
P
os
te
d
on

1
F
eb

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
17
25
98
0.
v
2
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

An Improved Expression for Information Quality of Basic

Probability Assignment and Its Application in Fault Diagnosis

Hanwen Li 1,1 and Rui Cai 2

1School of Computer and Information Science
2Affiliation not available

November 8, 2023

Abstract

Information quality is widely used in many applications. However, how to measure information quality in basic probability

assignment accurately is still an open issue. Generalized expression for information quality is an effective method to measure

information quality in basic probability assignment. Nevertheless, the counter-intuitive results may be obtained when statements

are of intersection. To address this issue, a new expression for information quality of basic probability assignment is proposed

in this paper considering the frame of discernment and the influence of intersection among statements which can cause changes

of uncertainty. Numerical examples are illustrated to demonstrate the effectiveness of the proposed method. In addition, an

application in fault diagnosis is used to show the effectiveness of the proposed method.
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ABSTRACT Information quality is widely used in many applications. However, how to measure infor-
mation quality in basic probability assignment accurately is still an open issue. Generalized expression for
information quality is an effective method to measure information quality in basic probability assignment.
Nevertheless, the counter-intuitive results may be obtained when statements are of intersection. To address
this issue, a new expression for information quality of basic probability assignment is proposed in this paper
considering the frame of discernment and the influence of intersection among statements which can cause
changes of uncertainty. Numerical examples are illustrated to demonstrate the effectiveness of the proposed
method. In addition, an application in fault diagnosis is used to show the effectiveness of the proposed
method.

INDEX TERMS Information quality, Gini entropy, Dempster-Shafer evidence theory, Basic probability
assignment, Fault diagnosis

I. INTRODUCTION
The world is pervaded with uncertainties, and decisions
must be made based on uncertain information. Dempster-
Shafer evidence theory is an easy and effective framework
for modeling uncertain information [1]–[5]. It is widely used
in uncertainty reasoning and it has the ability to process
many types of information in the real world to make accurate
decision. There are also many other mathematical models to
do uncertainty modeling like D numbers [6]–[10], Z numbers
[11]–[16], fuzzy sets [17]–[20], intuitionistic fuzzy sets [21]–
[25], pythagorean fuzzy sets [26]–[29], two-dimensional be-
lief function [30], intuitionistic evidence sets [31], and so on.

Information quality is firstly proposed by Yager and Petry
based on Gini entropy to measure the uncertainty for a
probability distribution [32], [33]. It has been widely used in
pattern classification [34], [35], decision making [36], [37]
and so on [38]–[43], [43], [44]. Li et al. propose a general-
ized expression for information quality in basic probability
assignment in Dempster-Shafer evidence theory [45], which
makes information quality have greater scope of application.

Yager and Petry’s method does not consider the length of
each element and treat elements that have different length

equally, which is counter-intuitive. Li et al.’s method takes
the length of each element into account, and fully considers
the potential uncertainty created by non-single elements.
However, when elements are of intersection, the previous
methods do not take the effects of intersection of statements
into account, counter-intuitive results may be obtained. To
address this issue, an improved expression for information
quality is proposed considering the length of frame of dis-
cernment(FOD) and the influence of intersection among s-
tatements. An exponential item is added to take the effects
of intersection into account. The proposed expression can
degenerate into generalized form of information quality and
information quality proposed by Yager and Petry under cer-
tain conditions.

The rest of this paper is organised as follows. Section II
introduces the preliminaries include Dempster-Shafer theory,
information quality and generalized form of information
quality. Improved expression for information quality in basic
probability assignment will be proposed in Section III. In
Section IV, numerical examples will be given to illustrate
the effectiveness of proposed method. In Section V, an ap-
plication in fault diagnosis is given to show the effectiveness
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of proposed method. Finally, conclusions will be made in
Section VI.

II. PRELIMINARIES
In this section, the preliminaries will be briefly introduced,
including Dempster-Shafer evidence theory and information
quality.

A. DEMPSTER-SHAFER EVIDENCE THEORY
Dempster-Shafer evidence theory can represent the uncer-
tainties effectively, and it is widely used in many fields
like pattern classification [46]–[48], multi-criteria decision
making [49]–[51] and so on [52]–[61]. The brief introduction
to Dempster-Shafer evidence theory will be given as follows.
Definition 2.1: A set of hypothesis Θ is called the frame of
discernment. It is defined as follows:

Θ = {h1, h2, ..., hn} (1)

The power set 2Θ is defined as:

2Θ = {∅, {h1} , {h1, h2} , ..., {h1, h2, ..., hn}} (2)

where ∅ is an empty set.
Definition 2.2: The discernment frame Θ must satisfy the
following conditions:

(1)m(∅) = 0
(2)
∑
A∈Θ

m(A) = 1

where m : 2Θ → [0, 1] is called the basic probability
assignment(BPA). And m is also known as the mass function.
For an BPA m on Θ, each subset A of Θ is called an focal
element of m if m(A) > 0.
How to fuse different information is still an open issue. The
basic combination rule is given as follows.
Definition 2.3: Suppose there are two independent BPAs,
m1,m2, The combination rule is used to fuse two BPAs. And
the result of fused BPA is denoted by m. And it is given by:m(∅) = 0

m(A) =

∑
B∩C=A

m1(B)m2(C)

1−K

(3)

where K =
∑

B∩C=∅
m1(B)m2(C).

The counter-intuitive results may be obtained when infor-
mation is highly conflicted [62]. Hence, many methods are
proposed to address this issue [63]–[67]. The weighted aver-
age method is proposed by Deng et al. based on Murphy’s
average method and Jousselme distance [68]–[70].
Definition 2.4: Given two mass functions m1 and m2, the
Jousselme distance between m1 and m2 is defined as:

d(m1,m2) =

√
1

2
(−→m1 −−→m2)

T
D (−→m1 −−→m2) (4)

where −→m1 and −→m2 are respective belief functions in the
notation of vector(and each size is 2Θ - 1). And D is an∣∣2Θ
∣∣ × ∣∣2Θ

∣∣ matrix that each of its element is D(s1, s2) =∣∣∣ s1∩s2s1∪s2

∣∣∣. s1, s2 ∈ 2Θ.

The similarity measure between m1 and m2 can be defined
as

Sim(m1,m2) = 1− d(m1,m2) (5)

Suppose there are n mass functions. And we can construct
a 2n × 2n similarity matrix as follows:

A =


1 S12 . . . S1n

S21 1 . . . S2n

...
...

...
...

Sn1 Sn2 . . . 1


n×n

And Sij = Sim (mi,mj), for i = 1, 2, ..., n, j = 1, 2, ..., n.
The support degree of one mass function mi(i =

1, 2, ..., n) can be defined as:

Sup(mi) =

n∑
j=1

Sij (6)

And the credibility degree of of one mass function mi(i =
1, 2, ..., n) can be denoted as:

Crdi =
Sup(mi)

n∑
j=1

Sup(mj)
(7)

And the weighted mass function can be obtained by
weighted average as follows:

wi = Crdi (8)

m(A) =

n∑
i=1

wimi(A) (9)

where A is a focal element of m. Then weighted mass
function can be used to fuse data in the later process.

B. INFORMATION QUALITY
Entropy is a measurement of the uncertainty of information.
The larger the value of entropy, the bigger the uncertainty
of information. Many methods for entropy can represent
the uncertainty for information, like Shannon entropy [71],
Tsallis entropy [72]–[74], Rényi entropy [75], [76], Deng
entropy [77]–[88], generalized belief entropy [89] and so on
[90]–[92].

Based on Gini entropy [33], information quality is pro-
posed by Yager and Petry as another way to measure the
degree of uncertainty of information [32]. The value of infor-
mation quality is larger while the uncertainty of information
is smaller. Information quality is defined as follows.
Definition 2.5: Given a probability function pi, the informa-
tion quality of pi is defined as:

IQpi
=

n∑
j=1

|pij |2 (10)

When pij = 1, the defined information quality reaches its
maximum value, and when all pij = 1

n , which leads to most
uncertainty of information, the value of information quality
is smallest.

2 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Inspired by the idea of Deng entropy [77], Li et al. propose
generalized form of information quality in basic probability
assignment [45], and it is defined as follows.
Definition 2.6: Given a basic probability allocation mi, the
generalized information quality of mi is defined as follows.

IQmi =
∑
A∈X

(
mi(A)

2|A| − 1

)2

(11)

When all the statements are all single elements, the gener-
alized form of information quality will degenerate into the
form of information quality proposed by Yager and Petry.

III. PROPOSED METHOD
In this paper, we focus on the disadvantage of generalized
form of information quality on the ignorance of the inter-
section between statements. In this section, we propose a
new form of information quality based on generated form
of information quality. The proposed form of information
quality considering the length of FOD and the intersection
between statements is given as follows.

IQmi
=
∑
A∈X

(
mi(A)

2|A| − 1

)2

e

∑
B∈X
B 6=A

|A∩B|
|X|

(12)

Where |A| denotes the cardinality of proposition A, and
|A ∩B| denotes the cardinality of the intersection between
proposition A and B. |X| denotes the length of FOD. When
all propositions have no intersection, the proposed form of
information quality degenerates into Eq.(11). Then if belief
is only assigned to single elements, the proposed form will
degenerate into Eq.(10).

IV. NUMERICAL EXAMPLES
In this section, numerical examples will be given to demon-
strate the efficiency of the proposed form of information
quality.
Example 4.1: Suppose there are two basic probability al-
locations m1 and m2. The frame of discernment X =
{a, b, c, d} . m1(a, b) = 0.5,m1(b, c) = 0.5,m2(a, b) =
0.5,m2(c, d) = 0.5.

Intuitively, the information quality of m1 is larger than m2

because focal elements of m1 are in intersection. Although
the distributions of two mass functions are similar, m1 has
less information volume than m2 as m1 has less targets than
m2. Hence, m1 contains less information than m2 and the
value of information quality of m1 is larger than m2.

With Yager and Petry’s method [32], the information qual-
ity of m1 and m2 can be calculated as

IQm1 = 0.52 + 0.52

log(IQm1) = −1.3863

IQm2
= 0.52 + 0.52

log(IQm2
) = −1.3863

With the generalized form of information quality [45], the
information quality of m1 and m2 can be calculated as

IQm1 =

(
0.5

22 − 1

)2

+

(
0.5

22 − 1

)2

log(IQm1) = −2.8904

IQm2 =

(
0.5

22 − 1

)2

+

(
0.5

22 − 1

)2

log(IQm2) = −2.8904

With the proposed method, the information quality can be
calculated as

IQm1 =

(
0.5

22 − 1

)2

e
1
4 +

(
0.5

22 − 1

)2

e
1
4

log(IQm1) = −2.6404

IQm2 =

(
0.5

22 − 1

)2

e
0
4 +

(
0.5

22 − 1

)2

e
0
4

log(IQm2) = −2.8904

As we can see, information qualities of m1 and m2 are the
same calculated by Yager and Petry method and Li et al.’s
method. Counter-intuitive results are obtained. With the pro-
posed method, information quality of m1 is larger than m2,
which is intuitive and reasonable. In this example, proposed
method has better performance than existed methods.
Example 4.2: Suppose there are three basic probability
allocations m1, m2 and m3. The frame of discernmen-
t X = {a, b, c, d, e, f} . m1(a, b) = 0.2, m1(c, d) =
0.6, m1(e, f) = 0.2, m2(a, b) = 0.2, m2(b, c) = 0.6,
m2(c, f) = 0.2, m3(a, b) = 0.2, m3(b, c) = 0.6,
m3(e, f) = 0.2.

Intuitively, the information qualities of m1,m2 and m3 are
not the same. The information quality of m1 is lowest while
the information quality of m2 is highest as elements in m2

have largest intersection.
With Yager and Petry’s method [32], the information qual-

ity can be obtained as follows.

IQm1
= 0.22 + 0.62 + 0.22

log(IQm1
) = −0.8210

IQm2
= 0.22 + 0.62 + 0.22

log(IQm2
) = −0.8210

IQm3 = 0.22 + 0.62 + 0.22

log(IQm3) = −0.8210

With Li et al.’s method [45], the information quality can
be obtained as follows.

IQm1
=

(
0.2

22 − 1

)2

+

(
0.6

22 − 1

)2

+

(
0.2

22 − 1

)2

log(IQm1
) = −3.0182

IQm2
=

(
0.2

22 − 1

)2

+

(
0.6

22 − 1

)2

+

(
0.2

22 − 1

)2

log(IQm2
) = −3.0182
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IQm3
=

(
0.2

22 − 1

)2

+

(
0.6

22 − 1

)2

+

(
0.2

22 − 1

)2

log(IQm3
) = −3.0182

With proposed method, the information quality can be
calculated as follows.

IQm1
=

(
0.2

22 − 1

)2

e
0
6 +

(
0.6

22 − 1

)2

e
0
6

+

(
0.2

22 − 1

)2

e
0
6

log(IQm1) = −3.0182

IQm2
=

(
0.2

22 − 1

)2

e
1
6 +

(
0.6

22 − 1

)2

e
2
6

+

(
0.2

22 − 1

)2

e
1
6

log(IQm2
) = −2.7132

IQm3 =

(
0.2

22 − 1

)2

e
1
6 +

(
0.6

22 − 1

)2

e
1
6

+

(
0.2

22 − 1

)2

e
0
6

log(IQm3
) = −2.8656

As we can see, information qualities of three mass func-
tions are the same calculated by Yager and Petry method
and Li et al.’s method. The obtained results are counter-
intuitive. With the proposed method, information quality of
m2 is largest and information quality of m1 is smallest. It is
intuitive and reasonable.
Example 4.3: Suppose there is a basic probability alloca-
tion m, the FOD is Θ = {1, 2, ..., 14}. m(6) = 0.05,
m(3, 4, 5) = 0.05,m(Θ) = 0.8,m(A) = 0.1, A ranges from
{1} to {1, 2, ..., 14} .

Figure 1 demonstrates the change of logarithmic value of
different measures for information quality when A changes.
Table 1 shows the logarithmic value of different measures
for information quality in different cases. Values of Yager
and Petry’s method keep almost stable when A changes
because the length of A do not affect the result, and it is not
reasonable. Values calculated by proposed method is larger
than Li et al.’s method, and it is reasonable because the effect
of intersection is taken into account, and information quality
is larger. Values calculated by two methods have same trends
of change.
Example 4.4: Suppose there is a basic probability allocation
m, the FOD is Θ = {1, 2, ..., 14}. m(1) = 0.05, m(2) =
0.05, ...,m(14) = 0.05,m(A) = 0.05, A ranges from {1} to
{1, 2, ..., 14} .

Figure 2 demonstrates the change of logarithmic value of
different measures for information quality when A changes.
Table 2 shows the logarithmic value of information quality
calculated by proposed method in different cases. When the
size of A becomes larger, information qualities calculated by
Eq.(10) and Eq.(11) approach to a certain value. Because of

2 4 6 8 10 12 14
Changes of A

6

5

4

3

2

1

0

lo
g(

IQ
) Yager and Petry's method

Li et al.'s method
Proposed method

FIGURE 1: Different measurements of information quality
with changes of A of BPA in Example 4.3

2 4 6 8 10 12 14
Changes of A

2.775

2.750

2.725

2.700

2.675

2.650

2.625

2.600

2.575
lo

g(
IQ

)
Yager and Petry's method
Li et al.'s method
Proposed method

FIGURE 2: Different measurements of information quality
with changes of A of BPA in Example 4.4

the effect of intersection elements, the information quality
calculated by the proposed method is larger than it calculated
by Eq.(10) and smaller than it calculated by Eq.(11) at most
of times. It is reasonable that elements have more mutual
information with changes of A, which leads to the increment
of information quality.

TABLE 1: Logarithmic value of different measurements for
information quality with changes of A of BPA

Cases Yager’s method [32] Li et al.’s method [45] Proposed method

A = {1} -0.4231 -0.4423 -0.3709
A = {1, 2} -0.4231 -2.6083 -2.4677

A = {1, 2, 3} -0.4231 -4.1597 -3.9054
A = {1, 2, 3, 4} -0.4231 -5.2222 -4.9442

A = {1, 2, ..., 5} -0.4231 -5.7393 -5.5359
A = {1, 2, ..., 6} -0.4231 -5.9100 -5.7164
A = {1, 2, ..., 7} -0.4231 -5.9558 -5.7928
A = {1, 2, ..., 8} -0.4231 -5.9674 -5.8140
A = {1, 2, ..., 9} -0.4231 -5.9703 -5.8197

A = {1, 2, ..., 10} -0.4231 -5.9710 -5.8212
A = {1, 2, ..., 11} -0.4231 -5.9712 -5.8217
A = {1, 2, ..., 12} -0.4231 -5.9712 -5.8218
A = {1, 2, ..., 13} -0.4231 -5.9713 -5.8218
A = {1, 2, ..., 14} -0.2046 -5.9713 -5.8968
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TABLE 2: Logarithmic value of information quality with
changes of A of BPA

Cases Logarithmic value

A = {1} -2.5829
A = {1, 2} -2.7575

A = {1, 2, 3} -2.7595
A = {1, 2, 3, 4} -2.7560
A = {1, 2, ..., 5} -2.7508
A = {1, 2, ..., 6} -2.7458
A = {1, 2, ..., 7} -2.7407
A = {1, 2, ..., 8} -2.7356
A = {1, 2, ..., 9} -2.7305

A = {1, 2, ..., 10} -2.7255
A = {1, 2, ..., 11} -2.7205
A = {1, 2, ..., 12} -2.7155
A = {1, 2, ..., 13} -2.7106
A = {1, 2, ..., 14} -2.7056

V. APPLICATION
In this section, an application in fault diagnosis is investi-
gated using proposed expression for information quality. The
case study in [93] is recalled in this section. Based on method
proposed by Yuan et al. [94], a new method using improved
expression for information quality is proposed and the main
steps of this method are shown in Figure 3.

Start

End

Obtain credibility degree and information quality 
by Eq.(7) and Eq.(12) respectively

Obtain the static reliability and the dynamic 
reliability and calculate the final weights

Combine BBAs with final weights and obtain 
the final evidence. Use final evidence to make 

decisions in fault diagnosis.

FIGURE 3: The flowchart of new method

In the example in [93], three fault types are called F1, F2

and F3. The hypothesis set of faults is Θ = {F1, F2, F3}.
Three sensors in the hypothesis set are independent. The
results of fault diagnosis are called BOEs, denoted as E1, E2

and E3. The BPAs of diagnosis results are shown in Table 3.
With the Dempster’s combination rule in Eq.(3), the fused

result is m(F1) = 0.4519,m(F2) = 0.5048,m(F2, F3) =
0.0336,m(Θ) = 0.0096. It is hard to judge which fault has
been occurred because the values obtained by Dempster’s
combination rule are very close. The extreme values in m2

influence the fused result.
To solve this problem, in [94], a fault diagnosis method

is proposed. The reliability of each sensor is defined as the
weight of a BOE. The weight of each BOE is defined as the
product of a static reliability and a dynamic reliability, and it
is defined as follows.

w(i) = ws(i)× wd(i) (13)

Where the static reliability ws(E1) = 1, ws(E2) = 0.2040,
ws(E3) = 1, in this example. The dynamic reliability is
defined with the use of information quality as follows.

wd(i) = Crd(mi)×
1

IQ(mi)

max( 1
IQ(mj) )

, j = 1, 2, 3 (14)

In this example, the credibility degree and information
quality can be obtained by Eq.(7) and Eq.(12). The values
of them are:

Crd(m1) = 1

Crd(m2) = 0.5523

Crd(m3) = 0.9660

IQm1
= 0.5280

IQm2
= 1.2116

IQm3
= 0.7071

The weight of each BOE can be calculated.

w(1) = ws(1)× Crd(m1)×
1

IQ(m1)

1
IQ(m1)

= 1× 1×
1

0.5280
1

0.5280

= 0.5778

w(2) = ws(2)× Crd(m2)×
1

IQ(m2)

1
IQ(m1)

= 0.2040× 0.5523×
1

1.2116
1

0.5280

= 0.0274

w(3) = ws(3)× Crd(m3)×
1

IQ(m3)

1
IQ(m1)

= 1× 0.9660×
1

0.7071
1

0.5280

= 0.3947

The final fused result can be obtained by Eq.(3) and Eq.(9).
m(F1) = 0.8996, m(F2) = 0.0685, m(F2, F3) = 0.0245,
m(Θ) = 0.0074. It is easy to tell and conclude that F1

is the fault with the highest probability. The results with
different methods are shown in Table 4. As Table 4 shows,
the proposed method is compatible with Fan et al.’s method,
Yuan et al.’s method and Zhou et al.’s method.

The application in fault diagnosis shows the effectiveness
of the proposed form of information quality. Also, this appli-
cation indicates a promising application prospect of this new
form of information quality.
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TABLE 3: BPAs of diagnosis result

Sensor report F1 F2 F2, F3 Θ
E1 : m1 0.60 0.10 0.20 0.10
E2 : m2 0.05 0.80 0.05 0.10
E3 : m3 0.70 0.10 0.10 0.10

TABLE 4: Fault diagnosis results with different methods

Method m(F1) m(F2) m(F2, F3) m(Θ)
Dempster’s combination rule 0.4519 0.5048 0.0336 0.0096

Fan et al.’s method [93] 0.8119 0.1096 0.0526 0.0259
Yuan et al.’s method [94] 0.8948 0.0739 0.0241 0.0072
Zhou et al.’s method [81] 0.8951 0.0738 0.0240 0.0071

Proposed method 0.8996 0.0685 0.0245 0.0074

VI. CONCLUSION
In this paper, an improved expression for information quality
is proposed considering the scale of the frame of discernment
and the intersection between statements in basic probability
of assignment, based on generalized form of information
quality. Moreover, some numerical examples are illustrated
to show the effectiveness of the proposed method. Results
show that proposed method has better performance than
the previous methods. In addition, an application in fault
diagnosis is used to illustrate the effectiveness of the pro-
posed method. In the future, we will further explore on other
applications of this new form of information quality in basic
probability assignment.
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