations Res., vol. 21, pp. 1114-1127, 1973. 

8. M. L. Fisher, “Lagrangian relaxation method for solving integer 
programming problems,” Manag. Sci., vol. 27, pp. 1-18, 1981. 

9. M. L. Fisher, B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan, 

“Surrogate duality relaxation for job shop scheduling,” Discrete Appl. Math., 
vol. 5, pp. 65-75, Jan. 1983. 

10. D. J. Hoitomt, P. B. Luh, K. R. Pattipati, “A Practical Approach to Job Shop 

Scheduling Problems,” IEEE Transactions on Robotics and Automation, vol. 9, 
no. 1, pp. 1-13, February 1993. 

11. X. Guan, P. B. Luh, H. Yan and P. M. Rogan, “Optimization-based 

Scheduling of Hydrothermal Power Systems with Pumped-storage Units,” 
IEEE Trans. Power Syst., vol. 9, no. 2, pp. 1023-1031, 1994.  

12. N. Z. Shor, “On the Rate of Convergence of the Generalized Gradient 
Method,” Cybernetics, vol. 4, no. 3, pp. 79-80, 1968. 

13. N. Z. Shor, “Generalized Gradient Methods for Non-smooth Functions and 

Their Applications to Mathematical Programming Problems,” Econ. Math. 
Methods, vol. 12, no. 2, pp. 337–356, 1976 (in Russian) 

14. A. Nedić and D. Bertsekas, “Convergence Rate of Incremental Subgradient 

Algorithms,” in Stochastic Optimization: Algorithms and Applications, pp. 
223-264, Springer, Boston, MA, 2001 

15. A. Nedić, D. P. Bertsekas and V. S. Borkar, “Distributed Asynchronous 

Incremental Subgradient Methods,” Studies in Computational Mathematics, 
vol. 8, pp. 381-407, 2001 

16. F. Iutzeler, P. Bianchi, P. Ciblat and W. Hachem, “Explicit convergence 

rate of a distributed alternating direction method of multipliers,” IEEE 
Transactions on Automatic Control, vol. 61, no. 4, pp. 892-904, 2016 

17. E. Wei and A. Ozdaglar, “On the O(1/k) Convergence of Asynchronous 

Distributed Alternating Direction Method of Multipliers,” In Global conference 
on signal and information processing (GlobalSIP), pp. 551-554, 2013 

18. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Distributed 

Optimization and Statistical Learning via the Alternating Direction Method of 

97790

97800

97810

97820

97830

97840

97850

97860

97870

97880

0 200 400 600 800 1000

C
o

st

Simulated Time (sec)

Feasible cost (DA-SLR)

Lower bound (DA-SLR)

Feasible cost (SLR)

Lower Bound (SLR)

0

100

200

300

400

500

600

0 200 400 600 800 1000

N
o

rm
 S

q
u

ar
ed

Simulated Time (sec)

DA-SLR SLR

https://doi.org/10.1007/s10796-014-9492
https://doi.org/10.1007/s10796-014-9492
https://msl.engr.uconn.edu/paper/hoitmot/PracticalJobShop93.pdf
https://msl.engr.uconn.edu/paper/hoitmot/PracticalJobShop93.pdf


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

 

13 

Multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 

1-122, 2010 

19. R. Zhang and J. T. Kwok, “Asynchronous distributed ADMM for consensus 

optimization,” in Proc. 31th ICML, Beijing, China, Jun. 21–26, 2014, pp. 1–9  

20. Y. Wang, L. Wu, and S. Wang, “A Fully-Decentralized Consensus Based 
ADMM Approach for DC-OPF With Demand Response,” IEEE Transactions 

on Smart Grid, vol. 8, no. 6, pp. 1–11, 2016  

21. Y. Wang, L. Wu, and J. Li, “A fully distributed asynchronous approach for 
multi-area coordinated network-constrained unit commitment,” Optim. Eng., 

vol. 19, pp. 419–452, 2018.  

22. X. Zhao, P. B. Luh and J. Wang, “Surrogate Gradient Algorithm for 
Lagrangian Relaxation,” Journal of Optimization Theory and Applications, vol. 

100, no. 3, pp. 699–712, 1999 

23. M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu and G. A. Stern, “Convergence 
of the Surrogate Lagrangian Relaxation Method,” Journal of Optimization 

Theory and Applications, vol. 164, no. 1, pp. 173-201, 2015 

24. M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A Scalable Solution 
Methodology for Mixed-Integer Linear Programming Problems Arising in 

Automation,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2, Jun. 2018 doi: 

10.1109/TASE.2018.2835298 
25. M. R. Hestenes, “Multiplier and gradient methods,” J. Optim. Theory Appl., 

vol. 4, no. 5, pp. 303–320, 1969.  

26. M. J. D. Powell, “A method for nonlinear constraints in minimization 
problems,” in Optimization, R. Fletcher, Ed. New York, NY, USA: Academic, 

1969 

27. A. M. Lyapunov, “The General Problem of the Stability of Motion,” (In 
Russian), Doctoral dissertation, Univ. Kharkov 1892 English translations: 

(1) Stability of Motion, Academic Press, New-York & London, 1966 (2) The 

General Problem of the Stability of Motion, (A. T. Fuller trans.) Taylor & 
Francis, London 1992. 

28. D. P. Bertsekas, Nonlinear Programming, 3rd Edition, Athena Scientific, 

2016. 
29. P. B. Luh, D. Zhang, R. N. Tomastik, “An Algorithm for Solving the Dual 

Problem of Hydrothermal Scheduling,” IEEE Transactions on Power Systems, 

мol. 13, тo. 2, pp. 593-600, May 1998. 
30. J.-L. Goffin and K. Kiwiel, “Convergence of a simple subgradient level 

method,” Math. Program., vol. 85, no. 11, pp. 207–211, 1999.  

31. A. Nedic, and D. P. Bertsekas, “Convergence rate of incremental 
subgradient algorithms,” In: Uryasev, S., Pardalos, P.M. (eds.) Stochastic 
Optimization: Algorithms and Applications, pp. 263–304. Kluwer Academic, 

New York, 2000. 
32. R. Zhang and J. T. Kwok, “Asynchronous Distributed ADMM for 

Consensus Optimization,” Proceedings of the 31st International Conference on 

Machine Learning (ICML-14), pp.1701-1709, 2014. 
33. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed 

optimization and statistical learning via the alternating direction method of 

multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011. 
34. J. Yang and X. Yuan, “Linearized Augmented Lagrangian and Alternating 

Direction Methods for Nuclear Norm Minimization,” Math. Computation, vol. 
82, pp. 301-329, 2013.  

35. W. T. Elsayed and E. F. El-Saadany, “A fully decentralized approach for 

solving the economic dispatch problem,” IEEE Trans. Power Syst., vol. 30, no. 
4, pp. 2179–2189, Jul. 2015. 

36. J. E. Mitchell, “Branch-and-cut,” in Wiley Encyclopedia of Operations 

Research and Management Science. Hoboken, NJ, USA: Wiley, 2010. 
37. G. B. Dantzig, “Expected number of steps of the simplex method for a linear 

program with a convexity constraint,” Technical Report SOL 80-3, Stanford 

University, 1980.  
38. M. Brusco and S. Stahl, Branch-and-Bound Applications in Combinatorial 

Data Analysis. Springer, 2005.  

39. A. H. Land and A. Doig, "An automatic method of solving discrete 
programming problems" Econometrica, vol. 28, pp. 497-520, July 1960. 

40. M. Padberg, “Classical cuts for mixed-integer programming and branch-

andcut,” Ann. Oper. Res., vol. 139, pp. 321–352, 2006 
41. R. Misener and A. F. Christodoulos “Global Optimization of Mixed-integer 

Quadratically Constrained Quadratic Programs (MIQCQP) through Piecewise-

linear and Edge-concave Relaxations,” Mathematical Programming Journal 
on Computing, vol. 136, no. 1, pp. 155-182, May 2012.  

42. B. W. Wah, Y. X. Chen, “Subgoal Partitioning and Global Search for 

Solving Temporal Planning Problems in Mixed Space,” International Journal 
of Artificial Intelligence Tools, vol. 13, no. 4, pp. 767-790, 2004 
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