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Abstract

With the development of robot technology and the arrival of industry 4.0 era, society pays more attention to col- laboration and

interaction between human and robots. However, safety is still main concern in the development of human-robot collaboration.

In this paper, a novel real-time collision avoidance approach for mobile manipulator is proposed by considering the motion

status of the human, which includes the relative minimum distance and velocity (both magnitude and direction) between the

robot and the human. The distance and velocity of the human hand are first estimated online using a vision sensor, and then

defined as danger factors in the potential function of the potential field. The novel potential function proposed in this paper

considers not only the safety problem, but also the efficient problem, i.e., the manipulator can make smart control decision to

avoid the collision according to the relative velocity in case of the cross over. To overcome the local minimum problem and

choose a best motion direction, we propose a motion sampling mechanism for motion planning. For each sample, the robot

calculates the potential function to evaluate the safety and efficiency, and chooses a direction which is best for avoidance. We

finally demonstrate our idea on a real mobile manipulator platform in a simulated co-worker environment.
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Online Collision Avoidance for Human-Robot
Collaborative Interaction Concerning Safety and
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Guoliang Liu, Member, IEEE, Haoyang He, Guohui Tian, Jianhua Zhang, Ze Ji

Abstract—With the development of robot technology and the
arrival of industry 4.0 era, society pays more attention to col-
laboration and interaction between human and robots. However,
safety is still main concern in the development of human-robot
collaboration. In this paper, a novel real-time collision avoidance
approach for mobile manipulator is proposed by considering the
motion status of the human, which includes the relative minimum
distance and velocity (both magnitude and direction) between
the robot and the human. The distance and velocity of the
human hand are first estimated online using a vision sensor,
and then defined as danger factors in the potential function
of the potential field. The novel potential function proposed
in this paper considers not only the safety problem, but also
the efficient problem, i.e., the manipulator can make smart
control decision to avoid the collision according to the relative
velocity in case of the cross over. To overcome the local minimum
problem and choose a best motion direction, we propose a motion
sampling mechanism for motion planning. For each sample, the
robot calculates the potential function to evaluate the safety and
efficiency, and chooses a direction which is best for avoidance.
We finally demonstrate our idea on a real mobile manipulator
platform in a simulated co-worker environment.

Index Terms—human-robot collaborative interaction, collision
avoidance, human in loop, safety, obstacle avoidance

I. INTRODUCTION

In an uncertain and unstructured environment, whether robot
can avoid human accurately and timely is always one of the
important factors that restrict the development of human-robot
collaboration and interaction. In order to ensure safety working
in the human coexistence environment, many novel ideas for
collision avoidance have been proposed in recent years, which
can be divided into local algorithms and global algorithms
according to whether the obstacle affects locally or globally.
Global algorithms calculate the global path before the motion
execution, while local algorithms determine the motion com-
mand according to the feedback during the motion execution
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[1]. In addition, global algorithms are usually complete or the
solutions are complete, while local algorithms only optimize
the local objective function and thus may lead to suboptimal
behavior, e.g., traditional potential field methods can have local
minima solution [2]. A global sampling based global method is
presented in [3], which requires that the working environment
of the manipulator is known and the obstacles have to be
modeled, and then a growth graph through randomly sampled
nodes can be further built. When the target point is added
to the graph, a global path can be found by searching. The
global methods can find a global optimal solution, but the
computational cost is generally high [4]. In addition, the
global methods have difficulties to quickly response to the
obstacle appearing suddenly or with unpredictable trajectory.
Compared with the global path planning algorithms, local
algorithms can make real-time response according to the
changes of the environment. Artificial potential field (APF)
algorithm has the advantages of simple structure and real-time
performance, such that it has been widely used in real-time
obstacle avoidance algorithms of manipulator. APF builds a
repulsion potential field around the obstacle, and a repulsion
force is produced using a negative gradient direction of the
potential field, which keeps the robot away from the obstacles
[5]. For dynamic environment, the APF is extended in [6],
which introduces a new potential field form taking not just
the path but also the velocity along the path into account.
However, due to the lack of global information, APF is easy
to fall into the local minimum region where the repulsive force
is equal to the attractive force, which results in the target
unreachable.

In order to overcome the defect of local minima of APF,
a virtual obstacle associated with a new target is proposed in
[7], which can help the robot escape from the local minimum
region. Sun et al. [8] proposed a dynamic window method
to predict the position of the local minimum region, such
that the robot can know where the local minimum region
is in advance. Harmonic potential functions are introduced
to overcome the shortcoming of potential field in [9], which
requires that the robot motion and the obstacle motion have
to follow harmonic functions. A depth space based method
for estimating the minimum distance between manipulator
and human is proposed in [10], which is then used with the
traditional APF for avoidance.

In this paper, we consider the safety and efficiency problems
in the scenario of human-robot coexistence working and living
environment, which are solved using a sampling based motion
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(a)

Fig. 1: TIAGo robot and its unified robot description format
(URDF) model with base coordinate in Robot Operating
System (ROS).

generator with a novel potential function of potential field
considering the motion status of the human. The contributions
of our work can be summarized as the following: (1) the
danger index of the robot is defined as a function of the
relative distance and velocity between the robot and human,
which is then used in a novel potential function of the artificial
potential field for planning a collision free path. Furthermore,
the efficiency of the robot is considered by analyzing the
magnitude and direction of the relative velocity of the moving
human, i.e., the robot can make a smart decision to move ahead
or behind human, such that the efficiency can be improved
for collaborative situations like cross over. (2) a sampling
based motion generator is used to evaluate the quality of the
manipulator motion, which is similar to the dynamic window
approach [11]. For each sample, we evaluate not only the
local minimum region, but also the danger index. In this way,
we can avoid the local minimum points and find a solution
that is safe and efficient. The motion status of the human
hand is estimated by a visual localization technology using 2D
marker proposed in [12]. There are also some other choices for
human motion estimation, such as skeleton detection [13] or
3D octree map [14] which requires more computational cost
and is more noisy. The mobile manipulator TIAGo is used for
demonstrating our ideas as shown in Fig.1, and a cross over
task between human and robot is used for evaluation.

II. COLLISION FREE MOTION GENERATOR

In this section, we present our framework in detail. We first
introduce the standard artificial potential field (APF), and then
show how to use a sampling mechanism to avoid the local
minimum. Finally, we introduce new danger indexes as key
factors of the potential function of the APF, which can be
used in the sampling step for evaluating each sample to derive
a safe and efficient path.

A. Artificial Potential Field
In the classical artificial potential field (APF), the manipu-

lator moves in the force field. Both the goal and the obstacle

create a potential field at the position X of robot. The target
point has the attractive force to the robot and guides the robot
to move toward it, whereas the obstacles create the repulsion
to the robot and keep the robot away from it. The sum of
all the repulsive and attractive forces at each position in the
robot path controls the motion of robot. The classical APF
is static since it only depends on the robot’s current position
and obstacle position. The common function of the attraction
potential field is defined as:

Uattr(X) =
ka
2

(X −Xg)
2 (1)

where Uattr represents the attraction potential energy, Xg is
the position of target point, and ka is the scale factor. The
negative gradient of the attraction potential field function is
defined as the attractive force function:

Fattr(X) = −∇[Uattr(X)] = ka(Xg −X) (2)

where the Fattr is a vector pointing to the target position Xg .
Similarly, the definition of repulsion potential field function is
based on the distance between the obstacle and robot:

Urep(X) =

{
kr
2 ( 1

p(X) −
1
p0

)2, p(X) ≤ p0
0, p(X) > p0

(3)

where Urep represents the repulsion potential energy, kr is the
scale factor, p(X) represents the distance between the end-
effector and the obstacle at position X , and p0 describes the
influence radius of each obstacle. The repulsive force is the
negative gradient of the repulsive potential function, which is
a vector from the obstacle to the end-effector:

Frep(X) =

{
kr(

1
p(X) −

1
p0

) 1
p2(X)∇p(X), p(X) ≤ p0

0, p(X) > p0
(4)

Hence the final potential field function when the robot at
position X is defined as:

U(X) = Uattr(X) + Urep(X) (5)

The final resultant force is F (X) = Fattr(X) + Frep(X).
However, the classical APF algorithm has defects:

(1) The robot can have non-reachable goal, e.g., the repul-
sion force is greater than the attraction force when there is an
obstacle closing to the goal, such the robot can not reach the
target point, which is known as the GNRON problem.

(2) The robot can fall into a local minimum region, e.g., the
final resultant force of the manipulator is zero or the direction
of the resultant force is collinear with the gravitational and
repulsive forces, such that the robot oscillates or stops in this
area.

(3) It does not consider the relative motion of the end-
effector and obstacles, such that the method can not work well
in a dynamic environment.

B. Sampling Based Motion Generator

To solve the GNRON problem, we introduce the influence
of the goal into the repulsion potential energy, which ensures
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that the whole potential field is only minimum at the target
position. The new repulsive potential function is

Urep(X) =

{
kr
2 ( 1

p(X) −
1
p0

)2(X −Xg)
n, p(X) ≤ p0

0, p(X) > p0
(6)

where (X−Xg) represents the distance between the robot and
the target, and n is a constant that is greater than zero. The
improved repulsive force function is the negative gradient of
the repulsive potential function:

Frep(X) =

{
Frep1(X) + Frep2(X), p(X) ≤ p0
0, p(X) > p0

(7)

where Frep1 and Frep2 are defined as:{
Frep1 = kr(

1
p(X) −

1
p0

) 1
p2(X) (X −Xg)

n,

Frep2 = −nkr2 ( 1
p(X) −

1
p0

)2(X −Xg)
n−1

(8)

We can find out that the direction of vector Frep1 is from the
obstacle to the robot, and the direction of vector Frep2 is from
the robot to the target.

To keep the robot away from local minimum region, we
propose a sampling extension of the APF (SAPF). Our idea is
to sample multiple possible positions at next time step based
on current position (xt, yt, zt) and the resultant force direction
θt. Since it is computational cost for sampling in the 3D space,
we can select some special planes for sampling, e.g., yz plane,
xy plane or xz plane. Here we take the yz plane as an example
as shown in Fig. 2, where pmin is the radius of the area that
the distance impact factor starts to work in the APF, pmax is
the radius of the area that the velocity impact factor starts to
work in the APF, vo is the velocity of the obstacle, ∆θ is the
angular step between samples, kv is the impactor factor of the
obstacle speed which will be given in the next section. The
sampled directions θw in yz plane are defined as following:

θw =


θt + sgn(voz)w∆θ, kv ≤ 0 ∩ voz 6= 0

θt + w∆θ voz = 0

θt − sgn(voz)w∆θ, kv > 0 ∩ voz 6= 0

(9)

where θt is the direction of the resultant force on the robot
at the current position projected to the yz plane, voz is the Z
axis component of the obstacle velocity vo, sgn is the sign
function and w = (0 . . . n) is the number of samples. The
signs of the kv and voz have following meanings:

(1) kv > 0 represents the fast obstacle. The robot samples
the predicted positions in the negative direction of the z-axis
component voz of the obstacle velocity based on θt, which
means the robot plan to avoid the obstacle from the back side.

(2) kv ≤ 0 represents the slow obstacle. The robot selects
predicted positions that are in the positive direction of voz
based on θt, and avoid the obstacle from the front side.

(3) For the static obstacle or the obstacle with voz = 0, the
robot chooses the predicted positions in the positive direction
of θt as the next sampling points, which means the robot
avoids the obstacle from the top of the obstacle.

pmax

pmin

Vo

Y

Z

goal∆θ

kv > 0

kv ≤ 0

robot
obstacle

(a)

Fig. 2: Sampling based APF for moving obstacle avoidance.

A number of possible positions at the next time step that
the robot might move can be derived by
x0 y0 z0
x1 y1 z1
. . . . . . . . .
xn yn zn

 =


xt yt zt
xt yt + d ∗ cos θ1 zt + d ∗ sin θ1
. . . . . . . . .
xt yt + d ∗ cos θn zt + d ∗ sin θn


(10)

where (x0 . . . xn, y0 . . . yn, z0 . . . zn) represents the coordi-
nates of simulated positions, and d is the sampling step-size.
The final choice of the motion direction is chosen according
to our evaluation function defined as:xy

z

 = min(PF (


x0 y0 z0
x1 y1 z1
. . . . . . . . .
xn yn zn

)) (11)

whose output is to select the position with the minimum
sum of the absolute value of forces on the robot. When the
end-effector of manipulator enters the influence radius of the
obstacle, the SAPF approach is used to simulate the possible
positions and calculate the force for each simulated sample.
In this way, the robot can evaluate next motion in advance to
avoid the local minimum region. Furthermore, the robot also
considers the efficient of the avoidance, since the direction
and magnitude of the relative velocity are included in the
evaluation process.

C. Danger Index for Safety and Efficient

To protect the human and keep high working efficiency, we
here use relative distance and velocity between the human and
robot as the main impact factors of the danger index, which
are defined as following:

(1) The distance impact factor is defined as:

fd =

{
η( 1
p(X) −

1
pmax

), p(X) ≤ pmax
0, p(X) > pmax

(12)
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where η = pmaxpmin

pmax−pmin
is the distance scale factor, pmax and

pmin represent the max and min influence radius of the moving
obstacle respectively.

The distance impact factor is affected by the distance rela-
tionship between the end-effector and the dynamic obstacle,
e.g., the distance impact factor is greater when the robot is
closer to the obstacle.

(2) The velocity impact factor is defined as:

kv = sgn(γ|vo| − |vr|) (13)

where γ is the speed scale factor, |vo| and |vr| are the
magnitudes of the dynamic obstacle velocity and the end-
effector velocity respectively. and sgn() is the sign function.
If γ times the speed of the dynamic obstacle is greater than
the speed of the end-effector, the velocity impact factor is a
positive integer and vice versa.

The specific velocity repulsive potential field function is
defined as a combination of the distance impact factor and the
velocity impact factor, which is

Urev(v) =

{
krofd

2 v2, fd > 0 ∩ α ∈ (−π2 ,
π
2 )

0, otherwise
(14)

where v =

{
vr − vo, kv ≤ 0

vr + vo, kv > 0
represents the relative velocity

between the end-effector and the obstacle. Urev represents
the velocity potential energy and kro is the scale factor. α
is the angle between the relative velocity vector v = vr − vo
and the relative position vector from the end-effector to the
obstacle, which can be used to determine whether the robot
is moving away from the obstacle. With the velocity impact
factor, we can adopt different obstacle avoidance strategies for
moving obstacles with different motion states. With the dis-
tance influence factor, we can dynamically adjust the velocity
repulsion according to the relative distance between the end-
effector and the obstacle. For kv > 0 , the obstacle has fast
speed, so it is safer that the robot moves behind of the moving
obstacle. v = vr + vo can be seen as the relative velocity
between the end-effector and the obstacle by considering that
the robot moves in the opposite direction at a speed of −vo.
The resultant force at this time can guide the end-effector to
move behind the obstacle. Similarly, the end-effector moves
in front of the obstacle when the obstacle is moving slowly.

The velocity repulsive force is the negative gradient of the
velocity repulsive potential function defined as

Frev(v) =


krofd(vr − vo), kv ≤ 0 ∩ fd > 0 ∩ α ∈ (−π2 ,

π
2 )

krofd(vr + vo), kv > 0 ∩ fd > 0 ∩ α ∈ (−π2 ,
π
2 )

0, otherwise
(15)

The velocity repulsion force starts to work when the distance
between the end-effector and the obstacle is less than pmax.
The direction of velocity repulsion force is opposite to the
direction of v. Finally, we add the velocity potential field Urev
to SAPF for path planning. The resulting force field on the
end-effector of manipulator is defined as:

U = Uattr + Urep + Urev (16)

Fig. 3: The overall process of our SAPF algorithm for collision
avoidance.

Fig. 4: A vision based real time estimation of the motion status
of the human hand using the ArUco Marker.

To summarize, the whole proposed algorithm for collision
avoidance is shown in Fig.3.

III. EXPERIMENT SETUP AND RESULTS

The proposed framework is evaluated on a mobile manipula-
tor TIAGo robot with a redundant 7-DOF arm. We here mainly
consider the cross over task when the end-effector moves to
right while the human hand moves up, which is a common sce-
nario of human-robot collaboration and interaction. The safety
must be considered first while the robot can not lose efficiency,
which means the robot must have smart control decision
according to the motion status of the human hand. The motion
status of the human hand is detected using 2D ArUco Marker,
which is attached on a box grasped by the human hand. We
also tried skeleton based vision methods using RGBD sensors,
e.g., Kinect. However, due to the detection noise of joint points
of the human skeleton, the estimated velocity of human hand
is quite inaccuracy. Therefore, the 2D ArUco Marker can solve
such a problem for our evaluation, which is fast and accurate.
The detected position of grasped box can be transferred to the
robot coordinate system as shown in Fig.4 [15]. The proposed
SAPF can find out the collision free path for the end-effector
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TABLE I: The experiment parameters

p0 ka kr n ∆θ pmax pmin kro γ
0.1m 1 1 15 6◦ 0.2m 0.1m 10 1

(a)

(b)

Fig. 5: The experimental result using the proposed SAPF
for avoiding the static human hand: (a) snapshots of the
collision avoidance process and (b) improved path (blue) of
the manipulator for human hand (red) avoidance in 3D view
and 2D view.

of the manipulator, which is then used for robot control by
inverse kinematics [16]. The parameters of the algorithm used
in the experiment are summarized in Table. I.

A. Scenario 1: static human hand

For the first experiment, the human hand is static and
located between the end-effector and the goal position, which
is modeled as a cylinder with a certain expansion range
considering the size of the end-effector and safe distance. The
robot detects the human hand using the ArUco Marker, and
uses the proposed SAPF for online avoidance which is shown
in Fig.5. Fig. 5 (b) shows the recorded trajectory (blue) of
the end-effector and the position of the human hand (red). We
can see that the manipulator can avoid the suddenly appeared
human arm successfully.

B. Scenario 2: cross over with a slow speed

In this scenario, human hand crosses the predefined path
of the robot at a relatively slow speed. The robot estimates
the position and velocity of the human hand by detecting the

(a)

(b)

Fig. 6: The experimental result using the proposed SAPF
algorithm for avoiding a slow moving human hand. The
motion direction of the human hand is shown as a blue arrow
in the top-left figure. As expected, the robot chooses to move
ahead of the human arm: (a) snapshots of collision avoidance
for cross over task with a slow speed. (b) the planned path of
the SAPF in 3D view and 2D view respectively.

ArUco marker with a visual camera. The velocity impact factor
is calculated, which can drive the end-effector to move ahead
of the obstacle. In this way, the robot can have a high efficiency
to achieve the goal. The experiment result is shown in Fig.6.

C. Scenario 3: cross over with a fast speed
Here we consider that the manipulator crosses over a fast

moving human hand as shown in Fig.7. In this case, it is safer
that the robot moves behind of the human hand. The proposed
SAPF can achieve this goal with our novel potential function
definitions considering the relative velocity. The experiment
result also prove the effectiveness of the SAPF.

From above three experiments, we can see that the proposed
SAPF algorithm can work well for collision avoidance in
the case of the cross over task. Meanwhile, the introduced
framework also has considerations of safety and efficient. The
robot can make smart decision according to the motion status
of the human, e.g., move ahead or behind of the moving hand,
which is quite useful for many human-robot collaboration and
interaction tasks.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel method to avoid collision
during human-robot collaboration and interaction. Both of the
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(a)

(b)

Fig. 7: The experimental result using the proposed SAPF al-
gorithm for avoiding a moving fast human hand. As expected,
the robot decides to move behind of the human hand, which is
safer: (a) snapshots of collision avoidance for cross over task
with a fast speed. (b) the planned path of the SAPF in 3D
view and 2D view respectively.

safety and efficiency of the robot are considers in the care-
fully designed algorithm. We first proposed a sampling based
artificial potential field (SAPF) method with a novel repulsive
potential function that can handle goal non-reachable problem
and the local minimum problem, and then introduced a danger
index based velocity potential function considering the relative
distance and velocity. Furthermore, we demonstrate our idea
on the mobile manipulator TIAGo platform using a cross over
task. The robot is smart to make decision according to the
motion status of the human, which is detected using a visual
sensor. Similar to the human, the robot can move ahead or
behind of the human hand based on the information of relative
distance and velocity. We believe that the proposed work can
be useful for many other human-robot collaborative interaction
tasks. In future, we would like to consider more human factors
in the danger index, e.g., the gaze direction and emotion of
the human.
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