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Abstract

Simultaneous wireless information and power transfer (SWIPT)-enabled cognitive networks (CRNs) is recognized as one of

most promising techniques to improve spectrum efficiency and prolong operation lifetime in 5G and beyond. However, existing

methods focus on the centralized algorithm and the power allocation under perfect channel state information (CSI). The

analytical solution and the impact of the power splitting (PS) on the optimal power allocation strategy are not addressed. In

addition, the influence of the PS factor on the feasible region of transit power is rarely analyzed. In this paper, we propose

a joint power allocation and PS algorithm under perfect CSI and imperfect CSI, respectively, for multiuser SWIPT-enabled

CRNs scenarios. The power minimization of resource allocation problem is formulated as a multivariate nonconvex optimization

which is hard to obtain the closed-form solution. Hence, we propose a suboptimal algorithm to alternatively optimize the

power allocation and PS coefficient under the cases of the low-harvested energy region and the high-harvested energy region,

respectively. Moreover, a closed-form distributed power allocation and PS expressions are derived by the Lagrangian approach.

Simulation results confirm the proposed method with good robustness and high energy efficiency.
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Abstract—Simultaneous wireless information and power trans-
fer (SWIPT)-enabled cognitive networks (CRNs) is recognized as
one of most promising techniques to improve spectrum efficiency
and prolong operation lifetime in 5G and beyond. However,
existing methods focus on the centralized algorithm and the
power allocation under perfect channel state information (CSI).
The analytical solution and the impact of the power splitting
(PS) on the optimal power allocation strategy are not addressed.
In addition, the influence of the PS factor on the feasible region
of transit power is rarely analyzed. In this paper, we propose
a joint power allocation and PS algorithm under perfect CSI
and imperfect CSI, respectively, for multiuser SWIPT-enabled
CRNs scenarios. The power minimization of resource allocation
problem is formulated as a multivariate nonconvex optimization
which is hard to obtain the closed-form solution. Hence, we
propose a suboptimal algorithm to alternatively optimize the
power allocation and PS coefficient under the cases of the low-
harvested energy region and the high-harvested energy region,
respectively. Moreover, a closed-form distributed power allocation
and PS expressions are derived by the Lagrangian approach.
Simulation results confirm the proposed method with good
robustness and high energy efficiency.

Index Terms—Cognitive networks, SWIPT, resource allocation,
distributed algorithm.

I. INTRODUCTION

With the increasing number of mobile terminals, energy
consumption becomes a huge problem. How to prolong the
network lifetime and reduce power consumption have at-
tracted lots of intention from both industry and academi-
a. Currently, simultaneous wireless information and power
transfer (SWIPT) is proposed for extending the life cycle
of energy-limited communication networks by harvesting sur-
rounding radio frequency [1]–[4]. According to the policy of
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the SWIPT, wireless information is divided into two kinds
of signals: energy-harvesting signal and information-decoding
signal. Specifically, the former can allow wireless terminals
to harvest the radio frequency (RF) energy so that it is a
good method to provide the sustainable power. The latter can
support information decoding for the basic quality of service
(QoS) of users. As a result, the works on SWIPT technique
have been concerned by many scholars [5]–[7].

On the other side, cognitive radio (CR) is proposed to
improve spectrum efficiency (SE) by permitting secondary
users (SUs) to access the spectrum owned by primary users
(PUs) [8]–[10]. Nevertheless, in practical communication en-
vironments, system performance may be strongly constrained
by the energy-constrained users, e.g., wireless sensor networks
(WSNs), device-to-device (D2D) networks. Therefore, apply-
ing the SWIPT technique in CR networks (CRNs) can not only
guarantee good SE but also improve the lifetime of networks
by harvesting the surrounding RF energy. As a result, SWIPT-
enabled CRNs have become an effective technique for the
next-generation communication network.

SWIPT-enabled CRNs face greater connatural challenges
than the conventional CRNs and traditional SWIPT networks
[11]. On the one hand, resource allocation (RA) problems
become more complex due to the introducing multivariate
parameters (e.g., transmit power and power splitting (PS)
ratio), which can lead to a nonconvex optimization problem.
On the other hand, the energy harvesting (EH) technique
may bring some nonlinear characteristics to the conventional
system, which cause excessive data processing and message
overhead. Thus, in the view of computational complexity, the
low-cost totally distributed RA algorithm is more significant
in SWIPT-enabled CRNs.

The RA problem has been widely investigated in SWIPT-
enabled CRNs from the aspect of power optimization, beam-
forming optimization, time splitting optimization, etc. In [12],
the joint delay balance and power allocation problem was
studied to achieve the energy efficiency (EE) maximization
of SUs for an EH CRNs with a stochastic Stackelberg game
approach. The authors in [13] investigated the joint power
control and time allocation problem to achieve the sum-rate
maximization of SUs for wireless powered CRNs, where SUs
first harvest energy in the downlink wireless power transfer
phase and then use the energy for data transmission in the
uplink wireless information transmission phase in a time-
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division way. In [14], the optimal RA for the harvested energy
maximization of SUs was studied for a wideband CRN with
SWIPT. In [15], a simultaneous cooperative spectrum sensing
and EH model was proposed to improve the transmission
performance of the multichannel CRN, where the aggregate
throughput and EE were maximized by jointing optimizing
the sensing time and transmission power. In [16], the optimal
RA problem for the harvested energy maximization of PUs
was studied for wireless power transfer in CRNs by using the
support vector machine and the particle swarm optimization
technique. In [17], the bandwidth utility maximization problem
with optimal time slot allocation was formulated for achieving
the proportional fairness transmission in a cognitive wireless
powered communication network. In [18], the sum throughput
maximization of SUs was studied for a wireless powered CRN
with a non-linear EH model. The RA problem for secure
communication was studied for cooperative cognitive wireless
powered communication networks [19]. However, the above
works are studied under the assumption of perfect CSI.

In practical communication systems, it is difficult to ob-
tain the exact channel parameters due to the randomness
of wireless channels. Moreover, the inherent non-linearities
of practical EH hardware may cause the estimation errors.
Thus, robust RA problems are very important for practical
cognitive SWIPT networks. In [20], under the worst-case
channel uncertainty model, the robust transceiver design for
SWIPT in multiple-input-multiple-output (MIMO) underlay
CRNs was investigated to maximize the sum harvested power
at the energy harvesting receivers meanwhile guaranteeing
the required minimum mean-square-error (MMSE) at the
secondary information-decoding (ID) receiver and the inter-
ference constraints at the primary receivers. But the PS factor
optimization was not neglected. In [21], the multi-objective
optimization problem with the aim of jointly minimizing the
total transmit power and maximizing the EH efficiency was
investigated for multiple-input-single-output (MISO) CRNs
with SWIPT where the CSI of the link between the secondary
transmitter and idle secondary receiver was modeled by using
the bounded channel uncertainty set. To guarantee secure
communication and EH, in [22], the problem of robust secure
artificial noise-aided beamforming and power splitting design
was investigated for a MISO CRN with SWIPT under the
bounded CSI error model and the probabilistic CSI error.
In [23], the robust max-min fairness RA in sensing-based
wideband CRN with SWIPT was studied under the assumption
of imperfect spectrum sensing and CSI. In [24], to balance
the consumed power and the harvested power, a robust RA
problem was studied in a MISO CRN with SWIPT under
imperfect CSI.

A. Motivation and Contributions

Although in the above-mentioned literature, CSI is generally
assumed to be imperfect, the PS design is rarely involved. The
PS factor is the key metric for balancing the optimality of in-
formation transmission and the harvested energy, which needs
to be designed carefully. Moreover, the low-cost distributed
algorithm can reduce overhead among different users but is

not addressed. Furthermore, the influence of the PS factor on
the feasible region of available transmission power is rarely
analyzed, which is also important to reduce the complexity of
the algorithm by relaxing some strong constraints.

In this paper, the optimal and robust RA problem is in-
vestigated for a multiuser SWIPT-enabled cognitive ad hoc
network, where multiple pairs of SUs can use the licensed
spectrum owned by one pair of PUs in an underlay spectrum
sharing way and the PS-based protocol is used at the EH
receiver. The contributions are summarized as follows.
• A total power minimization RA problem (i.e., this ob-

jective leads to a low total interference power leakage
in general) is formulated subject to the constraint on
transmit power, harvested energy, interference tempera-
ture, user’s SINR and PS coefficient. The transmit power
and PS design are jointly optimized to reduce the ener-
gy consumption for prolonging the lifetime of wireless
networks.

• The relationship between the user’s SINR and the har-
vested energy is analyzed to reflect the impact of PS
coefficient on the available transmit power. Under perfect
CSI, the nonconvex problem is firstly decomposed into
the problem with the low-harvested energy and the one
with the high-harvested energy, which are transformed
into the convex problem and resolved with closed-form
solutions. Under spherical channel uncertainties, the ro-
bust RA problem is converted into a convex one by using
the worst-case approach. The robust sensitivity is also
deduced.

• We further propose a distributed RA algorithm for the
ease of information exchange among different users.
Compared with centralized algorithm which requires
more dedicated computation resources and overhead dur-
ing communication, our algorithm is more suitable for
low-power and small devices such as IoTs.

• Simulation results show that the proposed algorithm has
good convergence and robustness by comparing with the
robust RA algorithm without SWIPT and the non-robust
RA algorithm with SWIPT.

B. Paper Organization

The rest of this paper is organized as follows. Section II
introduces the system model and problem formulation. Section
III presents the transformation process and feasible region
analysis of the system model. Section IV gives the optimal
RA with perfect CSI under low-energy level and high-energy
level. The robust RA with imperfect CSI is given in Section
V. Section VI presents the simulation results. Conclusions are
introduced in Section VII.

II. SYSTEM MODEL AND FORMULATION

Consider a cognitive ad hoc network with SWIPT where
each receiver has equipped the SWIPT function. There are
M SU links (e.g., ∀i,m ∈ M = {1, 2, · · · ,M}) and one
pair of PUs. There is no central control base station (BS)
and each receiver can harvest the electromagnetic energy from
the surrounding environment to prolong the lifetime of each
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node. The PS-based protocol [2] is applied in this model.
Specifically, the received signal at the receiver is processed by
a power splitter: a portion of the received power is split for EH
and the other energy is split for ID [25]. That is to say that the
receiver can achieve EH and information processing simulta-
neously. The considered model can be envisioned in the fifth
generation communication networks, such as D2D network,
wireless sensor networks, where energy-limited devices exist
in the communication scenario. We assume that all SUs can
share the same spectrum with PUs and each user has a single
antenna. The SUs can estimates the channel gain from SU-
Tx to each PU-Rx by listening to the feedback signals from
the PU-Rx and broadcast the channel information to the other
SUs for transmission power control [26], [27]. The symbol
definition used in the paper is summarized in Table I.

Since the sampled AWGN of RF band to the baseband
signal conversion is much smaller than the sum interference
power from PUs and SUs, therefore, the noise from energy har-
vesting can be assumed to be zero [23], [28]. The interference
from the PU-Tx to each SU-Rx is assumed to be included in
the noise [11]. Based on these assumptions, the received SINR
at the m-th SU-Rx can be expressed as

γm =
(1− ρm)pmhm,m

(1− ρm)
M∑
i6=m

pihi,m + σm

. (1)

Based on the linear energy harvesting model [29], the power
of the received signal for the energy harvesting at the SU-Rx
of link m can be expressed as

Em = θ

M∑
i=1

ρmpihi,m. (2)

To maintain the lifetime of secondary network, the consid-
ered RA problem with total power minimization is

min
{pm,ρm}

M∑
m=1

pm

s.t.C1 :

M∑
m=1

pmgm ≤ Ith,

C2 : γm ≥ γminm ,

C3 : Em ≥ Eminm ,

C4 : pm ≤ pmaxm ,

C5 : 0 ≤ ρm ≤ 1,

(3)

where C1 and C2 can satisfy the QoS guarantee of the PU
and each SU, respectively. C3 denotes the minimum harvested
energy requirement for maintaining the lifetime of each SU.
C4 is constrained by the battery capacity.

Since there is no channel uncertainty in problem (3), it is a
nominal optimization problem (i.e., non-robust problem) under
perfect CSI [30], [31]. In general, problem (3) is nonconvex in
pm, ρm,∀m due to the coupled variables in C2 and C3. Thus
it is difficult to directly obtain the closed-form solutions. We
have the following Lemma 1.

Lemma 1: If the harvested energy threshold satisfies
Eminm ≤ θρmγ

min
m σm

1−ρm , the SINR constraint can be simplified as

TABLE I
SYSTEM PARAMETERS. SU-TX: SU TRANSMITTER; SU-RX: SU

RECEIVER; PU-RX: PU RECEIVER.

Symbol Definition
pm transmit power of the m-th SU-Tx
gm channel gain from the m-th SU-Tx to the PU-Rx
pmaxm the maximum transmit power threshold of SU m
Ith the maximum interference level of the PU-Rx
ρm the PS ratio at the m-th SU-Rx
hm,m direct channel gain of the m-th pair of SUs
σm the sum of noise and PU’s interference
hi,m channel gain from the i-th SU-Tx to the m-th SU-Rx
θ energy conversion efficiency of energy harvester
γm the received SINR at the m-th SU-Rx
γminm the minimum SINR requirement at the m-th SU-Rx
Eminm the minimum required harvested energy of SU m

pmhm,m ≥ γmin
m σm

1−ρm . Otherwise, it can be simplified the linear

constraint pmhm,m ≥ γmin
m

1+γmin
m

( σm

1−ρm +
Emin

m

θρm
). The above

discussions can be summarized as follows

pmhm,m ≥ H̄m =

{
γmin
m σm

1−ρm , Eminm ≤ θρmγ
min
m σm

1−ρm ,

Hm, otherwise,
(4)

where Hm =
γmin
m

1+γmin
m

( σm

1−ρm +
Emin

m

θρm
). The proof is provided

in Appendix A.
Additionally, when 0 ≤ ρm ≤ 0.5, ρm

1−ρm ≤ 1 holds. We
can simplify (4) as

pmhm,m ≥ H̄m =

{
γmin
m σm

1−ρm , Eminm ≤ θγminm σm,

Hm, otherwise.
(5)

Remark: when ρm ≤ 0.5 holds, it means that the EH
efficiency is lower than that of the ID for data transmission.
The system mainly focuses on information transmission. Oth-
erwise, the system tends to harvest more energy to store for
supporting the long-time operation or uplink transmission. As
a result, compared with C2, the Eq. (4) is decoupled with
respect to the transmit power pm, which is easier for optimal
power design.

Based on (3) and (4), we have the following equivalent
optimization problem

min
{pm,ρm}

M∑
m=1

pm

s.t.C1, C3, C4, C5,

C̄2 : pmhm,m ≥ H̄m.

(6)

III. TRANSFORMATION AND FEASIBILITY ANALYSIS

Though easier compared with its original form in (3),
problem (6) is still difficult to solve due to the coupled
variables pm, ρm. If we want to simplify the solution process
and reduce the complexity of power allocation, it is better to
combine the constraints C̄2 and C3 into one constraint, which
is helpful to obtain the analytical solution of power allocation
and the PS coefficient.
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A. Transformation of System Model

Case 1: When Eminm ≤ θρmγ
min
m σm

1−ρm , the SINR constraint of
each SU (e.g., C̄2) can be rewritten as

pmhm,m ≥
γminm σm
1− ρm

. (7)

According to (2), the constraint C3 can be rewritten as

pmhm,m ≥
Eminm

θρm
− Zm, (8)

where Zm =
M∑
i 6=m

pihi,m ≥ 0. According to Eminm ≤

θρmγ
min
m σm

1−ρm , we have the following relationship

f1 =
Emin

m

θρm
− Zm ≤ θρmγ

min
m σm

1−ρm × 1
θρm
− Zm

=
γmin
m σm

1−ρm − Zm.
(9)

Therefore,

max f1 =
γminm σm
1− ρm

− Zm ≤
γminm σm
1− ρm

. (10)

Combining (7), (8) with (10), we only have one constraint
(7). The problem (6) becomes the following problem with the
low-harvested energy requirement,

(P1) min
{pm,ρm}

M∑
m=1

pm

s.t.C1, C4, C5,

C̄2 : pmhm,m ≥ γmin
m σm

1−ρm ,

C6 : Eminm ≤ θρmγ
min
m σm

1−ρm .

(11)

Case 2: When Eminm ≥ θρmγ
min
m σm

1−ρm , the SINR constraint of
each SU (e.g., C̄2) becomes

pmhm,m ≥ Hm. (12)

Since the harvested energy threshold Eminm is a bounded
value, thus we have

θρmγ
min
m σm

1− ρm
< Eminm ≤ Emaxm . (13)

Ignore the impact of PU and consider an ideal case, the
maximum harvesting energy is Emaxm = Mpmaxm .

Lemma 2: Under Eminm ≥ θρmγ
min
m σm

1−ρm , we have the follow-
ing relationship

Eminm

θρm
− Zm ≥ Hm. (14)

The proof is given in Appendix B.

Thus, the EH constraint C3 and the SINR constraint C̄2

can be integrated into the EH constraint, which means the
SINR constraint of each FU C2 can be replaced by pmhm,m ≥
Emin

m

θρm
− Zm. Since Em = θρm(pmhm,m + Zm) ≥ Eminm and

Eminm ≥ θρmγ
min
m σm

1−ρm , we have Em ≥ θρmγ
min
m σm

1−ρm . And the
optimization problem (7) becomes the following problem with

TABLE II
FEASIBLE REGION ANALYSIS.

Cases Case 1 (low energy level) Case 2 (high energy level)

Eminm

[
0,
θρmγ

min
m σm

1−ρm

] [
θρmγ

min
m σm

1−ρm
,Mpmaxm

]

pm

[
γmin
m σm

(1−ρm)hm,m
, pmaxm

]
,

M∑
m=1

pm ≤ Ith

[
Emin

m −θρmZm

hm,mθρm
, pmaxm

]
,

M∑
m=1

pm ≤ Ith

ρm

[
Emin

m
Emin

m +θγmin
m σm

,
γmin
m σm
pmhm,m

] [
0.5,

Emin
m

Emin
m +θγmin

m σm

]

the high-harvested energy requirement

(P2) min
{pm,ρm}

M∑
m=1

pm

s.t.C1, C4, C5,

C̄6 : Em ≥ θρmγ
min
m σm

1−ρm .

(15)

B. Feasible Region Analysis

Case 1: feasible region analysis of (P1). From the con-
straint C5 and C6, it is easy to obtain the available PS ratio

1
1+θγmin

m σm/Emin
m
≤ ρm ≤ 1. Based on the constraint C̄2, we

have ρm ≤ 1 − γmin
m σm

pmhm
. Since γmin

m σm

pmhm
> 0, there must be

(1− γmin
m σm

pmhm
) < 1. There, the PS ratio need to satisfy the inter-

val 1
1+θγmin

m σm/Emin
m
≤ ρm ≤ γmin

m σm

pmhm
. Additionally, for any

user m, the transmit power should be satisfied from the interval
γmin
m σm

(1−ρm)hm,m
≤ pm ≤ pmaxm . Moreover, since pm ≤ γmin

m σm

ρmhm

and pm ≥ γmin
m σm

(1−ρm)hm
, we have γmin

m σm

(1−ρm)hm
≤ γmin

m σm

ρmhm
. Thus we

have ρm ≤ 0.5. If any fading channel gain satisfies gm ≤ 1

[32], we have
M∑
m=1

pmgm ≤
M∑
m=1

pm ≤ Ith.

Case 2: feasible region analysis of (P2). Similarly, accord-
ing to the constraint C5 and C̄6, the PS ratio is determined
by the interval 0.5 ≤ ρm ≤ 1

1+θγmin
m σm/Emin

m
. And we have

the relationship Eminm ≥ θγminm σm. Moreover, the transmit
power has the interval Emin

m −θρmZm

hm,mθρm
≤ pm ≤ pmaxm and

M∑
m=1

pm ≤ Ith. The analysis result is summarized in Table

II.

IV. OPTIMAL RA WITH PERFECT CSI

Although the objective is a linear combination which is
convex [33], the problems (P1) and (P2) are difficult to obtain
the globally optimal solutions due to the coupled variables
pm, ρm. In this section, we propose the suboptimal solutions
by decomposing them into two subproblems under the fixed PS
coefficient and the optimal transmit power, which is commonly
used to the scenarios of the multi-objective optimization [22],
[23], [34].
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A. Optimal RA under Low-Energy Level

1) Power Allocation with the Fixed PS Ratio: Under the
fixed PS coefficient, (P1) can be reformulated as

(P1.1) min
pm

M∑
m=1

pm

s.t.C1, C4,

C̄2 :
1

pmhm,m
≤ 1− ρm
γminm σm

.

(16)

It is a convex optimization problem due to the linear con-
straints [34]. Thus, in order to obtain the closed-form solu-
tions, the Lagrangian dual decomposition method can be used
to solve this problem. The Lagrangian function of the problem
(16) can be rewritten by

Lp ({pm}, λ, {βm}, {αm}) =

M∑
m=1

pm

+ λ(

M∑
m=1

pmgm − Ith) +

M∑
m=1

βm(pm − pmaxm )

+

M∑
m=1

αm(
1

pmhm,m
− 1− ρm
γminm σm

),

(17)

where λ ≥ 0, βm ≥ 0, and αm ≥ 0 are the Lagrange multipli-
ers corresponding to the power constraints. The function (17)
can be rewritten as

Lp ({pm}, λ, {βm}, {αm}) =

M∑
m=1

Lpm ({pm}, λ, {βm}, {αm})

− λIth −
M∑
m=1

βmp
max
m −

M∑
m=1

αm
1− ρm
γminm σm

,

(18)

where

Lpm ({pm}, λ, {βm}, {αm}) = pm+λpmgm+βmpm+
αm

pmhm,m
.

(19)
The dual problem is

max
λ,βm,αm

D (λ, {βm}, {αm})

s.t. λ ≥ 0, βm ≥ 0, αm ≥ 0,
(20)

where the dual function is

D (λ, {βm}, {αm}) = min
pm

Lp ({pm}, λ, {βm}, {αm}) .
(21)

From (20) and (21), it is clear to know that the dual problem
is decomposed into two layers. The inner layer optimization
problem is to obtain the optimal power allocation pm. Then
the outer layer problem is to solve the dual variables (or called
Lagrange multipliers).

According to (19), the Lagrangian dual function can be
decomposed into M subproblems for each user. According to
the Karush-Kuhn-Tucker (KKT) conditions, the optimal power
allocation is calculated by ∂Lp

m(·)
∂pm

= 0, i.e.,

p∗m =

√
αm

hm,m(1 + λgm + βm)
. (22)

Additionally, the outer layer optimization problem can be
solved by the subgradient method, the Lagrange multipliers
can be updated as

λ(t+ 1) = [λ(t) + ξ1(t)× (

M∑
m=1

pmgm − Ith)]+, (23)

βm(t+ 1) = [βm(t) + ξ2(t)× (pm − pmaxm )]
+
, (24)

αm(t+ 1) = [αm(t) + ξ3(t)× (
1

pmhm
− 1− ρm
γminm σm

)]+, (25)

where [x]+ = max(0, x). t is the iteration index. ξ1(t), ξ2(t),
and ξ3(t) are positive step sizes at iteration t. From (22)-(25),
it is a distributed power allocation algorithm based on local
information.

2) PS Design with the Fixed Transmit Power: Under the
optimal power pm, (P1) can be reformulated as the following
PS optimization problem (i.e., convex problem), i.e.,

(P1.2) min
ρm

M∑
m=1

pm

s.t.C̄2 : ρm ≤ 1 +
γminm σm
pmhm

,

C5 : ρm ≤ 1,

C6 :
1

ρm
≤ 1 +

θγminm σm
Eminm

.

(26)

Since γmin
m σm

pmhm
> 0, the problem (26) can be rewritten as

min
ρm

M∑
m=1

pm

s.t.C5, C6.
(27)

Therefore, the Lagrangian function of the problem (27) is

Lps ({ρm}, {λpsm}, {βpsm }) =

M∑
m=1

pm +

M∑
m=1

λpsm (ρm − 1)

+

M∑
m=1

βpsm

(
1

ρm
− (1 +

θγminm σm
Eminm

)

)

=

M∑
m=1

Lpsm ({ρm}, {λpsm}, {βpsm })−
M∑
m=1

λpsm

−
M∑
m=1

βpsm

(
1 +

θγminm σm
Eminm

)
+

M∑
m=1

pm,

(28)

where λpsm ≥ 0 and βpsm ≥ 0 are the Lagrange multipliers.
Lpsm ({ρm}, {λpsm}, {βpsm }) = λpsmρm + βpsm

1
ρm

. Similarly, we
have the closed-form PS coefficient, i.e.,

ρ∗m =
√
βpsm /λ

ps
m . (29)

Obviously, it is also a distributed PS algorithm based on the
local information. The Lagrange multipliers in (29) can be
updated by the same approach.



6

B. Optimal RA under High-energy Level

1) Power Allocation with the Fixed PS Ratio: Under the
fixed PS coefficient, (P2) can be reformulated as

(P2.1) min
pm

M∑
m=1

pm

s.t.C1, C4,

C̄6 :
1

pmhm,m
≤ 1− ρm
γminm σm − (1− ρm)Zm

.

(30)

Since (30) is a convex problem with the variable pm, it can
be solved by the same approach mentioned above.

Therefore, the optimal power is

p∗m =

√
αhm

hm,m(1 + λhgm + βhm)
. (31)

And the Lagrange multipliers are updated by

λh(t+ 1) = [λh(t) + ξ6(t)× (

M∑
m=1

pmgm − Ith)]+, (32)

βhm(t+ 1) = [βhm(t) + ξ7(t)× (pm − pmaxm )]+, (33)

αhm(t+ 1) =
[
αhm(t) + ξ8(t)×

(
1

pmhm,m

− 1−ρm
γmin
m σm−(1−ρm)Zm

)]+
,

(34)

where ξ6(t), ξ7(t), and ξ8(t) are positive step sizes.
2) PS Design with the Fixed Transmit Power: Under the

optimal power pm, (P2) can be reformulated as the following
PS optimization problem (i.e., convex problem), i.e.,

(P2.2) min
ρm

M∑
m=1

pm

s.t.C5, C̄6,

(35)

Based on the Lagrange dual approach, (35) can be efficiently
solved. Similarly, we have the closed-form PS coefficient, i.e.,

ρ∗m = max(0, 1−
√
βpsm /λ

ps
m ), (36)

where

λhpsm (t+ 1) =
[
λhpsm (t) + ξ9(t)× (ρm − 1)

]+
, (37)

βhpsm (t+ 1) = [βhpsm (t) + ξ10(t)× ( 1
1−ρm−

pmhm,m+Zm

γmin
m σm

)]+,
(38)

where ξ9(t) and ξ10(t) are positive step sizes. Thus an iterative
algorithm (Algorithm 1) is designed to obtain the optimal
power allocation and PS ratio.

Remark: In the considered SWIPT-enabled cognitive ad hoc
networks, there is no central BS for scheduling the overall
messages. Based on the broadcast channel gain gm (which is
obtained by listening to the feeback signals from the PU-Rx
[26]) and the estimated interference power at each SU-Rx, the
algorithm can be achieved by a distributed way from (22),
(29), (31) and (36). Specifically, algorithm 1 is a distributed
RA algorithm which can reduce the computational burden of
mobile devices and save energy. Moreover, it can reduce the
overhead of message passing among all SUs. Specifically,

Algorithm 1 An Iterative Distributed Power Allocation and
PS Algorithm.

1: Initialize the maximum iteration number Tmax, the maxi-
mum tolerance ζ, the number of users M and set iteration
number t = 0. Initialize all parameters: gm, hi,m, Ith,
γminm , Eminm , θ, pmaxm ;

2: Initialize pm, ρm,∀m with a equal power allocation
and PS factor. Initialize Lagrange multipliers ϕ(0)
(ϕ(0) = [λ(0);βm(0);αm(0);λh(0);βhm(0);αhm(0)]T )
and step sizes ξi(t) (i = {1, 2, · · · , 10}).

3: while t ≤ Tmax and ||ϕ(t+ 1)−ϕ(t)| |2 ≥ ζ do
4: for m = 1 to M do
5: Calculate Ēm =

θρmγ
min
m σm

1−ρm .
6: if Eminm ≤ Ēm then
7: 1) At SU-Rx: Measure SINR, estimate hm,m and

calculate Zm by message passing and parameter
estimation;

8: 2) Update βm and αm by (24) and (25) with local
information;

9: 3) Calculate power splitting factor ρm by (29);
10: 4) Feed back the SINR, hm,m, ρm and βm to the

m-th SU-Tx.
11: 5) At SU-Tx: Receive the PS ratio ρm, the La-

grange multiplier βm and estimate the interference
channel gain gm;

12: 6) Update λ and pm according to (23) and (22);
13: 7) Broadcast pm and gm.
14: else
15: (1) At SU-Rx: Measure SINR, estimate hm,m and

calculate Zm by message passing and parameter
estimation;

16: (2) Update βhm and αhm by (33) and (34) with the
local information;

17: (3) Calculate power splitting factor ρm by (36);
18: (4) Feed back the information SINR, hm,m, ρm

and βhm to the SU-Tx of the same link.
19: (5) At SU-Tx: Receive ρ̃m, βhm and estimate gm;
20: (6) Update λh and pm according to (32) and (31);
21: (7) Broadcast pm and gm.
22: end if
23: end for
24: Set t = t+ 1.
25: end while

firstly, according to (22), (29), (31), and (36), the utility
function of each SU (∀m) only depends on that user’s primal
variables. Secondly, the Lagrange multipliers can be divided
into the local variables for each SU (e.g., βm, αm).

V. ROBUST RA WITH IMPERFECT CSI
Due to the nature of the random channel and estimation

errors in the radio environment, we cannot ignore the impact
of channel uncertainties in the design of RA algorithms [30].

A. Uncertainty Model
Since there is one pair of PU in the system, assume the

effect of interference uncertainty from the PBS to SU-Rx
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is small. Therefore, the PU’s interference can be exactly
obtained. The interference uncertainty of PU is not discussed
in this part. Moreover, the interference to the PU-Rx and the
basic SINR of each SU will receive serious impact from the
multiple access interference and effective signal of SUs. The
reason is that the number of SUs often is much larger than
that of PUs. As a result, the uncertainties of channel gains can
be described as {

hi,m = h̄i,m + ∆hi,m,
gm = ḡm + ∆gm.

(39)

This is additive uncertainty error model [35]. ∆hi,m and ∆gm
are the channel estimation errors which are uncertain terms.
h̄i,m and ḡm are the estimated channel gains which usually are
known values for SUs. Therefore, we only need to consider
the uncertain terms and design the robust algorithm according
to the uncertainty sets of ∆hi,m and ∆gm.

Since the statistical distribution function of channel estima-
tion errors are usually difficult to obtain [36], thus we model
the uncertain parameters as the bounded channel uncertainty
sets. Based on the spherical uncertainty formulation [37],
channel uncertainties can be modeled by

Rg = {g |‖g − ḡ‖ ≤ τ } , (40)

Rh =
{
hm

∣∣∥∥hm − h̄m
∥∥ ≤ ωm} , (41)

where Rg and Rh denote the uncertainty sets. τ ≥
0 and ωm ≥ 0 are the upper bounds of chan-
nel uncertainties of SU-to-PU links and SU-to-SU links,
respectively. ḡ = [ḡ1, ḡ2, · · · , ḡM ]T ,∀m and h̄m =
[h̄1,m, h̄2,m, · · · , h̄M,m]T ,∀i 6= m.

Remark: Obviously, the uncertainty set (40) can be also

reformulated as
M∑
m=1

∆g2
m ≤ τ2. Similarly, the constraint (41)

is equivalent to
M∑

i=1,i6=m
∆h2

i,m ≤ ω2
m. From the aspect of

communication system design, the constraint (40) is used to
limit the upper bound of the sum variance of channel uncer-
tainties of SU-to-PU links (∆gm). This worst-case approach
can bring a benefit, namely, the designed transmit power do not
need to dynamically adjust according to the random channel
uncertainty ∆gm,∀m only if all uncertainties do not extend the
uncertainty set formulated in (40). This method is superior to
the multiplicative uncertainty approach (e.g., gm = ḡm+εḡm)
[38], which requires to adjust the transmit power according
to the time-varying uncertainty part. Under this case, it costs
more energy and computational resource to update the optimal
power.

B. Transformation of Robust Constraint

Based on the worst-case approach and the Cauchy-
Buniakowsky-Schwarz inequality [37], the interference tem-
perature constraint C1 with channel uncertainties can be
reformulated as

max
gm∈Rg

M∑
m=1

pmgm ≤
M∑
m=1

pmḡm +

√√√√ M∑
m=1

p2
m

√√√√ M∑
m=1

∆g2
m

(42)

≤
M∑
m=1

pmḡm +
M∑
m=1

pmτ

=
M∑
m=1

pm(ḡm + τ) ≤ Ith.

Similarly, the worst-case SINR of each SU is given by

min
∆hi,m∈Rh

γm ≥ γminm

⇔
(1−ρm) min

∆hm,m
(pmhm,m)

(1−ρm) max
∆hi,m

(
M∑

i6=m

pihi,m)+σm

≥ γminm .
(43)

Since the channel gain hm,m can be well estimated by the
corresponding SU-Rx, therefore the estimation error is very
small [40], where the estimated channel gain h̄m,m can be
fed back to the SU-Tx by the feeback channel. Based on the
same approach used in (42). The SINR constraint with the
consideration of uncertainty is given by

(1− ρm)pmh̄m,m

(1− ρm)
M∑
i6=m

pi(h̄i,m + ωm) + σm

≥ γminm . (44)

Based on the same approach in Section IV, the analytical
solutions of robust RA algorithm under the lower-energy level
are

pr,∗m =

√
αrm

h̄m,m(1 + βrm + λr(ḡm + τ))
, (45)

ρr,∗m = max(0,

√
β̂psm /λ̂

ps
m ), (46)

where the Lagrange multipliers αrm, β
r
m, λ

r, β̂psm and λ̂psm can
be updated by the same approach.

Remark: Since the PS subproblem under the low-energy
level is without relationship with uncertainties and transmit
power so that the value is the same as the non-robust case,
i.e., ρr,∗m = ρ∗m. And the robust power allocation under this
case is only affected by the channel uncertainties of the SU-
to-PU links. Therefore, it can overcome any uncertainties of
SU’s links. Moreover, based on the same method, we can get
the robust RA solutions for the high-energy level. Meanwhile,
the optimal solutions are not affected by the minimum EH
threshold.

C. Robust Sensitivity Analysis

In order to determine the impact of uncertain parameters
on the whole system performance, the performance gap of the
non-robust RA problem (3) and the robust RA problem with
the constraints of (42) and (44) is analyzed under the cases of
low-energy level and high-energy level.

1) Case 1-low energy level: : From the subproblem (16),
it is obvious that only two parameters may be uncertain, such
as the channel gain between SUs and PUs (e.g., gm) and the
direct channel gain between the SU-Tx and the corresponding
SU-Rx (e.g., hm,m). Combining the model (16) with (42), we
can construct the following function

F robust
∆
= min

pm

{
M∑
m=1

pm + λr(

M∑
m=1

pm(ḡm + τ)− Ith)

(47)
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+

M∑
m=1

βrm(pm − pmaxm ) +

M∑
m=1

αrm

(
1

pmh̄m,m
− 1− ρm
γminm σm

)}
.

When the uncertain parameter is very small, the optimal power
allocation and Lagrange multipliers can be assumed to be the
same values (e.g., λr ≈ λ). Assume the optimal power and
Lagrange multiplier are pr,∗m and λr,∗. Since the non-robust
RA algorithm assumes the estimated channel gain is equal to
the true value, namely, ḡm = gm, based on the sensitivity
principle [39], (47) can be approximated as

F robust
∆
= Fnon−robust + λr,∗

M∑
m=1

pr,∗m τ . (48)

The performance gap is

Glow = λr,∗
M∑
m=1

pr,∗m τ . (49)

Since the parameters in (49) are non-negative, we can obtain
an important result, namely, the total power consumption under
the robust RA algorithm is bigger than that of the non-
robust algorithm. In other words, the robust RA algorithm
can overcome the outage probability in cost of more power
consumption. From (26), it is clear that the PS coefficient
cannot be directly influenced by the uncertainties due to no
uncertainty in the system model (26). Moreover, when the
upper bound of channel estimation error becomes bigger, the
gap becomes larger.

2) Case 2-high energy level: : From the subproblem (30),
based on the same idea, we can construct the following
function

Jrobust
∆
= min

pm

{
M∑
m=1

pm + λr(
M∑
m=1

pm(ḡm + τ)− Ith)

+
M∑
m=1

βrm(pm − pmaxm )+
M∑
m=1

αrm

(
γmin
m σm−(1−ρm)Zm

pmhm,m

−(1− ρm))} .
(50)

Define the optimal solutions as pr,∗m , ρr,∗m and the optimal
Lagrange multipliers as λr,∗ and αr,∗m . (50) can be rewritten
as

Jrobust
∆
=

{
min
pm

M∑
m=1

pm + λr
(

M∑
m=1

pmḡm − Ith
)

+
M∑
m=1

βrm(pm − pmaxm )−
M∑
m=1

αrm(1− ρm)

+
M∑
m=1

αr
mγ

min
m σm

pmh̄m,m
−

M∑
m=1

αr
m(1−ρm)

M∑
i6=m

pih̄i,m

pmh̄m,m


+λr

M∑
m=1

pmτ −
M∑
m=1

αr
m(1−ρm)(

M∑
i6=m

piωm)

pmh̄m,m
.

(51)

And the performance gap is

Ghigh = λr,∗
M∑
m=1

pr,∗m τ − (

M∑
i6=m

pr,∗i )

M∑
m=1

αr,∗m ωm(1− ρr,∗m )

pr,∗m h̄m,m
.

(52)
From (52), it is difficult to directly determine whether the gap
Ghigh is greater than zero or not. Based on (44), we have the

following relationship

(1− ρr,∗m )
M∑
i 6=m

pr,∗i

pr,∗m h̄m,m
+

σm
pr,∗m h̄m,m

≤ 1− ρr,∗m
γminm

(53)

Since the background noise σm is much smaller than the mu-

tual interference of users (e.g.,
M∑
i 6=m

pr,∗i ) in practical systems,

the second item of (53) can be ignored. Under the high energy
level, the optimal PS factor must satisfy ρr,∗m > 0.5 according
to the feasible region analysis in Section III. Thus, combining
(52) with (53), we have

Ghigh ≥
M∑
m=1

{
λr,∗pr,∗m τ − αr,∗m

ωm(1−ρr,∗m )
γmin
m

}
≥

M∑
m=1

{
λr,∗pr,∗m τ − αr,∗m ωm

2γmin
m

}
.

(54)

When the relationship pr,∗m ≥ αr,∗
m ωm

2γmin
m λr,∗τ holds, Ghigh ≥ 0,

otherwise Ghigh < 0. Additionally, since the upper bound
of the channel estimation error of link m is very small by
comparing with 2γminm , (54) can be simplified as Ghigh ≥
M∑
m=1

λr,∗pr,∗m τ ≥ 0. If we do not know the parameter infor-

mation in (54), the value of Ghigh can be determined by the
orthogonality of constraint [33].

According to the orthogonality of the optimal value and the
constraint [33], we have

λr,∗ ×

(
M∑
m=1

pr,∗m (ḡm + τ)− Ith
)

= 0 (55)

αr,∗m ×
(
θρr,∗m γminm σm − (1− ρm)Zm

pr,∗m h̄m,m
− 1

1− ρr,∗m

)
= 0 (56)

Case 1: when the robust interference constraint
M∑
m=1

pr,∗m (ḡm + τ) < Ith holds and the robust SINR constraint

takes the equal sign, the optimal Lagrange multipliers are
λr,∗ = 0 and αr,∗m > 0. Thus Ghigh ≤ 0 holds, the total
power consumption under the robust RA scheme is smaller
than that of the non-robust scheme.

Case 2: when the robust interference constraint
M∑
m=1

pr,∗m (ḡm + τ) = Ith and the robust SINR constraint

holds (e.g., γm(pr,∗m , ωm) > γminm ), the optimal Lagrange
multipliers are λr,∗ > 0 and αr,∗m = 0. Thus Ghigh ≥ 0 holds,
the total power consumption under the robust RA scheme is
bigger than that of the non-robust scheme.

Case 3: when both the robust interference constraint (55)
and the robust SINR constraint (56) take the equal sign, the
optimal Lagrange multipliers are λr,∗ > 0 and αr,∗m > 0. The
value of Ghigh can not be determined by this method and the
above approach can be used in this case.

Case 4: when the robust interference constraint
M∑
m=1

pr,∗m (ḡm + τ) < Ith holds and the robust SINR

constraint holds (e.g., γm(pr,∗m , ωm) > γminm ), the optimal
Lagrange multipliers are λr,∗ = 0 and αr,∗m = 0. The total
power consumption of the robust RA algorithm and the
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Fig. 1. The Converge of the proposed algorithm.

non-robust algorithm is the same since the optimal power is
p∗m = pmaxm which is a channel independent parameter.

VI. SIMULATION RESULTS

In this section, the performance of the proposed RA
schemes is evaluated by the simulation results. To verify
the effectiveness of our algorithm, the following results are
provided by comparing with the existing algorithms. The
optimal and robust RA algorithm are defined as ‘Our non-
robust scheme with SWIPT’ and ‘Our robust scheme with
SWIPT’. The robust algorithm without SWIPT in [40] is
defined as ‘Robust scheme without SWIPT’. The optimal
RA algorithm with SWIPT is defined as ‘Non-robust without
SWIPT’ [41]. The maximum transmit power of each SU is
pmaxm = 1 mW. The background noise is σm = 10−8 mW. The
interference power threshold of PU is Ith = 1 × 10−6 mW.
The values of estimated channel gains are randomly generated
from the interval (0,1) and the channel uncertainty is bounded
by [0,0.2] [32]. The energy conversion efficiency is θ = 1
according to [22].

A. Performance Evaluation

Fig. 1 shows the coverage performance of our algorithm.
Assume there are two SUs (M = 2), and the channel gain
of SU1 is better than that of SU2. The SINR threshold is
γminm = 2 dB. According to Fig. 1, we can easily find that
the transmission power and PS ratios of all SUs can quickly
achieve the optimal values under 20 iterations. The power
consumption of SU1 is obviously lower than that of SU2.
The reason is that under the same QoS requirement, the user
with good channel gain can consume less power to meet the
performance need and save energy. Furthermore, the PS ratio
of SU2 is higher than that of SU1. Since the higher PS means
more information required at the receiver so that SU2 requires
more transmit power to ensure the basic SINR.

Fig. 2 presents the sum transmit power of SUs versus the
minimum harvested energy threshold under different SINR
threshold. It shows the total power consumption becomes big-
ger under the increasing Eminm for different SINR requirements
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Fig. 2. Sum power consumption versus minimum required harvested energy.
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Fig. 3. The PS versus the minimum harvested energy threshold.

γminm . Additionally, the higher SINR threshold is, the bigger
sum power consumption will be. Since SUs try their best to
improve the power to ensure the normal communication of all
links. With the increasing SINR requirement, each SU will
adjust its power to satisfy the basic SINR.

Fig. 3 gives the power splitting versus the minimum har-
vested energy threshold under different SINR thresholds. It is
clear that the power splitting ratio of each decreases with the
increasing minimum harvested energy requirement Eminm and
the increasing SINR γminm because the increasing harvested
energy means storing more energy so that the minimum
required transmit power becomes bigger. Furthermore, in order
to achieve total power minimization, the decreasing power
splitting ratios can further reduce power consumption.

Fig. 4 shows the total power consumption versus the QoS
threshold of SU under different interference temperature lev-
els. The minimum harvested energy is Eminm = 0.2. From
the figure, we know that the sum transmit power of SUs
increases with the increasing SINR threshold. Moreover, the
total transmission power of the secondary system under the
bigger Ith is higher than that under the small one. Because
the bigger interference temperature level extends the upper
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bound of transmit power so that it can improve the transmit
power of SUs and rebuild the communication link of SUs with
bad channel environments. Additionally, it also increases the
opportunity of user’s access.

Fig. 5 presents the sum transmit power of SUs versus the
number of SUs under different PU’s interference. Apparently,
the total transmission power of SUs becomes bigger with the
increasing number of SUs. Since more SUs access the network
and share spectrum resource with others, therefore, the total
power consumption of the network becomes bigger. Addition-
ally, the gap of total transmit power under the big number of
SUs is much bigger than that under the small number of SUs.
Because more SUs will increase more mutual interference
among SUs so that each SU tries to improve its transmit power
for overcoming the effect of harmful interference. Moreover,
the interference from PU will become very large due to the
introduced interference over each SU’s link.

B. Algorithm Comparison

According to the definition of EE (e.g., bits/J)
in [42] (i.e, sum data rate over sum power
consumption), we define the following EE, ηswipt =

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

channel gain between SU-Tx and SU-Rx (h
m,m

)

0

1

2

3

4

5

6

E
ne

rg
y 

ef
fic

ie
nc

y 
of

 S
U

s 
(
2
:b

its
/J

ou
le

)

Our non-robust scheme with SWIPT
Our robust scheme with SWIPT (==0.03)
Our robust scheme with SWIPT (==0.08)
Robust scheme without SWIPT (==0.03)
Robust scheme without SWIPT (==0.08)
Non-robust without SWIPT

Fig. 6. Total EE of SUs versus the channel gain of SU’s link.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

Channel uncertainty of SUs "h
i,m

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

A
ct

ua
l o

ut
ag

e 
pr

ob
ab

ili
ty

 o
f S

U

Robust with SWIPT (.
1
min=4dB)

Robust with SWIPT (.
2
min=2dB)

Non-robust with SWIPT (.
1
min=4dB)

Non-robust with SWIPT (.
2
min=2dB)

Non-robust without SWIPT (.
1
min=4dB)

Non-robust with SWIPT (.
2
min=2dB)

Robust without SWIPT (.
1
min=4dB)

Robust with SWIPT (.
2
min=2dB)

Fig. 7. Total EE of SUs versus the channel gain of SU’s link.

M∑
m=1

log2(1 + γm(pm, ρm))/(
M∑
m=1

pm + Pc −
M∑
m=1

Em) and

ηswiptwithout =
M∑
m=1

log2(1 + γm(pm))/(
M∑
m=1

pm + Pc). And Pc

is a constant which denotes the circuit power consumption.
Fig. 6 shows the EE of SUs versus the direct channel gain. It

is observed that the total EE becomes bigger with the increas-
ing channel gain between SU-Tx and SU-Rx. This is due to the
fact that a bigger channel gain results in more transmit power
to keep the basic SINR requirement. Besides, Our schemes
with SWIPT have a good performance than other algorithms.
The reason is that the harvested energy can compensate for the
energy requirement of the system. Moreover, with the bigger
τ (e.g., the upper bound of uncertainty), the total EE decreases
to give better protection to the PU.

In Fig. 7, we study the robustness of (e.g., user’s out-
age probability) algorithms under channel uncertainties. The
outage probability of SU can be defined as Pr(out) =
max{0, (γminm − γm)/γminm }. From the figure, it is clear that
the actual outage probability of SU improves a lot with the
big uncertainty. But our proposed algorithms can overcome the
effect of uncertainty and have a small outage probability. The
non-robust algorithm without SWIPT has the biggest outage
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probability. The reason is that the type of algorithm does not
consider the uncertainty in the design of the RA algorithm
ahead of time. With the increasing of uncertainty ∆hm,m, the
outage probability of SUs cannot increase indefinitely since the
available transmission power of SU is constrained by both the
maximum transmission power and the interference temperature
level.

VII. CONCLUSIONS

In this paper, we have proposed a RA strategy to solve the
total power minimization problem in SWIPT-enabled cognitive
networks under perfect CSI and imperfect CSI, respectively, in
a distributed way. In particular, we have formulated the joint
power allocation and PS problems for the secondary links as
the optimization problems with the QoS constraints of SUs and
the interference power constraint of PU. Also, imperfect CSI
is considered in the analysis and robust algorithm design. The
optimal solutions are obtained under the low-harvested energy
requirement and the high-harvested energy requirement, re-
spectively. Based on the bounded channel uncertainties and the
worst-case principle, the robust RA problem is also analyzed.
Simulation results demonstrated that the proposed algorithm
has good convergence performance, EE, and the robustness
by comparing with the existing algorithms. Our RA strategy
can be used in low-power networks (e.g., IoT, wireless sensor
networks or D2D networks) for prolonging the lifetime and
saving energy consumption. Moreover, our work can also be
extended to the scenarios of EE maximization and the non-
linear EH model.

APPENDIX A
PROOF OF (4)

Define Zm =
M∑
i 6=m

pihi,m, the constraint C2 can be rewritten

as
pmhm,m ≥ γminm Zm + γminm

σm
1− ρm

. (57)

The Eq. (57) can be reformulated as

pmhm,m
γminm

− σm
1− ρm

≥ Zm. (58)

Since Zm ≥ 0, we have

pmhm,m ≥
γminm σm
1− ρm

. (59)

At the same time, the constraint C3 can be rewritten as

pmhm,m ≥
Eminm

θρm
− Zm. (60)

Based on (57)+γminm × (60), we have

pmhm,m ≥ Hm, (61)

where Hm =
γmin
m

1+γmin
m

( σm

1−ρm +
Emin

m

θρm
).

According to (59) and (61), we have

pmhm,m ≥ H̄m, (62)

where H̄m = max
(
Hm,

γmin
m σm

1−ρm

)
. Therefore,

Hm −
γminm σm
1− ρm

=
γminm

1 + γminm

(
σm

1− ρm
+
Eminm

θρm
)− γminm σm

1− ρm

=
γmin
m

1 + γminm

(
Eminm (1− ρm)− θρmγminm σm

θρm(1− ρm)
){

≤ 0, Eminm ≤ (θρmγ
min
m σm)/(1− ρm),

0, otherwise.
(63)

According to (62) and (63), we have

pmhm,m ≥ H̄m =

{
γmin
m σm

1−ρm , Eminm ≤ θρmγ
min
m σm

1−ρm ,

Hm, otherwise.
(64)

The proof is completed.

APPENDIX B
PROOF OF (14)

We use the counter-evidence approach to proof the equation.
As a result, we have

Eminm

θρm
− Zm ≥ Hm

⇔ 1

1 + γminm

Eminm

θρm
≥ Zm +

γminm

1 + γminm

σm
1− ρm

⇔ Eminm

θρm
≥ (1 + γminm )Zm + γminm

σm
1− ρm

.

(65)

According to C3, we have

Zm ≥
Eminm

θρm
− pmhm,m. (66)

Combining (65) with (66), we have

Eminm

θρm
≥ (1+γminm )(

Eminm

θρm
−pmhm,m)+γminm

σm
1− ρm

. (67)

Based on (67), we have

(1 + γminm )pmhm,m ≥ γminm

Eminm

θρm
+ γminm

σm
1− ρm

. (68)

Since Emin
m

θρm
≤ Zm + pmhm,m holds, we assume that the

low bound of left side is bigger than the upper bound of right
side in (68) under the worst case. Thus we have

(1+γminm )pmhm,m ≥ γminm (Zm + pmhm,m)+γminm

σm
1− ρm

.

(69)
According to C3, we have

pmhm,m ≥ γminm Zm + γminm

σm
1− ρm

⇔ pmhm,m
Zm + σm

1−ρm
≥ γminm

⇔ (1− ρm)pmhm,m
(1− ρm)Zm + σm

≥ γminm

⇔ (1− ρm)pmhm,m

(1− ρm)

(
M∑
i 6=m

pihi,m

)
+ σm

≥ γminm .

(70)
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According to the definition of SINR, we have

γm ≥ γminm . (71)

Obviously, the above equation holds for each user ∀m.
Therefore,

Eminm

θρm
− Zm ≥ Hm. (72)

The proof is completed.
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