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Abstract

A work on progress where we give a very generic derivation of the radiation pattern of antennas radiating in nonlocal MTMs.
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Abstract—We solve the problem of how antennas radiate into
generic nonlocal metamaterials by using a momentum-space
formalism to rigorously derive the general radiation formula. The
energy per Hertz by unit solid angle is computed by first deriving
the dyadic Green’s function of nonlocal media in the momentum
space. We show that due to causality only the antihermitian
part of the dyad will contribute to the radiation field. We
avoid any spectral integration or using the Poynting vector (the
latter known to be already inadequate in nonlocal media) by
working directly with momentum space formulation and derive
analytically the exact expression. The final result depends only
on the modal analysis of the metamaterial.

Index Terms—Future antennas, momentum space, nonlocal
metamaterials.

I. INTRODUCTION

The main objective of this paper is to formulate the main
themes of traditional antenna theory in a language conductive
to research on novel and future types of antennas, in particular
those operating in complex nonclassical environments best
described by a nonlocal electromagnetic material response
function. Nonlocality includes most prominently spatial dis-
persion, i.e., the dependence of the material response function
on the wavevector k besides the classical (temporal) dispersion
characterized by the appearance of another dependence on
ω, the circular frequency [1]–[3]. Inspired by the earliest
formulation of the problem of electromagnetic wave propaga-
tion in spatially-dispersive media, we adopt the Fourier space
approach to solving and studying the less-known problem
of antenna analysis and design in such media. The Fourier
space approach replaces the frequency domain formulation
where the fields are considered in the frequency-space domain,
i.e., functions in the form F(r, ω), by moving to a fully-
fledged 4-dimensional Fourier space where all fields (elec-
tromagnetic fields and their current sources) take the form
F(k, ω). Following the common convention in physics, we
capture the dependence on k by the term momentum space
since momentum p and the wavevector k are related to each
other in quantum physics by mere constant (the de Broglie
relation p = ~k). Some previous work on controlling the
radiation emitted by sources embedding into metamaterials
include [4]–[9], where most of the focus is on conventional
metamaterials used to modify the emission characteristics o
optical sources in metamaterials. However, all conventional

metamaterials exhibit spatial dispersion so the subject has been
taken into consideration in more recent works such as [10].

The momentum space formulation of electromagnetic the-
ory is extensively used in diverse disciplines, including
condensed-matter physics [11], plasma physics [3], quantum
field theory [12], quantum optics [13]. However, momentum
space does not seem to have been widely used in clas-
sical antenna theory where most treatments tend to favor
the frequency-space formulation, with some exceptions like
[14], [15]–[17]. For example, the plane-wave spectrum, a
momentum representation of EM fields, was deployed for
applications to near-field measurement [18], computation of
Green’s functions in inhomogeneous media [19], [20], sub-
wavelength imaging [21], and characterizing mutual coupling
and interactions [14], [16], [22], [23]. Periodic structures are
examples of systems in which wave propagation analysis is
fundamentally conducted in the spatial Fourier space, although
in that case it is usually referred to as reciprocal space [24]. In
this paper, we propose a momentum space formalism for an-
tenna theory adapted from some of the original applications in
physics but now for the needs of antenna theory in engineering.
Our goal is to sketch out in broad manner the general ideas,
basically how to define radiation patterns and array theory in
momentum space instead of time-space or frequency-space.
The main application of the theory is for future antennas
utilizing metamaterials exhibiting nonlocal behaviour, where
in that particular case we argue that the Fourier space approach
provides the best means to tackle the subject [17], [25].

II. THE DYADIC GREEN’S FUNCTION OF NONLOCAL
MEDIA IN MOMENTUM SPACE

The 4-dimensional Fourier transform of a generic vector
field F(r, t) in space-time is defined by

F(k, ω) :=

∫
R4

d3rdtF(r, t)e−ik·r+iωt. (1)

If the field F is well-behaved in R4, then the inverse Fourier
integral exist giving

F(r, t) =

∫
R4

d3kdω
(2π)4

F(k, ω)eik·r−iωt. (2)

Throughout this paper, we assume that all relevant electromag-
netic fields and currents in nonlocal material domains possess



Fourier transforms in the sense that the pair (1) and (2) exist.1

In the Fourier domain, Maxwell’s equations becomes

k×E(k, ω) = ωB(k, ω), (3)

ik×B(k, ω) = µ0J(k, ω)−
(
iω/c2

)
E(k, ω), (4)

k ·E(k, ω) = −iρ(k, ω)/ε0, k ·B(k, ω) = 0, (5)

where E(k, ω), B(k, ω), and J(k, ω) are the space-time
Fourier transforms of the electric field, magnetic flux intensity,
and the source current distribution, respectively. The relations
(3)-(5) are valid in arbitrary material domain with both tempo-
ral and spatial dispersion. However, they cannot be solved till
we provide a description of the material response function.
In this paper, we follow the Fourier transform approach in
defining the constitutive relation and therefore will not use the
much more familiar approach through the multipole expansion
often deployed in the engineering literature. In particular, we
decompose the total current J(k, ω) into two parts

J(k, ω) = Jant(k, ω) + Jind(k, ω), (6)

where Jant(k, ω) is the externally supplied antenna current
distribution while Jind(k, ω) is the current induced in the
medium as a response to the excitation electric field, i.e., we
write

Jind(k, ω) = σ(k, ω) ·E(k, ω), (7)

where σ(k, ω) is the material conductivity tensor [11]. Here,
spatial dispersion (nonlocality) is captured by the dependence
of the conductivity on k, while the appearance of ω reflects
normal or temporal dispersion [1], [2]. The relation between
the electric displacement vector D(k, ω) and the electric field
can now be expressed by

D(k, ω) = ε(k, ω)·E(k, ω), ε(k, ω) = I+
i

ωε0
σ(k, ω). (8)

Here, I is the unit dyad. The tensor ε(k, ω) in (8) is
called the equivalent dielectric function of the medium in
frequency-momentum space [2], [25]. It provides the most
general description of the nonlocal medium in the frequency-
momentum space [11].2 It enjoys several properties that are
based on universal principles such energy conservation, causal-
ity, reciprocity, etc, hence valid irrespective to the actual
microscopic details of the medium [2], [11], [17]. We mention
here only those related to dissipation and non-dissipation
because they will pop out frequently in the antenna theory
to be developed here. The material response tensor in general
can be expanded as ε(k, ω) = εH(k, ω) + εA(k, ω), where
here we define εH(k, ω) := (1/2)

[
ε(k, ω) + ε

∗
(k, ω)

]
and

εA(k, ω) := (1/2)
[
ε(k, ω)− ε∗(k, ω)

]
, i.e., the hermitian

and antihermitian parts, respectively. In component form, it
is clear that εHnm = εH∗mn and εAnm = −εA∗mn. It can be shown
that only the antihermitian part of the response functions σ

1For further details about the precise mathematical conditions, see [12].
2In contrast to the traditional multipole approach, the Fourier space ap-

proach to the electromagnetic response of material domains include all electric
and magnetic responses in one response tensor, namely the tensor ε.

and ε actually contribute to dissipative processes such as wave
growth or decay inside the medium [2], [11], [13].

The fundamental assumption of the momentum space an-
tenna theory is that the antenna current is an independent
function externally imposed from the “outside” of the ma-
terial, i.e., in contrast to Jind, the antenna current Jant is
not determined by microscopic processes immanent to the
nonlocal material system itself. On the other hand, the induced
current Jind collects all individual processes in the material
system produced in response to the applied external source,
e.g., polarization current, conductive current, magnetization,
etc. To find the electromagnetic fields produced by the antenna
current source Jant, the vector magnetic potential A(r, t) and
the scalar electric potential φ(r, t) are often introduced where

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
, B(r, t) = ∇×A(r, t). (9)

There is then the well-known freedom of choosing a suitable
gauge condition (relation between A and φ) since Maxwell’s
equations in themselves are compatible with an infinite number
of valid choices of these potential functions (gauge freedom.)
It turns out that for the development of antenna theory in
nonlocal material domains, the best gauge condition to utilize
is the Fourier gauge

The Fourier Gauge : φ(r, t) = 0. (10)

Consequently, in this case we have

E(r, t) = −∂A(r, t)

∂t
, E(k, ω) = iωA(k, ω) (11)

The gauge condition (10) will be used throughout this work.
In particular, let us write the wave equation in the Fourier
space. From (3)-(5), we easily deduce

ω2

c2
E(k, ω) + k× [k×E(k, ω)] = −iωµ0J(k, ω). (12)

Using (11), this leads to

ω2

c2
A(k, ω) + k× [k×A(k, ω)] = −µ0J(k, ω) (13)

Note that the remaining field and source components, namely
B and ρ, can be determined from other equations like (3) and
the equation of continuity, giving rise to

B(k, ω) =
1

ω
k×E(k, ω), ρ(k, ω) =

1

ω
k ·E(k, ω). (14)

In other words, in the Fourier domain, the only effective
unknown is the frequency-momentum space electric field
E(k, ω) while all other quantities can be determined based
on this field variable. Moreover, using the Fourier gauge, only
the momentum space vector potential A(k, ω) must be found,
essentially by solving (13). Equally important is that both
(12) and (13) are in fact algebraic equations, allowing us to
derive exact analytical expressions for the antenna radiation in
nonlocal media as will be demonstrated later.3

3In the Fourier gauge, the only restriction is that ω 6= 0, an assumption
made here. However, for applications to antennas, this is already the case
since radiation does not occur in the static regime ω = 0.



Using (6), (7), and (11), we can introduce a slightly different
material tensor ζ(k, ω) defined by

Jind(k, ω) = ζ(k, ω) ·A(k, ω), ζ(k, ω) := iωσ(k, ω). (15)

In terms of the tensor, the effective dielectric tensor can be
written as

ε(k, ω) = I +
1

ω2ε0
ζ(k, ω). (16)

With the help of (15) and (16), the wave equation (13) can
then be reexpressed in the following more compact operator
form

G
−1

(k, ω)·A(k, ω) = −µ0c
2

ω2
Jant(k, ω), (17)

where the dyadic tensor

G
−1

(k, ω) := −k
2c2

ω2

(
I− k̂k̂

)
+ ε(k, ω) (18)

is the inverse of the momentum-space radiation operator
(dyadic Green’s function) G(k, ω). Here, k := |k| is the
magnitude of the wavevector k and k̂ := k/k is the unit
vector pointing in the direction of k. When there is no source
(Jant = 0), the relation (17) reduces to

G
−1,H

(k, ω)·A(k, ω) = 0, (19)

where G
−1,H

(k, ω) is the hermitian part of the tensor
G
−1

(k, ω). Here, we adopted the general approach in plasma
and condensed-matter physics where losses (introduced in our
case by dissipation in G

−1
(k, ω), ultimately caused by the

antihermitian part of ε(k, ω) via (18)) is treated as small
perturbation added to the main component of the Green’s
function tensor, which is hermitian [1], [2], [26]. For that
reason, only the hermitian part is relevant to the determination
of the radiation modes.4 The latter are found by solving the
equation

G−1,H(k, ω) = 0, G−1 := det
[
G
−1

(k, ω)
]
, (20)

where ‘det’ is the determinant operator. In general, there exists
multiple solutions to (20), each labeled by l and is captured
by the lth mode dispersion relation put either in the form ω =
ωl(k) or k = kl(ω). As will be illustrated next, it turns out that
the antenna radiation pattern (evaluated here in the momentum
space), is completely determined by the propagating modes
arising from the solution of the dispersion relation (20). For
that reason, the art and science of designing antennas with
desired far-field radiation patterns in nonlocal metamaterials
requires engineering these radiation modes.

III. THE ANTENNA RADIATION PATTERN IN MOMENTUM
SPACE

In mainstream antenna theory and the treatment of other
emission processes, the conventional approach to estimating
far-field radiation consists of solving Maxwell’s equations
(often in vacuum) to find the electric and magnetic fields

4We will however drop the superscript H in the future whenever that does
not cause confusion in order to simplify the notation.

in spacetime, forming the Poynting vector, then computing
the radiated power by integrating the latter in space and
time [27]. This approach, however, is extremely difficult to
apply in generic anisotropic media, and in the case when the
material tensor is also nonlocal, it is probably not possible
at all to work exclusively in spacetime. In what follows,
we propose an alternative short route toward building some
essential components of a viable theory of antennas radiating
in nonlocal domains. The key idea is that in the momen-
tum space of Fourier transformed fields, it is much easier
to work with spectral components since they acquire their
purely tensor-algebraic form developed above; simultaneously,
using Parseval (power) theorems, one can relate the physical
meaning of some (squared) quantities in one domain to the
other.

We start by noting that the nonlocal medium Green’s
function (18) can be expressed analytically by

Gij(k, ω) =
CH
ij(k, ω)

G−1,H(k, ω)
(21)

where Cij are the cofactors of the matrix representation of
the tensor G−1 satisfying G · C = IG−1. The detailed
expressions are lengthy and will not be given here but can be
found in good books on matrix theory. What is important for
us here is that, excepting the general functional dependence
of ε(k, ω), the nonlocal medium Green’s function becomes
essentially a polynomial rational function in both k and ω.
The tensor G is often called in the physics literature the photon
propagator. Here, we just refer to it as the nonlocal medium
dyadic Green’s function. Even though only the hermitian part
is taken into the medium Green’s function (21), there still
exists an antihermitian component in this Green’s function that
must be added in order to enforce causality [3], [26]. To see
this, note that the Green’s function (21) possesses poles at
the solutions of the dispersion equation (20), which implies
that Gij(k, ω) is singular. In order to find the spatio-temporal
fields, one needs to invert the Fourier transform by computing
(2). This then will lead to divergent integrals unless a small
perturbation in the pole location is introduced, which is usually
attained by replacing ω by ω + iε, where ε is a very small
positive real number. More often, we write ω + i0, a notation
adopted hereafter. It is clear then that around the lth mode, the
determinant G−1 appearing in the denominator of (21) may
be approximated by

G−1(k, ω) ≈ ∂G−1(k, ω)

∂ω
[ω − ωl + i0]. (22)

Using the Plemelj formula

1

ω + i0
= P 1

ω + i0
− iπδ(ω), (23)

where P is the principal Cauchy value operator, the relations
(21) and (22) when summed over all radiation modes jointly
imply the existence of the following antihermitian component

GA
ij(k, ω) = −iπε0

∑
l
ωlR

ij
l (k)δ(ω − ωl(k)), (24)



where

Rijl (k) :=
CH
ij(k, ω)

ε0ωl(k)∂G−1(k, ω)/∂ω

∣∣∣∣∣
ω=ωl(k)

(25)

is what we term the momentum-space radiation mode Green’s
function. It captures the lth mode contribution to the ijth
component (i, j = 1, 2, 3) of the nonlocal medium Green’s
function tensor G(k, ω). It turns out that only the antihemitian
part of this medium Green’s function as determined by (24)
actually contributes to the real radiated power of any antenna.
On the other hand, the hermitian part of G(k, ω) contributes
only to the antenna near field.

We next explicitly compute this radiation power pattern in
momentum space. Unfortunately, the common method applied
in antennas radiating in free space or in nondispersive me-
dia depends on the Poynting theorem interpreted as energy
conservation relation. It is well known that this direct view
cannot be extended without further assumptions to generally
temporally dispersive media [28]. Worse still, in nonlocal
(spatially dispersive) domains, the Poynting theorem itself is
not valid since power will flow along new directions emerging
from higher-order corrections [2], [29], [30]. Instead, we adopt
here an alternative method due to Brillouin [31] and often
adopted in various settings [32]. The key idea is to estimate
the energy transfered from the source to the near field right at
the source and equate this with the net (real) power delivered to
the medium. To achieve this in momentum space, we introduce
a new radiation pattern intensity Ul(k), which is formally
defined as the energy transferred from the antenna current into
the lth radiation mode field in the momentum-space volume
d3k/(2π)3. Clearly, the units of this quantity will be J · m3.
Let the antenna current source Jant(r, t) be examined within
a standard time interval [−T/2, T/2]. Since radiation modes
do not exchange energy with each other, we can some over
all radiation intensity functions Ul(k) defined above to obtain

−
∫ T/2

−T/2
dt
∫
Vant

d3rJant(r, t)·E(r, t) =
∑
l

∫
R3

d3k
(2π)3

Ul(k),

(26)
which is more general statement of energy conservation since
it does not require using the Poynting vector, the latter being
insufficient when nonlocality is present. Using the Parseval
(power) theorem, the relation (26) can be reexpressed in
frequency-momentum space as follows:

Erad := −
∫ T/2

−T/2
dt

∫
Vant

d3r Jant(r, t) ·E(r, t)

=

∫
R4

dωd3k

(2π)4
Jant(k, ω) ·E(k, ω).

(27)

Using (11) and (17), (27) becomes

−
∫ T/2

−T/2
dt

∫
Vant

d3r Jant(r, t) ·E(r, t)

=

∫
R4

dωd3k

(2π)4
iµ0c

2

ω
J∗ant(k, ω) ·G(k, ω) · Jant(k, ω).

(28)

The integral in the THS of (28) is real (because energy in the
LHS is real), so it can be written as half its sum with the
complex conjugate, which implies that only the antihermitian
part of G(k, ω) will contribute to the total integral. Inserting
(24) then into (28), evaluating the trivial ω-integral involving
the delta function, and noticing that negative frequencies have
identical contribution to positive frequencies, the following
result is obtained:

Erad =

∫
R3

d3k

(2π)3

∑
l

J∗ant[k, ωl(k)] ·Rl(k) · Jant[k, ωl(k)],

(29)
where the dyadic function Rl(k) is defined as the 3-
dimensional dyad with cartesian components given by Rijl (k)
as per (25). Finally, by comparing (29) with (29), the following
expression for the lth mode radiation intensity is derived:

Ul(k) = J∗ant[k, ωl(k)] ·Rl(k) · J[k, ωl(k)]. (30)

The relation (30) is the main result of this paper. It expresses
the amount of radiated energy within a unit volume in the
momentum-space in terms of the radiation mode spectral
Green’s function Rl(k). Next, we show some applications of
this result in antenna theory.

IV. APPLICATIONS: ENGINEERING ANTENNA RADIATION
BY NONLOCAL METAMATERIALS

Nonlocal metamaterials (NL-MTMs) are defined as en-
gineered materials exhibiting controlled nonlocal behaviour
serving a preassigned function [30], [33]. Examples of NL-
MTMs include engineered plasma domains and arrays of
nanotubes [34]–[38]. Here, we demonstrate how the previous
momentum-space theory can be used to help engineer the
radiation pattern of antennas embedded into such nonlocal
metamaterials.

First, we convert the radiation formula (30) into a more
convenient form for antenna applications. The direction of
wave propagation is k̂ := k/k, so we may describe this
direction by a solid angle Ω. The magnitude k = |k| is
related to frequency through the mode dispersion relation
ω = ωl(k, k̂). It is better, however, to express the dispersion
relation in the form

k2c2

ω2
= n2l

(
ω, k̂

)
, (31)

which is very frequently used in optics [2]. Here, nl is the
index of refraction of the lth mode and the positive square
root of (31) is assumed. The volume element d3k/(2π)3

in momentum space can now be reexpressed in spherical
coordinates, then we transform k to ω using (31). Therefore,∫
R3

d3k

(2π)3
=

∫ ∞
0

dω

∫
4π

dk̂
ω2n2l

(
ω, k̂

)
(2πc)3

∂

∂ω

[
ωnl

(
ω, k̂

)]
.

(32)
We now introduced the antenna radiation pattern Ul(ω, k̂),
which is defined by∫

R3

d3k

(2π)3
Ul(k) =

∫ ∞
0

dω

∫
4π

dk̂ Ul

(
k, k̂
)
. (33)



Physically, Ul(ω, k̂) is the energy radiated in standard time
interval with duration T per unit frequency per unit solid angle.
Using (32) and (30), we finally arrive at

Ul

(
ω, k̂

)
=
ω2n2l

(
ω, k̂

)
(2πc)3

∂

∂ω

[
ωnl

(
ω, k̂

)]
×Ul

[
(ω/c)nl

(
ω, k̂

)
k̂
]
,

(34)

where

Ul

[
(ω/c)nl

(
ω, k̂

)
k̂
]

= J∗ant(k, ω) ·Rl(k) · Jant(k, ω)
∣∣
k=(ω/c)nl(ω,k̂)k̂

(35)

In writing (34) and (35), we have used k = kk̂ then
reexpressed k in terms of ω and k̂ with the help of (31).
Consequently, the radiation mode antenna pattern intensity as
function of direction and frequency is completely determined
by the dispersion relation (31). Numerical computations based
on this expression for some basic nonlocal materials will be
reported in the full version of this paper.

V. CONCLUSION

We have provided a complete and rigorous derivation of an
equivalent quantity that gives the amount of energy radiated
by an antenna embedded into a generic nonlocal metamaterial
per unit Hertz per unit solid angle. The method is based on
carrying out all calculations in frequency-momentum space
instead of the conventional approach in spacetime. Since the
Poynting vector in nonlocal media fails to describe the direc-
tion of power flow, we computed the energy injected directly
from the antenna current into the near field in order to estimate
the radiation energy intensity per unit frequency per unit solid
angle. It was found that the total radiation pattern is the sum
of radiation functions each controlled by the corresponding
longitudinal and/or transverse mode that the antenna launch
into the nonlocal metamaterial. The derived expression can be
completely evaluated analytically if the dispersion relation and
hence the modes of the nonlocal medium are known.
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