
P
os
te
d
on

8
F
eb

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
16
90
96
1.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Asynchronous Coordination of Distributed Mixed-Integer Linear

Subsystems via Surrogate Lagrangian Relaxation

Mikhail Bragin 1, Peter Luh 2, and Bing Yan 2

1University of Connecticut
2Affiliation not available

October 30, 2023

Abstract

With the emergence of Internet of Things that allows communications and local computations, and with the vision of Indus-

try 4.0, a foreseeable transition is from centralized system planning and operation toward decentralization with interacting

components and subsystems, e.g., self-optimizing factories. In this paper, a new “price-based” decomposition and coordination

methodology is developed to efficiently coordinate subsystems such as machines and parts, which are described by Mixed-Integer

Linear Programming (MILP) formulations, in a distributed and asynchronous way. To ensure low communication requirements,

exchanges between the “coordinator” and subsystems are limited to “prices” (Lagrangian multipliers) broadcast by the coor-

dinator, and to subsystem solutions sent to the coordinator. Asynchronous coordination, however, may lead to convergence

difficulties since the order in which subsystem solutions arrive at the coordinator is not predefined as a result of uncertainties

in communication and solving times. Under realistic assumptions of finite communication and solve times, convergence of our

method is proved by innovatively extending Lyapunov Stability Theory. Numerical testing of generalized assignment prob-

lems through simulation demonstrates that the method converges fast and provides near-optimal results, paving the way for

self-optimizing factories in the future.

1

Abstract—With the emergence of Internet of Things that allows

communications and local computations, and with the vision of

Industry 4.0, a foreseeable transition is from centralized system

planning and operation toward decentralization with interacting

components and subsystems, e.g., self-optimizing factories. In this

paper, a new “price-based” decomposition and coordination

methodology is developed to efficiently coordinate subsystems

such as machines and parts, which are described by Mixed-Integer

Linear Programming (MILP) formulations, in a distributed and

asynchronous way. To ensure low communication requirements,

exchanges between the “coordinator” and subsystems are limited

to “prices” (Lagrangian multipliers) broadcast by the coordinator,

and to subsystem solutions sent to the coordinator. Asynchronous

coordination, however, may lead to convergence difficulties since

the order in which subsystem solutions arrive at the coordinator is

not predefined as a result of uncertainties in communication and

solving times. Under realistic assumptions of finite communication

and solve times, convergence of our method is proved by

innovatively extending Lyapunov Stability Theory. Numerical

testing of generalized assignment problems through simulation

demonstrates that the method converges fast and provides near-

optimal results, paving the way for self-optimizing factories in the

future. Accompanying CPLEX codes and data are included.

Note to practitioners—In view of a foreseeable transition toward

self-optimizing factories whereby machines and parts have

communication and computational capabilities, a novel

distributed and asynchronous method to coordinate distributed

subsystems is developed. Under realistic assumptions of finite

communication and solve times, method convergence is proved.

Numerical testing of generalized assignment problems through

simulation demonstrates that the method converges fast and

provides near-optimal results, paving the way for self-optimizing

factories in the future. Accompanying CPLEX codes and data are

included.

Index Terms—Distributed and Asynchronous Algorithms,

Surrogate Lagrangian Relaxation, Self-Optimizing Factories,

Mixed-Integer Linear Programming Problems

I. INTRODUCTION

ith the emergence of Internet of Things [1, 2] empowered

by smart sensors together with advanced computation

and communication technologies, and with the vision of

Industry 4.0 [3, 4], a foreseeable transition is from centralized

system planning and operation toward decentralization, e.g.,

self-optimizing factories with interacting components and

subsystems. Within these futuristic factories, machines and

parts are coordinated through 5G networks to meet certain

objectives such as on-time delivery. In manufacturing,

examples of operations optimization problems include

planning, scheduling and dispatching problems [5, 6].

Scheduling problems are solved before each shift and require

short solving times such as a few minutes, and online

dispatching of a part to a machine may require a few seconds.

Because of the many possible interconnections among parts,

operations and machines, efficient communication scheme is

required to prevent bandwidth overloading. This motivates the

need for efficient coordinated operations of subsystems while

ensuring high computational and communication efficiency.

 Within manufacturing, machine and part subsystems are

frequently formulated as mixed-integer linear programming

(MILP) subproblems. Traditionally, to coordinate MILP

subproblems, Lagrangian relaxation (LR) [7-11] has been used

by exploiting problem separability in manufacturing problems

such as job-shop scheduling [10] and in power systems

problems such as unit commitment [11]. Within standard LR,

multipliers (or “shadow prices”) are updated using subproblem

solutions based on levels of violation of relaxed constraint using

subgradient methods [12-13]. Because of exploitation of

decomposability, the LR method is a good candidate for

coordinating distributed subsystems whereby a coordinator

updates multipliers and only needs to know solutions of

subproblems associated with distributed subsystems. However,

standard LR methods suffer from major convergence

difficulties such as high computational effort, zigzagging of

multipliers and the need to know the optimal dual values.

Moreover, since standard LR requires solving all subproblems

to update multipliers, the LR method is synchronous. When the

number of subproblems is large, synchronous coordination may

lead to inefficient time management since “fast” subproblem

solvers will likely spend significant amount of time waiting for

synchronization.

 Some the above difficulties have been overcome within

subgradient incremental methods [14, 15], Alternate Direction

Method of Multipliers (ADMM) [16-21], surrogate subgradient

method [22], and surrogate Lagrangian relaxation (SLR) [23-

24, 49]. The distributed and asynchronous incremental

subgradient method [15] for optimizing convex dual functions

consisting of a large number of components, which arise within

Lagrangian relaxation framework with a large number of

subproblems, overcomes the synchronization difficulty.

However, the method imposes the requirement that all

Mikhail A. Bragin, Member, IEEE, Bing Yan, Member, IEEE, Peter B. Luh, Life Fellow, IEEE

Asynchronous Coordination of Distributed Mixed-

Integer Linear Subsystems via Surrogate

Lagrangian Relaxation

Asynchronous Coordination of Distributed Mixed-

Integer Linear Programming Systems via Surrogate

Lagrangian Relaxation

W
This work is supported by the National Science Foundation under grants

ECCS-1509666, ECCS-1810108, and CNS-1647209. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the NSF.

Mikhail A. Bragin and Peter B. Luh are with Department of Electrical and
Computer Engineering, University of Connecticut, Storrs, CT, 06269-4157,

USA (e-mails: mikhail.bragin@uconn.edu, peter.luh@uconn.edu)

Bing Yan is with the Department of Electrical and Microelectronic
Engineering at Rochester Institute of Technology, Rochester, NY, 14623,

USA (e-mail: bxyeee@rit.edu).

mailto:mikhail.bragin@uconn.edu
mailto:peter.luh@uconn.edu

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

subproblem solutions arrive to the coordinator with the same

“long-term” frequency on average. ADMM [16-21], a

decomposable version of the Method of Multipliers (frequently

referred to as “Augmented Lagrangian Relaxation” (ALR) [25,

26]), aims at accelerating convergence of traditional LR by

penalizing constraint violations by using quadratic penalty

terms and by decomposing relaxed problems arising in ALR to

reduce computational effort. However, when it comes to

coordination of MILP subproblems, ADMM does not converge.

Our recent SLR method [23, 24, 49] has overcome major

convergence difficulties of standard Lagrangian Relaxation

such as high computational effort, zigzagging of multipliers,

and the need to know the optimal dual value for convergence.

In [49], it has been demonstrated that the method is capable of

efficiently coordinating thousands of subsystems. These

methods will be reviewed in more detail in Section II.

 In this paper, a novel distributed and asynchronous “price-

based” decomposition and coordination method based upon the

SLR method will be developed to efficiently coordinate

distributed MILP subsystems within futuristic self-optimizing

factories in Section III. Within the framework, multiple

distributed subsystems and one coordinator have computation

and communication capabilities. Information exchanges

between the coordinator and subsystems are limited to “prices”

(Lagrangian multipliers) broadcast by the coordinator and to

subsystem solutions sent to the coordinator to avoid excessive

data transfer within the system. While asynchronous

coordination avoids the synchronization issue, it leads to major

convergence difficulties: 1) because of uncertainties in solving,

communication and multiplier-updating times, the order in

which subsystem solutions arrive to the coordinator is

uncertain, and 2) subsystem solutions are obtained based on

multipliers of different vintages, and multipliers may not

converge. To overcome these difficulties while ensuring fast

speed, rather than requiring the “long-term” frequency

requirement as in [15], convergence is proved under a

“freshness” assumption, whereby a coordinator can update

multipliers without waiting for “slow” subproblems as long as

all subproblem solutions arrive to the coordinator at least once

within a finite number of iterations. Our novel idea to establish

convergence is through the novel use of the Lyapunov energy

function defined as the square of the distance from the current

prices to the optimum with the idea of forcing this function to

approach zero thereby ensuring that prices approach their

optimal values. Although not monotonically decreasing as

required by traditional Lyapunov methods for convergence

[27], an upper bound is innovatively established as an envelope

of Lyapunov functions for all possible (uncertain) trajectories

of multipliers (“prices”) that result from uncertain sequences of

subproblem solutions arriving at the coordinator. Based on the

contraction mapping concept whereby distances between

multipliers at consecutive iterations decrease, it is then proved

that this upper bound approaches zero.

 In section IV, by simulating asynchronous update of

multipliers, two examples are presented. The first small

example is to show that Lyapunov functions within of the new

method while non-monotonic, approach zero fast. The second

example is based on generalized assignment problems, which

can be viewed as simplified problems that arise within factories.

These results demonstrate that the new method converges fast.

With such effective distributed and asynchronous coordination,

the method has valuable implications for future self-optimizing

factories to coordinate machines or parts.

II. LITERATURE REVIEW

 In this section, standard Lagrangian Relaxation (LR) will

be reviewed in subsection II.A. In subsection II.B, the

distributed asynchronous incremental subgradient method as

well as asynchronous ADMM, both are version of LR tailored

for asynchronous coordination, will be reviewed and their

limitations will be presented. In subsection II.C, our recent

Surrogate Lagrangian relaxation will be reviewed as a

promising approach for the development of an efficient

asynchronous coordination method. Since this paper deals with

coordination of MILP subsystems, branch-and-cut, an MILP

method, will be reviewed in subsection II.D. Methods that do

not support distributed coordination, such as heuristics

methods, or the distributed methods that require continuity of

problems will not be reviewed.

A. Standard Lagrangian Relaxation.

Traditionally, to solve MILP problems, Lagrangian relaxation

[7-11] has been used to exploit problem separability.

Specifically, in manufacturing, to solve job-shop scheduling,

machine capacity coupling constraints are relaxed to

decompose the problem into part subproblems [10]. In power

systems, to solve unit commitment problems, system demand

coupling constraints are relaxed to decompose the problem into

individual unit subproblems [11]. Within standard LR,

multipliers (or “shadow prices”) are updated after receiving

subproblem solutions based on levels of violation of relaxed

constraint using subgradient methods [12-13]. Because of

exploitation of decomposability, the LR method is a good

candidate for coordinating distributed subsystems whereby a

coordinator updates multipliers and only needs to know

solutions of subproblems associated with distributed

subsystems. However, standard LR methods suffer from major

convergence difficulties. Because of the presence of discrete

variables, the dual function is non-smooth polyhedral concave

[28, p. 670, Proposition 7.1.2]. Therefore, gradients may not

exist and subgradients are used. As a result, multipliers may

suffer from zigzagging across ridges of the dual function [23, p.

192, Fig. 1; 29, p. 594, Fig. 1]. Also, convergence proof as well

as practical implementations require the knowledge of the

optimal dual value, which is unknown and is typically

adaptively adjusted in practice as in “subgradient-level”

methods [30] or incremental subgradient methods [31].

However, these adjustments are inefficient and convergence is

slow as demonstrated in [23, pp. 195-196, 199, Figs. 3-5, 7].

B. Distributed and Asynchronous Coordination Methods.

Distributed Asynchronous Incremental Subgradient

Method. To optimize non-smooth dual functions consisting of

a large number of components, which arise within the LR

framework, in a distributed and asynchronous manner, a

distributed asynchronous incremental subgradient method was

developed [15]. The method requires that all subproblem

solutions arrive to the coordinator with the same “long-term”

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

frequency on average, and convergence was proved using the

diminishing stepsizing rule. Moreover, convergence was

proved under the assumption that the subgradient is split into

individual components and each component is updated

independently rather than updating the subgradient as a whole.

Under this scheme, convergence may be slow in situations

whereby there are “fast” and “slow” subsystems solvers

because “fast” subsystems may spend significant amounts of

time to satisfy the “long-term” frequency requirement.

Alternate Direction Method of Multipliers. ADMM, a

decomposable version of the Method of Multipliers [25, 26]

(frequently referred to as “Augmented Lagrangian Relaxation”

(ALR)), aims at accelerating convergence of traditional LR by

penalizing constraint violations by using quadratic penalty

terms and by decomposing relaxed problems arising in ALR to

reduce computational effort. Within the method, to alleviate

the issues associated with synchronization, two conditions are

used: 1) “partial barrier,” which allows the coordinator to

update multipliers after receiving solutions from one or few

subsystems and 2) “bounded delay,” which requires solutions

from every subsystem to arrive at the coordinator at least once

within a finite number of coordinator iterations [21, 32]. The

main difficulty of ADMM is that it can guarantee convergence

for convex problems only [21, p. 419]. When solving non-

convex problems, ADMM does not convergence [33, p. 73].

When coordinating MILP subproblems, which are non-convex,

ADMM does not converge because stepsizes within the method

do not approach zero. However, stepsizes are required to

approach zero to guarantee convergence when optimizing non-

smooth dual functions [13, 23]. Moreover, quadratic penalties

make the resulting relaxed problem nonlinear, which cannot be

solved by MILP solvers. While penalty terms can be linearized

[34], the minimum of penalties is typically not preserved

through such linearization and performance of the method is

degraded. Furthermore, penalties terms are a part of each

subproblem formulation, but these terms involve decision

variables from multiple subproblems. Therefore, additional

communication requirements are entailed. For example, in

power systems, communication requirements among

subsystems [21, 35] are needed.

C. Surrogate Lagrangian Relaxation Method

All major difficulties of standard LR such as high

computational effort required to solve all subproblems,

zigzagging of multipliers and the requirement of the knowledge

of the optimal dual value, have been overcome within our recent

surrogate Lagrangian relaxation (SLR) [23-24, 49]. Within the

method, it is not necessary to spend the effort to optimally

subproblems. Rather, it is sufficient to optimize subproblems

subject to the simple “surrogate optimality condition” [23, p.

178, eq. 12], guaranteeing that “surrogate dual” values

approach dual values [23, p. 181]. Convergence is proved

without requiring the knowledge of the optimal dual value.

This was achieved with a constructive process based on the

contraction mapping concept whereby distances between

Lagrange multipliers decrease at consecutive iterations, and as

1 The convex hull is the smallest convex set that encloses feasible solutions of

a problem.

a result, multipliers converge to a unique limit. At the same

time, stepsizes are kept sufficiently large to avoid premature

algorithm termination. Additionally, a constructive stepsizing

formula satisfying these criteria has been developed. When

solving large-scale problems, such as unit commitment problem

arising in power systems [49], the method demonstrated high

efficiency in the coordination of thousands of power generating

units. SLR thus satisfies high computational efficiency

requirement because of much improved convergence over

standard LR, and low communication requirements because

subsystems are not required to communicate with each other.

The method has been shown to outperform other previous

methods including coordination methods such as ADMM [24].

D. MILP Method: Branch-and-cut

The main premise behind branch-and-cut [36] is that if the

convex hull1 of an MILP is obtained, the problem reduces to

solving a linear programming problem. Owing to linearity of

the problem, the surface of the convex hull is polyhedral [41],

and vertices of the convex hull are feasible solutions to the

original MILP problem. Because of finite numbers of variables

and constraints, the number of vertices is finite and linear

programming methods such as simplex methods converge to

the optimal feasible solution within a finite number of iterations

[37, p. 6]. However, the convex hull generally cannot be

obtained. After relaxing integrality requirements, branch-and-

cut solves the LP-relaxed problem [37]. Attempting to obtain

feasible solutions, branch-and-cut uses “cuts” to cut off LP

regions that contain fractional vertices without cutting off

feasible solutions. While cuts generally require an infinite

number of iterations to define facets of the convex hull, branch-

and-cut resorts to branch-and-bound [38, 39] after a finite

number of iterations when “tailing off” of cuts occurs [40, p.

349]. Since the number of fractional vertices that correspond

to integer variables is finite, the number of branching operations

required to obtain optimal feasible solutions is also finite.

III. CONVERGENCE OF DISTRIBUTED AND ASYNCHRONOUS

SURROGATE LAGRANGIAN RELAXATION

 In subsection III.A, an MILP problem formulation of a

system consisting of several distributed subsystems is

presented. In subsection III.B, a Distributed and Asynchronous

Surrogate Lagrangian Relaxation (DA-SLR) is developed. In

subsection III.С, convergence of DA-SLR is proved.

A. Distributed MILP Subsystems

Consider a system consisting of one coordinator and I

distributed subsystems. Each subsystem is subject to its local

linear constraints, which will not be considered for simplicity

and ease of presentation. The entire system is subject to system-

wide coupling constraints, which couple individual subsystems

and the MILP formulation of a system can be written as follows:

1

min ()
I

i i
x i

f x


 ,

(1)

subject to

1

() 0
I

i i
i

g x


  ,

(2)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

where xi = (yi, zi)  Xi  ℝ𝑁𝑖
𝑟
ℤ𝑁𝑖

𝑧 , Xi are closed and bounded

sets, x = (x1,…,xI) = (y, z)  X  ℝ𝑁𝑟
ℤ𝑁𝑧

, y = (y1,…,yI)  ℝ𝑁𝑟
,

z = (z1,…,zI)  ℤ𝑁𝑧
, with ℝ denoting the set of real numbers, ℤ

denoting the set of integers. Functions fi: Xi  ℝ and gi: Xi 
ℝ𝑚 are linear. It is assumed that a set of feasible solutions that

satisfy (1)-(2) is non-empty. To rule out possible irregularities

such as linear dependence of gradients of active constraints in

the continuous subspace ℝ𝑁𝑟
, it is assumed that gradient

vectors of active inequality constraints with respect to

continuous variables y only are linearly independent at a local

minimum x* = (y*, z*) of (1) [42].

B. Distributed and Asynchronous Surrogate Lagrangian

Relaxation

As discussed in Sections II, separability of the problem is

exploited by relaxing coupling constraints (2) by introducing

Lagrangian multipliers T = (1, …, m) ℝ𝑚 and decomposing

the resulting relaxed problem into individual subproblems:

   min () ()
j

T

j j j j
x

f x g x . (3)

It is assumed that subsystems have computational and

communication capabilities. Namely, subsystems are capable

of solving their own subproblem (3) and to send the resulting

solution to the coordinator.

Within the SLR framework, as discussed in Section II, it is

not necessary to spend the effort to fully optimize subproblems.

Rather, it is sufficient to stop optimization after the “surrogate”

optimality condition for subproblems [23, eq. 57] is satisfied at

iteration k+1:

            1 1 1 1 .
T T

k k k k k k
j j j j j j j jf x g x f x g x       (4)

This condition is not the necessary requirement in a sense that

if a subproblem is solved to optimality and the best solution

found is the same as the most recent subproblem solution, i.e.,
1k k

j jx x  , then, although this solution does not satisfy (4), the

algorithm can proceed. To coordinate subsystems, it is also

assumed that the coordinator has capability to receive

subproblem solutions, update multipliers

 1 (), 0,1,...k k k ks g x k     , (5)

and broadcast them to all subproblems. Here

 1

1:

() () ()
I

k k k
i i j j

i i j

g x g x g x

 

  .

(6)

are “surrogate” subgradient directions that are obtained instead

of subgradient directions after receiving solutions from one or

few subproblems. If inequality constraints are present in the

formulation, multipliers are updated according to (5) with

subsequent projection onto the positive orthant.

 Within the asynchronous framework, subproblems are

assumed to be solved without waiting for other subproblems to

finish, and coordinator updates multipliers asynchronously

without waiting for all subproblem solutions to arrive.

Multipliers (5) will be updated using stepsizes sk that satisfy

[23, p. 180, eqs. 21a and 21b], which are derived based on the

contraction mapping concept and are set as:

 1 1()
, 0 1, 1,2,...

()

k k

k
k kk

s g x
s k

g x
 

 

   

(7)

with

1 1

1 , 1 , 1, 0 1, 1,2,3,...k p r
p M r k

Mk k
         . (8)

For notational convenience, superscripts k of multipliers

and subproblems will denote coordinator-updating iterations

and superscripts of subproblems will denote the most recent

subproblem solution available to the coordinator at iteration k.

To ensure that stepsizes (7) are well-defined, the following

Assumption is required.

Assumption 1. Boundedness of surrogate subgradients.
Surrogate subgradients satisfy the following condition:

 ()kg x < C < . (9)

This assumption is realistic for MILP problems defined

over a closed and bounded set. Indeed, surrogate subgradients

are essentially levels of constraints violations. Since constraints

are linear and each variable is defined over a closed and

bounded set, constraint violations are finite.

Unlike the subgradient method, whereby zero subgradients

imply that the optimum is obtained and the algorithm terminates

with the optimal primal solution, within SLR, zero surrogate

subgradient implies that there are no constraint violations and

that a feasible solution is obtained, but it does not imply zero

subgradient. Therefore, this solution is not guaranteed to be

optimal. In this case, an iteration is skipped without updating

multipliers (5) and stepsizes (7)-(8).

Figure 1 illustrates the asynchronous update by using one

coordinator and three subproblems, and the difficulties caused

by asynchronous updating of multipliers. After obtaining a

solution to the first subproblem, coordinator updates the

multipliers without waiting for other solutions to arrive and

broadcasts the updated multipliers to all subproblems.

Subproblem 1 can then start solving the problem once receiving

updated multipliers. Then, after third subproblem is solved, and

its solution arrives at the coordinator, the coordinator once

again updated multipliers and broadcasts their values to all

subproblems, and so on. While asynchronous coordination

avoids the synchronization issue, it leads to major convergence

difficulties: 1) because of uncertainties in solving,

communication and multiplier-updating times, the order in

which subsystem solutions arrive to the coordinator is

uncertain, and 2) subsystem solutions are obtained based on

multipliers of different vintages, and multipliers may not

converge. For example, as demonstrated in Fig. 1, at

coordinator iteration 4, 𝑥1
3 is obtained using 𝜆2, 𝑥2

4 is obtained

using 𝜆0 and 𝑥3
2 is obtained using 𝜆1. As a result, there may be

convergence difficulties. In the following subsection, under

realistic “freshness” assumption, convergence of the DA-SLR

method will be proved.

Fig. 1. Distributed and Asynchronous implementation of Surrogate Lagrangian Relaxation

C. Convergence of Distributed and Asynchronous Surrogate

Lagrangian Relaxation

Convergence of Distributed and Asynchronous Surrogate

Lagrangian Relaxation (DA-SLR) is proved in three stages. In

Stage 1, it is proved that “surrogate” dual values approach dual

values and multipliers approach the optimum “infinitely often”

(Propositions 1-4). In Stage 2, the Lyapunov function is

introduced as the square of distances from multiplies to the

optimum, and the upper bound on Lyapunov functions is

developed (Propositions 5-6). In Stage 3 it is proved that the

upper bound on Lyapunov functions approaches zero thereby

leading to convergence of multipliers (Proposition 7).

Stage 1. Convergence of “surrogate” dual values to dual

values

It is assumed that subproblem solving times as well as

communication times are finite, which is equivalent to the

following “freshness” Assumption:

Assumption 2. Freshness. There exists D > 0 such that within

any consecutive D coordinator multiplier-updating iterations,

all subproblem solutions arrive to the coordinator at least once.

Indeed, if solving and communication times are bounded, then

each subproblem solution should arrive at the coordinator at

least once within a finite number of iterations.

Since subproblems are solved subject to the “surrogate”

optimality condition (4), rather than obtaining dual values as

within standard LR, “surrogate” dual values are obtained,

which are generally above the dual surface. To prove this,

Propositions 1-2 will first prove that subproblem solutions

satisfying (4) converge their optimal values.

Proposition 1. Convergence to optimal subproblem

solutions for fixed . Assuming that subproblem solutions

satisfy the surrogate optimality condition (4), for each

subproblem j and there exist finite K’j such that the subproblem

solution is optimal for multiplier values :

  
'

*jK

j jx x  . (11)

Proof: As explained in subsection II.D, an optimal subproblem

solution is obtained by branch-and-cut within a finite number

of steps. A subproblem-feasible solution satisfying (4) is also

obtained within a finite number of steps. Since multipliers are

assumed to be constant here, (4) implies the decrease of

subproblem objective function. Essentially, branch-and-cut

will continue to search along the unexplored nodes of the

branch tree trying to find a lower objective function value until

the subproblem-optimal solution is obtained. □

The limitation of Proposition 1 is that it is proved for a

fixed set of multipliers. Within DA-SLR, multipliers are

updated, and, therefore, the objective functions of subproblems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

(3) will change. In turn, this will affect the optimal solution of

a subproblem. Proposition 2 removes this limitation.

Proposition 2. Convergence to optimal subproblem

solutions. Assuming that subproblem solutions satisfy (4), then

for each subproblem j there exist finite Kj (> K’j) such that

solution to subproblem j is optimal for multiplier values jK
 :

  *j jK K

j jx x  . (11)

Proof: As proved in Proposition 1, for K’
j and fixed

'
jK

 , a

subproblem-optimal solution is
'

*()jK

jx  . What remains to prove

is that when multipliers are updated, there exist Kj (> K’j) such

that optimal solutions at
'
jK

 and jK
 are the same:

    
'

* *j jK K

j jx x  . (12)

To prove (12), introduce the following operator:

      () () arg min () ()
j

T T

j j j j j j j j
x

A f x g x f x g x    . (13)

Because subproblems are defined over bounded sets Xj,

solutions are finite and the following inequality holds:

   () ()
T

j j j jA f x g x   . (14)

The operator A is thus bounded [43]. Therefore, there exists a

finite constant C’A > 0 such that the following inequality holds:

      '() () () ()
T T

j j j j A j j j jA f x g x C f x g x    . (15)

To establish (12), consider the following norm:

    
'

* *j jK K

j jx x  . (16)

Using (13), equation (16) can be rewritten as:

    
'

() () () ()j j

T T
K K

j j j j j j j jA f x g x A f x g x 
   

    
  

. (17)

Because Xj is bounded, subproblem objective functions (3) take

on finite values, therefore, the following inequality also holds:

   

   

   

'

'

'

() () () ()

() () () ()

() .

j j

j j

j j

T T
K K

j j j j j j j j

T T
K K

A j j j j j j j j

T T
K K

A j j

A f x g x A f x g x

C f x g x f x g x

C g x

 

 

 

   
     

  

   
     

  

 
 

 

 (18)

Here, CA is a finite positive constant. Using the Cauchy-

Schwarz inequality, equation (18) becomes:

   

'

'

() () () ()

() .

j j

j j

T T
K K

j j j j j j j j

K K

A j j

A f x g x A f x g x

C g x

 

 

   
     

  



 (19)

Since gj(xj) is a component of constraint violations, Assumption

1 is applicable, therefore:

    
' '

* * .j j j jK K K K

j j Ax x C C      (20)

Since stepsizes (7)-(8) approach zero [23], there exist iteration

K’
j and Kj such that for any  > 0 the following inequality holds:

  
'

2 '

jK

A j j

s
C C K K





. (21)

Therefore,

  
 

 
'

'
1

2 '
.

j
j j

i
j

K
j jK K i i

i K AA j j

C K K
g x s

C CC C K K

 
 








   


 (22)

From (20) and (22) is follows that

    
'

* * .j jK K

j jx x    (23)

As reviewed in Section II, subproblem convex hulls contain a

finite number of vertices, each corresponding to a feasible

solution. Moreover, it can be assumed that distances between

any two adjacent vertices are greater than . Therefore, optimal

solutions at iterations K’
j and Kj are the same and (12) holds.

Since it takes a finite number of iterations to obtain  
'

* jK

jx 

without updating multipliers, it will also take a finite number of

iterations to obtain  * jK

jx  when multipliers are updated. □

Proposition 3. Convergence of “surrogate” dual values to

dual values. With stepsizing formula (7)-(8), Lagrange

multipliers (5) converge to a unique fixed point

 k  , (24)

(not necessarily *), and surrogate dual values approach dual

values:

  (,)kL x q  , (25)

where

 () min (,)
x X

q L x 


 , (26)

is a dual value obtained by solving all subproblems optimally

and

  
1

(,) () ()
I Tk k k

i i
i

L x f x g x 


  , (27)

is a “surrogate” dual value obtained after solving one or few

subproblems subject to the surrogate optimality condition (4).

Proof: As proved in [23], stepsizes (7)-(8) approach zero. To

prove that surrogate dual values approach dual values, consider

first the surrogate optimality condition for one subproblem j:

            1 1 1 1 .
T T

k k k k k k
j j j j j j j jf x g x f x g x       (28)

By using (5), inequality (28) can be rewritten as:

     

       

1 1 1

2

.

T
k k k

j j j j

T
k k k k k

j j j j j j

f x g x

f x g x s g x





   

 

 (29)

The inequality (29) can then be equivalently rewritten as:

           

 

1 1 1

2

.

T T
k k k k k k

j j j j j j j j

k k
j j

f x g x f x g x

s g x

      
 (30)

As stepsizes approach zero, there exists 𝜅 so that for all k > 𝜅

and all 𝜀 > 0, the following inequality holds:

           

 

1 1 1

2
2.

T T
k k k k k k

j j j j j j j j

k
j j

f x g x f x g x

g x C

 

 

     



 (31)

Therefore,       
T

k k k
j j j jf x g x forms a convergent sequence:

            
T Tk k k

j j j j j j j jf x g x f x g x      . (32)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Indeed, as proved in Propositions 1-2, subproblem solutions

approach a limit, which here is denoted as
jx . Moreover, the

situation whereby

    
T

k k
j jg x  (33)

is impossible. Multipliers cannot grow without bound because

that would imply that there is always positive or always

negative constraint violation,2 implying infeasibility of (1)-(2),

which is impossible. From Assumption 2, within any

consecutive D iterations, all subproblem solutions arrive to the

coordinator at least once. Moreover, by Propositions 1-2,

subproblem feasible solutions are obtained within a finite

number of iterations. Therefore, optimal solutions to all

subproblems are obtained within a finite number of iterations,

implying that “surrogate” dual values approaches dual values:

  (,)kL x q  as 0ks  . □ (34)

Proposition 4. “Rate of Convergence” [23, p. 187]. When

stepsizes are updated per (7)-(8), there exists  > 0 and the

following condition is satisfied “infinitely often”

 2
* *(,) ,k k kq L x k       .

(35)

Here  is an infinite subset of natural numbers.

Proof: If condition (35) is not satisfied infinitely often for  >

0, then starting from iteration 𝜅, the following inequality holds:

 2
* *(,) ,k k kq L x k        . (36)

There are three cases:

Case 1: The left-hand side of (36) is negative. Surrogate dual

values are greater than q* for all k > 𝜅, which contradicts

Proposition 3 that states that surrogate dual values approach

dual values.

Case 2: The left hand-side of (36) is positive, and
* (,)k kq L x   for some 0  and k’ > k > 𝜅, then there exists

'

2
* '

0
k




 
 


, and the following condition holds:

 2
* ' ' ' * '(,)k k kq L x      . (37)

There is a contradiction with (36) because in this case it is

possible to find ' 0  that satisfies (35).

Case 3: The left hand-side of (36) is positive, but infinitesimally

small, * (,)k kq L x   for all 0  , then surrogate dual values

approach q*. Since, by Proposition 3, surrogate dual values

approach dual values, then dual values approach the optimal

dual value and convergence to the optimum is immediate. □

Stage 2. Development of an upper bound for Lyapunov

functions

In this Stage, the Lyapunov function is defined as

  
2

*k kV     ,
(38)

2 If there are inequality constraints, then the violation would be positive.

which is the square of the distance from current to optimal

multipliers. Because subproblem solving times and

subproblem-coordinator communication times are uncertain,

different sequences of subproblem solutions arriving at the

coordinator lead to different trajectories of multipliers. As a

result, the exact representation of the Lyapunov function is

unknown. To resolve this issue, an upper bound of the

Lyapunov function is derived in Propositions 5-6 as an

envelope of all possible Lyapunov functions for any sequence

of subproblems arriving to the coordinator. Two inequalities

are derived based on whether condition (38) holds or not in

Proposition 5. In Proposition 6, these inequalities are combined

to derive an upper bound on all possible Lyapunov functions.

Proposition 5. As proved in [23, p. 187], under condition (35)

and assuming that stepsizes are “sufficiently small” 1/ (2)ks 

the following inequality holds:

 2 2 2
* 1 * 2(1 2) () ()k k k k ks s g x          . (39)

If condition (35) is not satisfied or stepsizes are not “sufficiently

small” 1/ (2)ks  , then the following inequality holds:

  
2 2

* 1 *

2

1 ()

1
() () () , 0.

k k k k k

k k k k

k

s g x

s g x g x

    




     

 
   
 

(40)

Proof: Inequality (39) has been derived in [23, Proposition 2.5].

To derive inequality (40) consider

 

2
* 1

2 2
* * 22 () () () .

k

k k k k k ks g x s g x

 

   

 

   

(41)

By using the Cauchy-Schwarz inequality, (41) becomes:

 2
* 1

2 2
* * 22 () () () .

k

k k k k k ks g x s g x

 

   

 

    

(42)

The right-hand side of (42) contains the Lyapunov function
2

* k  at iteration k as well as its square root * k  . In

order to express the inequality (42) in terms of the Lyapunov

function, the basic inequality 2 21
2ab a b


  [15] is used and

the inequality (42) becomes

 2 2 2
* 1 * *

2
2 2

()

1
() () () () .

k k k k k k

k k k k

k

s g x

s g x s g x

      



      



(43)

Therefore,

  
2 2

* 1 *

2

1 ()

1
() () () .

k k k k k

k k k

k

s g x

s g x g x

    



     

 
  
 

(44)

In Proposition 6 below, an upper bound on Lyapunov

functions at iteration k+1 in terms of Lyapunov functions at

iteration 0 is derived by induction taking into account all

possible realizations of Lyapunov functions.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Proposition 6. Upper bound for Lyapunov functions. The

following upper bound is valid for Lyapunov functions:

 

     

     

2
1 * 0

0

1 2

0 1

2

1

1
, 1,

k
k i

i

kk
j j j l

j
j l j

k k k

k

V P

s g x g x P

s g x g x k

  











  



 

  

  
    

  

 
  

 

(45)

where  1 2i iP s   if condition (35) holds at iteration i, and

  1i i i iP s g x  otherwise.

Proof: Proof will follow by induction by first proving that the

equation is true when k = 1, then assuming it is true for k,

showing it is true for k+1.

Before starting the induction, consider the situation

whereby k = 0. If condition (35) is satisfied, then inequality

(39) holds for k = 0:

      
222 2

* 1 * 0 0 0 01 2s s g x         . (46)

If (2356) is not satisfied, then inequality (40) holds for k = 0:

   

     

2 2
* 1 * 0 0 0 0

2
0 0 0 0

0

1

1
, 0.

s g x

s g x g x

    




    

 
  

 

(47)

Since the term      
2

0 0 0

0

1
s g x g x



 
 

 
which appears in (47)

is greater than    
22

0 0s g x which appears in (46), the following

expression is the upper bound for
2

* 1  :

     

2 2
* 1 * 0 0

2
0 0 0 0

0

1
, 0,

P

s g x g x

   




   

 
  

 

(48)

where  0 01 2P s   if condition (35) holds at k = 0, and

  0 0 0 01P s g x  if condition (35) does not holds at k = 0.

The inequality (48) is indeed an upper bound of
2

* 1 

because if condition (35) does not hold, then (48) reduces to

(47), and if condition (35) holds, then (48) reduces to (46) plus

a positive extra term
   

2
0 0

0

s g x


.

Following the same logic, the following holds for k = 1:

     

     

     

22 2
* 2 * 1 1 1 1 1

1

22
* 0 0 1 0 0 0 1

0

2
1 1 1

1

1

1

1
,

P s g x g x

P P s g x g x P

s g x g x

   


 




 
      

 

 
    

 

 
 

 

 (49)

where  1 11 2P s   if condition (35) holds at k = 1, and

  0 1 1 11P s g x  if condition (35) does not holds at k = 1.

Inequality (49) is indeed the same as inequality (45) for k = 1.

What remains to prove is that assuming that (45) holds at

iteration k, it also holds for k+1:

     

     

12 2
* 2 * 0

0

12

0 1

2
1 1 1

1

1

1
.

k
k i

i

kk
j j j l

j
j l j

k k k

k

P

s g x g x P

s g x g x

   












  

  





 

   

  
    

  

 
 

 

(50)

The validity of (50), will be derived using the same logic as that

used in deriving (48). Consider the following inequality:

     

2 2
* 2 * 1 1

2
1 1 1

1

1
,

k k k

k k k

k

P

s g x g x

   



  

  



   

 
 

 

(51)

After substituting the expression for
2

* 1k   from (45) into

(51) one obtains the following inequality:

     

     

     

2
* 2

2
* 0

0

1 2
1

0 1

2

2
1 1 1

1

1

1

1
.

k

k
i

i

kk
j j j l k

j
j l j

k k k

k

k k k

k

P

s g x g x P P

s g x g x

s g x g x

 

 














  

  





 

 

 
  
 
 

           
  

   
  

 
  

 

(52)

The inequality (52) simplifies to the following:

     

     

     

12 2
* 2 * 0

0

1 2
1

0 1

2
1

1

2
1 1 1

1

1

1

1
.

k
k i

i

kk
j j j l k

j
j l j

k k k k

k

k k k

k

P

s g x g x P P

s g x g x P

s g x g x

   















  





  





 

   

   
      

   

 
  

 

 
 

 

(53)

After further simplifications, the inequality (53) becomes:

     

     

12 2
* 2 * 0

0

12

0 1

2
1 1 1

1

1

1
.

k
k i

i

kk
j j j l

j
j l j

k k k

k

P

s g x g x P

s g x g x

   












  

  





 

   

  
    

  

 
 

 

(54)

The inequality (54) is the sought-for inequality (45).

Stage 3. Convergence of the upper bound to zero.

In this Stage, it is proved that the upper bound on the

Lyapunov function defined in (45) asymptotically approaches

zero, thereby leading to convergence of multipliers to 𝜆∗.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Proposition 7. Proof of Convergence. If stepsizes are updated

per (7)-(8), then 𝜆𝑘 → 𝜆∗ as 𝑘 → ∞.

Proof: In order to prove that 𝜆𝑘 → 𝜆∗, it is necessary to prove

that the upper bound on Lyapunov function (right-hand side of

(45)) approaches zero. This leads the Lyapunov function to

converge to zero and to the convergence of multipliers.

Since 𝜆∗ that maximizes the dual function (26), is assumed

to exist, the term
2

* 0  is finite. Therefore, it is sufficient

to prove that the following expression approaches zero:

    
1 1 1

0 0: / 0:

1 () 1 2
k k k

i i i k i

i i i i i

P s g x s 
  

     

     ,

(55)

where ℵ is the set is iteration numbers whereby inequality (39)

holds, and is the set of natural numbers.

 To prove that (55) approaches zero, the stepsizing formula

(7)-(8) is plugged in first, then the resulting function is upper-

bounded by using standard functions and their asymptotical

representation, then, though algebraic manipulations, the

condition for i is derived to ensure that (55) approaches zero.

By exploiting the fact that set ℵ is a proper subset of natural

numbers  and that each term  1 ()i i is g x is greater

than 1, the following inequality holds:

    

 

1 1

0: / 0:

1 1
0 0

0: 1 0:

1 () 1 2

1 2 () 1 2 .

k k
i i i i

i i i i

k i k
i i

j
i i j i i

s g x s

s g x s

 

  

 

    

 

    

 

  

  

  
   

  

(56)

Assuming that condition (35) is satisfied at least every N (< ∞)

iterations the entire expression (56) is upper-bounded as:

    

 

1 1

0: / 0:

1
0 0

0: 1

0 0
1 /

0 1

1 () 1 2

1 2 ()

()
1 2 .

()

k k
i i i i

i i i i

k i
i

j
i i j

k N iN

j i
i j

s g x s

s g x

s g x

g x

 

 




 

    



  

  

 

 

 

 

  

  
   

  

 
    

  
 

(57)

If such N does not exist and condition (35) does not hold

infinitely often, then there is a contradiction with Proposition 3.

To prove that the right-hand side of (57) approaches zero,

consider 𝛼𝑘 from (8) which asymptotically behaves as 1 −
1

𝑀𝑘

as 𝑘 → ∞ [23], therefore, asymptotically, the right hand-side of

(57) becomes

0 0

0: 1

0 0

0 1

1
1 2 1 ()

()1
1 2 1 .

()

i
i

i i N j

iN

i
i j

s g x
Mj

s g x

Mj g x







  



 

 

 

  
     

  

  
   
   

(58)

The product
1

1
1

i

j Mj


 
 

 
can be expressed in terms of a

“Pochhammer function,” [44] which asymptotically behaves as
1

1
1

M
M

i
M




  
     

 [44] where 𝛾 is the Euler’s gamma function.

Therefore, asymptotically, (58) approaches the following

expression:

 

0 0 0 0

1 1
0 0

2 () 2 ()
1 1 .

11 ()

i

i i iN
M M

s g x s g x

MM g x iNi
MM

 



 

 

 

   
   
    
     
           

 (59)

After regrouping terms, (59) becomes

 

0 0

1
1

1

0 0

1

2 ()
1

1

2 ()
1

1
()

i
jN

i N jN
M

j

jN
M

s g x

M
i

M

s g x

M
g x jN

M









  









  
  
   
       
   
 
  
  
  

   
   
   

.

(60)

After expanding the inner product, and ignoring involving
(𝑗)−2/𝑀 and higher order terms, (60) becomes

 

0 0 0 0

1 1
11

2 () 2 ()
1 .

11 ()

i
jN

i N jNj jN
M M

s g x s g x

MM g x jNi
MM

 





  



 
 
  
   
       

(61)

To ensure that products involve terms less than 1 each, consider

 

0 0

1

1 ,...,

1 1

2 ()
1

1

max

()(1)

ij

i N jN jN

jN
M M

s g x

M

M

N

g x jNN jN










  



 
  

  
  
  

  
  

  
     

.

(62)

To ensure that every terms is less than 1, consider

 

1

1

(1)
,

()

1 ,..., , 1,2,....

M
i

jN
M

N jN

N g x jN

i N jN jN j




 


   

(63)

The second term of the right-hand side of (45) also approaches

zero, because it involves similar products as in (55), and the

proof follows exactly the same logic. The last term in the right-

hand side of (45) approaches zero because stepsizes approach

zero. □

IV. NUMERICAL TESTING

The purpose of this section is to demonstrate performance

of the Distributed and Asynchronous Surrogate Lagrangian

Relaxation (DA-SLR) method. In Example 1, a small integer

linear problem is considered to demonstrate that the Lyapunov

function approaches zero fast. In Example 2, a generalized

assignment problem with 20 machines and 1600 jobs is

considered to demonstrate capability of DA-SLR to solve large-

scale optimization problems fast with near-optimal

performance. Because of difficulties associated with other

methods as reviewed in Literature Review, subsection II.B and

space limitations, comparison of DA-SLR is performed against

its sequential version – SLR [23] only, which, in turn, has been

shown to outperform other previous coordination methods in

[24]. The DA-SLR method is implemented using IBM ILOG

CPLEX Optimization Studio Version: 12.7.1.0 on a PC with

3.10GHz Intel(R) Xeon(R) CPU and 32G RAM.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

Example 1. A Small Integer Programming Problem.

Consider the following integer optimization problem

  
 

1 2 3 4 5 6

1 2 3 4 5 6
, , , , ,

min 2 3 2 3
x x x x x x

x x x x x x


     (64)

1 2 3 4 5 6

1 2 3 4 5 6

. .

3 5 3 5 26 0,

2 1.5 5 2 0.5 16 0,

0 3, 1,...,6.i

s t

x x x x x x

x x x x x x

x i

      

      

  

(65)

After constraints (65) are relaxed by using multipliers 1 and

2, the Lagrangian function becomes

 1 2 3 4 5 6 1 2

1 2 3 4 5 6

1 1 2 3 4 5 6

2 1 2 3 4 5 6

(, , , , , , ,)

2 3 2 3

(3 5 3 5 26)

(2 1.5 5 2 0.5 16).

L x x x x x x

x x x x x x

x x x x x x

x x x x x x

 







     

       

      

(66)

The relaxed problem is then separated into six individual

subproblems, one for each variable:

1

1 1 1 2 1

1

min{ 2 },

. .0 3,

x
x x x

s t x

 


 

 

2

2 1 2 2 2

2

min{2 3 1.5 },

. .0 3,

x
x x x

s t x

 


 

 

3

3 1 3 2 3

3

min{3 5 5 },

. .0 3,

x
x x x

s t x

 


 

 

4

4 1 4 2 4

4

min{ 2 },

. .0 3,

x
x x x

s t x

 


 

 

5

5 1 5 2 5

5

min{2 3 0.5 },

. .0 3,

x
x x x

s t x

 


 

 

6

6 1 6 2 6

6

min{3 5 },

. .0 3.

x
x x x

s t x

 


 

 

(67)

Derivation of dual function and optimal multipliers. Since

the purpose of this example is to demonstrate convergence of

multipliers to their optimal values, the knowledge of the dual

function and optimal multipliers is needed. The dual function

is obtained by minimizing the Lagrangian function (66) by

using software Mathematica [45], which allows symbolic

manipulations. Because of technical limitations that do not

allow performing symbolic minimization with respect to 6

integer variables, the dual function is obtained iteratively. The

Lagrangian function is minimized over {x1, x2, x3} and the

resulting function is minimized over {x4, x5, x6}. The analytical

expression for the dual function then becomes:

3 https://5g.co.uk/guides/how-fast-is-5g/

 1 2 3 4 5 6

1 2 1 2 3 4 5 6 1 2
, , , , ,

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1

(,) min (, , , , , , ,)

26 16 , if 0.6, 2 1

6 20 4 , if 0.6, 2 1

21 4 15.5 , if 3 1.5 2, 5 3

18 2 2 , if 5 3, 2 1, 3

x x x x x x
q L x x x x x x   

     

     

     

      

 

    

     

     

      2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

0.5 2

30 19 18.5 , if 5 3, 2 1, 3 0.5 2

9 11 , if 0.6, 5 3, 2 1

18 4 2 , if 5 3, 3 0.5 2

15 5 11 , if 0.6, 2 1, 3 0.5 2

24 13 6.5 , if



       

       

     

       

 

 

       

       

     

       

  1 2 1 2 1 2

1 2 1 2 1 2

3 1.5 2, 2 1, 3 0.5 2

30 22 8 , if 3 0.5 2, 2 1

0, otherwise.

     

     















     
      



(68)

By maximizing the dual function (68) over 1 and 2 in

Mathematica, the optimal dual value and optimal multipliers are

obtained as:
* *
1 2(,) 15.6q    , with *

1 0.6  and *
2 0  . (69)

Initialization. The stepsize is initialized by using [23, eq. (76),

p. 190], whereby the optimal dual value q* from (69), rather

than its estimate, is used. Multipliers are initialized at zero.

Simulation. Because of the lack of distributed computing and

communicating facilities, asynchronous coordination is

simulated by simulating subproblem-solving, multiplier-

updating, and communication times. Simulated solving an

updating times are based on real times obtained by SLR first.

According to the SLR results, subproblem solving times

range from 2 millisecond (ms) to 115 ms with an average value

of 5.36 ms. The multiplier-updating time is either 0 or 1 ms

with an average value of 0.036 ms (the updating time is very

short and the time resolutions within OPL CPLEX is 1 ms).

Subproblem-solving and multiplier-updating times, thus,

follow empirical distributions, which for simulation purposes

are used to generate solving and updating times using discrete

random number generators in MS Excel [48]. Communication

time between the coordinator and subproblem solvers is

randomly generated following a uniform distribution U[0.95,

1.05] as the average wireless 5G speed is 1 ms.3 Based on the

above data, absolute arrival times (time when one subproblem

solver finishes solving one subproblem + communication time)

of subproblem solutions are computed. Based on these absolute

time stamps, a sequence of subproblem solution arrivals to the

coordinator is obtained. Given solution arrival times, the

sequence, and the multiplier-updating time, the set of latest

subproblem solutions used to update multipliers at each

coordinator iteration is determined. Then the time of multiplier

arrivals to each subproblem solver is obtained. Given the time

when one subproblem solver starts solving, appropriate

multipliers to be used are also determined based on multiplier

arrival times. In simulations, subproblems are solved and

multipliers are updated based on simulated sequences, which

are, in turn, based on empirical distributions as described above.

To test robustness of the method DA-SLR, 10 testing cases are

generated following the above procedure. To demonstrate

https://5g.co.uk/guides/how-fast-is-5g/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

convergence of DA-SLR when there is a “slow” subsystem,

another testing case with one “slow” subproblem solver is also

considered. The solving time of the “slow” subproblem solver

is assumed to range from 20 ms to 450 ms. Other five

subproblem solver remain the same. For comparison purposes,

one more testing case with a “slow” subsystem is also generated

for sequential SLR.

Results. Distances from multipliers to the optimum, which are

square a square roof of Lyapunov functions, for DA-SLR

(average, minimum and maximum over 10 cases) and SLR are

shown in Fig. 2. The results for the case with a “slow”

subsystem are shown in Fig. 3.

Fig. 2. Distances from multipliers to the optimum (square root of Lyapunov

function) within DA-SLR and SLR

As demonstrated in Fig. 2, average as well as minimum and

maximum values of Lyapunov functions within DA-SLR while

non-monotonic, approach zero fast. Moreover, distances to the

optimum within DA-SLR approach zero faster, as compared to

those within SLR.

Fig. 3. Distances from multipliers to the optimum (square root of Lyapunov

functions) within DA-SLR and SLR for a system with one “slow” subsystem;
comparison with results of Fig 2.

As demonstrated in Fig. 3, when there is a “slow”

subsystem, distances to the optimum within DA-SLR also

approach zero. While in this case, the Lyapunov function

approaches zero slower than within the system without “slow”

subsystems, and still faster than within SLR.

Example 2. Generalized Assignment Problems [23, 24, 46,

47]. The Generalized Assignment Problem (GAP) can be

viewed as a futuristic and albeit simplified optimization

problem that arises within “factories of tomorrow,” whereby

each machine or a job will have computational and

communicational capabilities. The DA-SLR method will then

serve as a foundation for self-optimization to efficiently

coordinate machines and jobs.

Problem formulation. Mathematically, the generalized

assignment problem is formulated in the following way:

 ,

, ,
1 1

min
i j

I J

i j i j
x i j

g x
 

  ,

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    ,
(70)

 , ,
1

. . , 1,...,
I

i j i j j
i

s t a x b j J


   , (71)

 ,
1

1, 1,...,
J

i j
j

x i I


   , (72)

where I is the number of jobs and J is the number of machines,

ai,j is the time required by machine j to perform job i, and gi,j is

the cost of assigning job i to machine j. Capacity constraints

(71) ensure that the total amount of time required by the jobs to

be performed on machine j does not exceed its available time

bj. Assignment constraints (71) ensure that each job is to be

performed on one and one machine only.

Relaxed problem. After relaxing assignment constraints (72),

the relaxed problem is formulated in a separable form as follows

[23]:

   
, ,

, ,
1 1 1

min , min
i j i j

I J J

i j i i j i
x x i j i

L x g x  
  

     ,

, ,
1

. . , 1, ...,
I

i j i j j
i

s t a x b j J


  

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    .

(73)

Subproblems. The above relaxed problem (73) is decomposed

into J individual machine subproblems, and subproblem j is

formulated as follows:

 

,

, ,
1

min
i j

I

i j i i j
x i

g x


  , , ,
1

. . ,
I

i j i j j
i

s t a x b


 

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    .
(74)

These subproblems are solved using branch-and-cut

implemented in CPLEX. The simulation follows the same

process as that explained in Example 1. The resulting

subproblem solving times follow uniform distributions U[0.15,

0.20], and updating times follow U[0.01, 0.02].

Communication times follow the same 5G assumption with

uniform distribution U[0.95, 1.05].

Initialization. The stepsize is initialized by using [23, eq. (76),

p 190], whereby an estimate of the optimal dual value q* is used.

This estimate is obtained by solving (70)-(72) after relaxing

integrality requirements. Initial values of multipliers are

obtained based on heuristic initialization rules following [47],

whereby the second highest cost of assigning a job is used.

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

D
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

Simulated time (sec)

SLR

DA-SLR (Average)

DA-SLR (Min and Max)

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

D
st

an
ce

 t
o

 t
eh

 o
p

ti
m

u
m

Simulated Time (sec)

SLR

DA-SLR (with one 'slow' subsystem)

DA-SLR (Average (Fig. 2))

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

Results. Because this example is complicated, optimal

multipliers are difficult to obtain. Therefore, Lyapunov

functions are not plotted. Rather, dual values and feasible costs

obtained by using DA-SLR and SLR and are plotted in Fig. 4

Fig. 4. Performance of DA-SLR and comparison against SLR using

parameters M = 75 and r = 0.05 for solving the GAP d201600 instance

 Fig. 4 demonstrates performance of DA-SLR for the GAP

d201600 instance with 20 machines and 1600 jobs. The dual

value is obtained every 500 iterations by solving all

subproblems to optimality.4 As shown in Fig. 4, with

asynchronous coordination, a feasible cost 97,852 is obtained

with a duality gap of 0.0316% after 78 seconds. This

demonstrates that DA-SLR converges and finds high-quality

solutions significantly fast. As shown in Fig. 4, within SLR,

the best feasible cost 97,855 is obtained with a duality gap of

0.0332% after 950 seconds.

Fig. 5. Performance of DA-SLR and comparison against SLR using

parameters M = 75 and r = 0.05 for solving the GAP d201600 instance

As demonstrated in Fig. 5, within DA-SLR surrogate

subgradient norms reduce fast, and faster than within its

sequential SLR version.

4 It is expected that surrogate dual value approach dual values at convergence,

but for demonstration purposes, dual values are obtained every 500 iterations.

V. CONCLUSION

 In anticipation of trends toward self-optimizing factories,

there is a need for efficient asynchronous price-based

coordination of distributed subproblems. The novel distributed

and asynchronous Surrogate Lagrangian Relaxation is

developed and convergence is proved based on the novel use of

Lyapunov energy function without requiring its strict

monotonic decrease for convergence. Numerical results

demonstrate that the novel approach converges fast. With this

effective distributed and asynchronous coordination, the

method has a strong potential to be used in future self-

optimizing factories to coordinate machines and in future power

systems to efficiently coordinate distributed energy resources.

REFERENCES

1. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash,

“Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications,” in IEEE Communications Surveys and Tutorials, vol. 17, no. 4,
pp. 2347-2376, Fourthquarter 2015. doi: 10.1109/COMST.2015.2444095

2. S. Li, L.D. Xu, and S. Zhao, “The internet of things: a survey,” Inf. Syst.

Front., vol. 17, no. 2, pp. 243–259, 2015. https://doi.org/10.1007/s10796-014-
9492

3. J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture

for industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18–23,
Jan. 2015

4. T. Stock and G. Seliger, “Opportunities of sustainable manufacturing in

industry 4.0,” Procedia CIRP, vol. 40, pp. 536–541, Jan. 2016.
5. A. Giret, D. Trentesaux, and V. Prabhu, “Sustainability in manufacturing

operations scheduling: A state of the art review,” J. Manuf. Syst., vol. 37, pp.

126–140, 2015.
6. C. Gahm, F. Denz, M. Dirr, and A. Tuma, “Energy-efficient scheduling in

manufacturing companies: A review and research framework,” Eur. J. Oper.

Res., vol. 248, no. 3, pp. 744–757, 2016.
7. M. L. Fisher, “Optimal solution of scheduling problems using Lagrange

multipliers, Part I,” Operations Res., vol. 21, pp. 1114-1127, 1973.

8. M. L. Fisher, “Lagrangian relaxation method for solving integer
programming problems,” Manag. Sci., vol. 27, pp. 1-18, 1981.

9. M. L. Fisher, B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan,

“Surrogate duality relaxation for job shop scheduling,” Discrete Appl. Math.,
vol. 5, pp. 65-75, Jan. 1983.

10. D. J. Hoitomt, P. B. Luh, K. R. Pattipati, “A Practical Approach to Job Shop

Scheduling Problems,” IEEE Transactions on Robotics and Automation, vol. 9,
no. 1, pp. 1-13, February 1993.

11. X. Guan, P. B. Luh, H. Yan and P. M. Rogan, “Optimization-based

Scheduling of Hydrothermal Power Systems with Pumped-storage Units,”
IEEE Trans. Power Syst., vol. 9, no. 2, pp. 1023-1031, 1994.

12. N. Z. Shor, “On the Rate of Convergence of the Generalized Gradient
Method,” Cybernetics, vol. 4, no. 3, pp. 79-80, 1968.

13. N. Z. Shor, “Generalized Gradient Methods for Non-smooth Functions and

Their Applications to Mathematical Programming Problems,” Econ. Math.
Methods, vol. 12, no. 2, pp. 337–356, 1976 (in Russian)

14. A. Nedić and D. Bertsekas, “Convergence Rate of Incremental Subgradient

Algorithms,” in Stochastic Optimization: Algorithms and Applications, pp.
223-264, Springer, Boston, MA, 2001

15. A. Nedić, D. P. Bertsekas and V. S. Borkar, “Distributed Asynchronous

Incremental Subgradient Methods,” Studies in Computational Mathematics,
vol. 8, pp. 381-407, 2001

16. F. Iutzeler, P. Bianchi, P. Ciblat and W. Hachem, “Explicit convergence

rate of a distributed alternating direction method of multipliers,” IEEE
Transactions on Automatic Control, vol. 61, no. 4, pp. 892-904, 2016

17. E. Wei and A. Ozdaglar, “On the O(1/k) Convergence of Asynchronous

Distributed Alternating Direction Method of Multipliers,” In Global conference
on signal and information processing (GlobalSIP), pp. 551-554, 2013

18. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Distributed

Optimization and Statistical Learning via the Alternating Direction Method of

97790

97800

97810

97820

97830

97840

97850

97860

97870

97880

0 200 400 600 800 1000

C
o

st

Simulated Time (sec)

Feasible cost (DA-SLR)

Lower bound (DA-SLR)

Feasible cost (SLR)

Lower Bound (SLR)

0

100

200

300

400

500

600

0 200 400 600 800 1000

N
o

rm
 S

q
u

ar
ed

Simulated Time (sec)

DA-SLR SLR

https://doi.org/10.1007/s10796-014-9492
https://doi.org/10.1007/s10796-014-9492
https://msl.engr.uconn.edu/paper/hoitmot/PracticalJobShop93.pdf
https://msl.engr.uconn.edu/paper/hoitmot/PracticalJobShop93.pdf

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp.

1-122, 2010

19. R. Zhang and J. T. Kwok, “Asynchronous distributed ADMM for consensus

optimization,” in Proc. 31th ICML, Beijing, China, Jun. 21–26, 2014, pp. 1–9

20. Y. Wang, L. Wu, and S. Wang, “A Fully-Decentralized Consensus Based
ADMM Approach for DC-OPF With Demand Response,” IEEE Transactions

on Smart Grid, vol. 8, no. 6, pp. 1–11, 2016

21. Y. Wang, L. Wu, and J. Li, “A fully distributed asynchronous approach for
multi-area coordinated network-constrained unit commitment,” Optim. Eng.,

vol. 19, pp. 419–452, 2018.

22. X. Zhao, P. B. Luh and J. Wang, “Surrogate Gradient Algorithm for
Lagrangian Relaxation,” Journal of Optimization Theory and Applications, vol.

100, no. 3, pp. 699–712, 1999

23. M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu and G. A. Stern, “Convergence
of the Surrogate Lagrangian Relaxation Method,” Journal of Optimization

Theory and Applications, vol. 164, no. 1, pp. 173-201, 2015

24. M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A Scalable Solution
Methodology for Mixed-Integer Linear Programming Problems Arising in

Automation,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2, Jun. 2018 doi:

10.1109/TASE.2018.2835298
25. M. R. Hestenes, “Multiplier and gradient methods,” J. Optim. Theory Appl.,

vol. 4, no. 5, pp. 303–320, 1969.

26. M. J. D. Powell, “A method for nonlinear constraints in minimization
problems,” in Optimization, R. Fletcher, Ed. New York, NY, USA: Academic,

1969

27. A. M. Lyapunov, “The General Problem of the Stability of Motion,” (In
Russian), Doctoral dissertation, Univ. Kharkov 1892 English translations:

(1) Stability of Motion, Academic Press, New-York & London, 1966 (2) The

General Problem of the Stability of Motion, (A. T. Fuller trans.) Taylor &
Francis, London 1992.

28. D. P. Bertsekas, Nonlinear Programming, 3rd Edition, Athena Scientific,

2016.
29. P. B. Luh, D. Zhang, R. N. Tomastik, “An Algorithm for Solving the Dual

Problem of Hydrothermal Scheduling,” IEEE Transactions on Power Systems,

мol. 13, тo. 2, pp. 593-600, May 1998.
30. J.-L. Goffin and K. Kiwiel, “Convergence of a simple subgradient level

method,” Math. Program., vol. 85, no. 11, pp. 207–211, 1999.

31. A. Nedic, and D. P. Bertsekas, “Convergence rate of incremental
subgradient algorithms,” In: Uryasev, S., Pardalos, P.M. (eds.) Stochastic
Optimization: Algorithms and Applications, pp. 263–304. Kluwer Academic,

New York, 2000.
32. R. Zhang and J. T. Kwok, “Asynchronous Distributed ADMM for

Consensus Optimization,” Proceedings of the 31st International Conference on

Machine Learning (ICML-14), pp.1701-1709, 2014.
33. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

optimization and statistical learning via the alternating direction method of

multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.
34. J. Yang and X. Yuan, “Linearized Augmented Lagrangian and Alternating

Direction Methods for Nuclear Norm Minimization,” Math. Computation, vol.
82, pp. 301-329, 2013.

35. W. T. Elsayed and E. F. El-Saadany, “A fully decentralized approach for

solving the economic dispatch problem,” IEEE Trans. Power Syst., vol. 30, no.
4, pp. 2179–2189, Jul. 2015.

36. J. E. Mitchell, “Branch-and-cut,” in Wiley Encyclopedia of Operations

Research and Management Science. Hoboken, NJ, USA: Wiley, 2010.
37. G. B. Dantzig, “Expected number of steps of the simplex method for a linear

program with a convexity constraint,” Technical Report SOL 80-3, Stanford

University, 1980.
38. M. Brusco and S. Stahl, Branch-and-Bound Applications in Combinatorial

Data Analysis. Springer, 2005.

39. A. H. Land and A. Doig, "An automatic method of solving discrete
programming problems" Econometrica, vol. 28, pp. 497-520, July 1960.

40. M. Padberg, “Classical cuts for mixed-integer programming and branch-

andcut,” Ann. Oper. Res., vol. 139, pp. 321–352, 2006
41. R. Misener and A. F. Christodoulos “Global Optimization of Mixed-integer

Quadratically Constrained Quadratic Programs (MIQCQP) through Piecewise-

linear and Edge-concave Relaxations,” Mathematical Programming Journal
on Computing, vol. 136, no. 1, pp. 155-182, May 2012.

42. B. W. Wah, Y. X. Chen, “Subgoal Partitioning and Global Search for

Solving Temporal Planning Problems in Mixed Space,” International Journal
of Artificial Intelligence Tools, vol. 13, no. 4, pp. 767-790, 2004

43. S. G. Kreĭn, and N. I︠A︡. Vilenkin, Functional analysis, Foreign Technology

Division, Wright-Patterson Air Force Base, Ohio, 1967. (Translation from
Russian)

44. R. Diaz, and E. Pariguan, “On Hypergeometric Functions and Pochhammer

k-symbol,” Divulgaciones Matemticas, vol. 15, no. 2, pp. 179-192, 2007.

45. Wolfram Research, Inc., “Mathematica, Version 11.3,” Wolfram Research,

Inc., Champaign, Illinois, 2018

46. M. Yagiura, T. Ibaraki, and F. Glover, “A Path Relinking Approach with
Ejection Chains for the Generalized Assignment Problem,” Eur. J. Oper. Res.,

vol. 169, no. 2, pp. 548–569, 2006
47. M. L. Fisher, R. Jaikumar and L. N. Van Wassenhove, “A Multiplier
Adjustment Method for the Generalized Assignment Problem,” Management

Science, vol. 32, no. 9, pp. 1095-1103, 1986

48. Discrete random number generator in Excel,
https://stackoverflow.com/questions/43226094/discrete-random-number-

generator-in-excel

49. X. Sun, P. B. Luh, M. A. Bragin, Y. Chen, J. Wan, and F. Wang, “A
decomposition and coordination approach for large-scale security constrained

unit commitment problems with combined cycle units,” IEEE Trans. Power

Syst., vol. 33, issue 5, September 2018, pp. 5297-5308

Mikhail A. Bragin (S’11-M’17) received his B.S. and
M.S. degrees in Mathematics from the Voronezh State

University, Russia, in 2004, the M.S. degree in Physics and

Astronomy from the University of Nebraska-Lincoln,
USA, in 2006, and the M.S. and Ph.D. degree in Electrical

and Computer Engineering from the University of

Connecticut, USA, in 2014 and 2016, respectively. He is
an Assistant Research Professor in electrical and computer

engineering at the University of Connecticut. His research interests include

operations research, mathematical optimization, including power system
optimization, grid integration of renewables (wind and solar), energy-based

operation optimization of distributed energy systems, scheduling of

manufacturing systems and machine learning through deep neural networks.

Bing Yan (S’11-M’17) received the B.S. degree from

Renmin University of China in 2010, M.S. and Ph.D.
degrees from University of Connecticut in 2012 and 2016,

respectively. She is currently an Assistant Professor in the

Department of Electrical and Microelectronic Engineering,
Rochester Institute of Technology. Before joining

Rochester Institute of Technology, she was an Assistant Research Professor in

the Department of Electrical and Computer Engineering, University of
Connecticut. Her research interests include power system optimization,

manufacturing system scheduling, mathematical optimization, formulation

tightening, operation optimization of microgrids and distributed energy
systems, and grid integration of renewables (wind and solar).

Peter B. Luh (S’77–M’80–SM’91–F’95-LF’16) received
his B.S. degree from National Taiwan University, M.S.

degree from M.I.T., and Ph.D. degree from Harvard
University. He has been with the University of Connecticut

since 1980, and is the SNET Professor of communications

& information technologies. His interests include smart
power systems – smart grid, design of auction methods for

electricity markets, effective renewable (wind and solar)

integration to the grid, electricity load and price forecasting
with demand response, and micro grid. He is a fellow of IEEE, was the vice

president of publication activities for the IEEE Robotics and Automation

Society.

https://en.wikipedia.org/wiki/Aleksandr_Lyapunov
https://stackoverflow.com/questions/43226094/discrete-random-number-generator-in-excel
https://stackoverflow.com/questions/43226094/discrete-random-number-generator-in-excel

