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Visualizing Confidence in Cluster-based
Ensemble Weather Forecast Analyses

Alexander Kumpf, Bianca Tost, Marlene Baumgart, Michael Riemer, Rüdiger Westermann, and Marc Rautenhaus

(a) (b)

Fig. 1: (a) Analysis of the variation in cluster membership over 81 different clusterings of the case “Tropical Cyclone Karl”, an
ensemble of 51 potential vorticity fields. Circular elements represent ensemble members, colors distinguish clusters (member 45 is
enlarged: color of inner circles denotes reference cluster, surrounding pie-charts show how often the member was grouped into
another cluster). Dashed outlines highlight cluster representative members. Member 26 is picked, for all members with similar
cluster membership variation “variability matrix plots” (squared elements encoding cluster membership of all 81 clusterings) pop up.
(b) A “contour probability plot” (CPP, different greens show probabilities for contour line occurrence) shows the variability of an
iso-contour within a selected cluster. Overlaid stipple pattern shows the spatial variation of the plot with respect to the 81 clusterings.

Abstract— In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a
selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters
(i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results
can be misleading and bias subsequent analyses. In this article, we –a team of visualization scientists and meteorologists– deliver
visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an
interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their
robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of
identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to
which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which
stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used
to analyze the clustering behavior of different regions in a forecast of “Tropical Cyclone Karl”, guiding the user towards the cluster
robustness information required for subsequent ensemble analysis.

Index Terms—Uncertainty visualization, ensemble visualization, clustering, meteorology

1 INTRODUCTION

In operational weather forecasting and atmospheric research, cluster
analysis of ensemble weather prediction data is frequently used as a tool
to analyze forecast uncertainty. Applied to scalar fields of the members
of an ensemble forecast, cluster analysis groups together members with
similar spatio-temporal development not known in advance [70]. One
core objective in such analyses is the determination of representative
weather scenarios, i.e., the trends, within a given region of the atmo-
sphere. This region can be selected based on its geographic location
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(e.g., the operationally computed clustering by the European Centre for
Medium-Range Weather Forecasts (ECMWF) uses a European-Atlantic
region [13]), or such that it contains a specific weather event of interest,
e.g., a trough or a cyclone. Analysis of the computed clusters enables
scientists and operational forecasters to distinguish between likely (i.e.,
forecast by many ensemble members), and unlikely trends. At the
same time, by restricting to few representative scenarios, a subsequent
analysis can often be sped up significantly.

Before using the cluster information as a basis for further analyses,
however, an important question to be resolved is how much confidence
can be put into the clustering result. Relying on a determined clustering
introduces two major sources of uncertainty: a) The clustering cannot
well identify the major trends in the ensemble. A possible cause can be
that a region may have been chosen such that the atmospheric features of
interest are not entirely covered by this region in all ensemble members,
while at the same time features not of interest may be covered that
consequently affect the clustering result. Another cause can be that the
chosen number of clusters is not sufficient to capture all major trends.
This raises the question (Q1) how much “value” is contained in the
identified clusters in terms of the similarity of members within a cluster
and the distinctness between the different identified clusters. b) The
clustering may be sensitive to small changes in the selected region. This
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requires to answer the question (Q2) how robust (i.e., representative)
the clustering is with respect to changes of the region, i.e., how strongly
do clusters vary when the region is changed. Without resolving these
questions, any analysis based upon the obtained clustering cannot be
assumed reliable. In the context of ensemble forecasts, however, we
are not aware of studies that address these questions in a scientifically
rigorous way. Often a merely tacit assumption is made that a “useful”
clustering result has been computed and that it is safe to interpret
subsequent analyses based on this clustering.

If it is found that a clustering is not robust, the domain expert needs
to analyze the variation to understand its cause and to judge its “severe-
ness” to find out if the clustering still contains useful information. By
considering cluster membership of single members over multiple clus-
tering results obtained from small changes of the region and identifying
members with similar membership variations, sub-clusters with similar
behavior as well as robust trends can be identified. The “severeness” of
the cluster assignment instability can be judged by investigating its ef-
fect on per-cluster quantities (e.g., the cluster mean) that are interpreted
in a subsequent analysis. Finally, the domain expert can interpret the
obtained confidence information by using additional domain knowl-
edge concerning the physical models and processes represented by the
ensemble, and investigate the causes of observed cluster variations,
inter-cluster relations, and member similarities and variations.

1.1 Contribution
We introduce novel visual analytics solutions for evaluating the con-
fidence of an obtained clustering result; an overview of the proposed
workflow is provided in Sect. 3 and Fig. 2. An artificial data set with
known characteristics is used to motivate and introduce the visual
encodings and interaction techniques we propose with regard to the
requirements of the application task (Sect. 4). We apply our solutions
to analyze a real-world ensemble forecast that predicted “Tropical Cy-
clone Karl” in 2016, and demonstrate that the visualization content we
provide generates new and important insights (Sect. 5).

To resolve Q1, we provide a combination of abstract cluster-centric
views with a linked map (Fig. 2c). The displays enable comparative
visualization of the similarity of ensemble members within an identified
cluster and the similarity of the members in the unclustered ensemble.
In particular, we display where geographically the standard deviation
(STDEV) of the clustered ensemble is reduced compared to the STDEV
of the unclustered ensemble.

To resolve Q2 and the follow-up robustness analysis, we provide a
set of interactive and linked cluster-centric, member-centric, and spatial
views (Fig. 2d). A “cluster-centric robustness display” (CRD) visual-
izes changes of the clusters relative to a reference clustering (e.g., the
clustering result for the initially chosen region). This view shows at a
glance whether a clustering is stable or whether it changes significantly
when the region is changed. Furthermore, the CRD communicates how
many members change their cluster membership, and into which clus-
ters these members change. The CRD is linked to a “member-centric
robustness display” (MRD). It uses circular pie-chart diagrams for each
ensemble member, arranged in a 2D coordinate system spanned by the
first two major principal components (PCs) of the ensemble (Fig. 1a).
We focus in particular on the requirement to visualize the cluster mem-
bership variation for each ensemble member when the clustering region
is changed, so that the frequency of membership changes per member
can quickly be perceived. The user can pick a member in the MRD
to let the interface generate a matrix plot for this member in which
the changes in cluster membership for each chosen region are shown.
Simultaneously, matrix plots of all members having a similar cluster
membership variation are displayed. This provides a very intuitive
mechanism to instantly find sub-clusters of ensemble members that
behave in a similar way.

Finally, we propose a cluster-centric view combining a variation of
contour boxplots [68] and contour variability plots [15] with an overlaid
stipple pattern. These “contour probability plots” (CPPs) (Fig. 1b)
indicate the point-wise probability that within a selected cluster an
isovalue is exceeded; stippling is used as a distinct visual channel to
emphasize variations due to changes in the clustered region.

2 RELATED WORK

Clustering analysis is a well established statistical tool to identify
groups of samples in a dataset that are similar with respect to a similarity
measure. General introductions to data clustering are provided in the
books by, e.g., Everitt et al. [12] and Gan and Ma [21]. For the presented
work, related topics of particular relevance are the application of cluster-
based analysis in meteorology, cluster-based ensemble visualization,
and visual methods to judge the robustness of clustering results.

2.1 Cluster-based analysis in meteorology
A general overview of common clustering techniques and their appli-
cation was provided by Wilks [70], a number of cluster visualization
techniques for clustered climate data (no ensembles) were discussed
by Nocke et al. [45]. In weather forecasting, clustering is commonly
used in a static, pre-defined way. A representative example is the
operational clustering of ensemble members at ECMWF [13], where
forecast scalar fields of geopotential height are clustered in three differ-
ent time windows for a static data region covering the ECMWF member
states. Results are visualized in static matrix plots containing small
forecast maps of the cluster representatives [13]. In meteorological
research, ensemble cluster analysis has been used to improve under-
standing of various aspects of atmospheric predictability. For example,
weather-regime related predictability was studied by using k-means
clustering of jet wind profiles and comparing identified forecast regime
transitions to observed climatological probability [17]. Clustering of
leading PCs was used to study forecast scenarios in relation to tropical
cyclones [1, 22, 30] and a heat wave that occurred in 2010 [53].

Clustering results were sometimes displayed by color-coded points
in 2D PC plots [22, 53]. Different forecast scenarios were illustrated
by cluster mean [1, 22] or by representative cluster members [30, 53].
Harr et al. [22] provided subjective criteria for the optimal number
of clusters based on a discussion of the underlying meteorological
charts. The sensitivity of the analysis to the number of PCs used in
clustering is briefly discussed based on (subjective) changes in the
cluster mean. Sensitivities with respect to the choice of the analysis
domain are not discussed. In case of bifurcation-type behavior, clusters
are often defined ad-hoc, for example as “good” and “bad” forecasts
(e.g., [41,66]). Statistically significant differences in the cluster mean of
meteorological variables are sought to explain the forecast bifurcation.

2.2 Cluster-based ensemble visualization
With respect to visualization research, our approach is related to tech-
niques for ensemble visualization – a sub-field of uncertainty visualiza-
tion, for which a number of surveys exist [3, 40, 48, 52]. Uncertainty
in scientific data is often estimated by means of ensembles – a set
of representative realizations of a simulated phenomenon, obtained
from simulations with different initial conditions and/or physical mod-
els. Such data is typically spatiotemporal, multivariate, and multival-
ued [29, 37], making the analysis and visualization processes difficult.
Several methods have been proposed to reduce this complexity, e.g.,
by visualizing statistical summaries including mean and STDEV with
color maps, contours, surface deformation, opacity, and variations of
boxplots [11, 25, 37, 49, 51].

Clustering is another approach to reduce the complexity of ensemble
data. Bordoloi et al. [4] proposed realization- and distribution-based
hierarchical clustering to reduce the amount of information to be vi-
sualized. Bruckner and Möller [6] used density-based clustering to
identify similar volumetric time sequences in physically-based ensem-
ble simulations. Beham et al. [2] used hierarchical clustering to group
similar geometric shapes. Reh et al. [58] clustered similar pores in
industrial XCT data into mean objects (Mobjects) and then visualized
the per-voxel probability of belonging to an Mobject using transfer
functions. Hummel et al. [26] clustered using Minimum Spanning
Trees for trend analysis, to compare the material transport in flow en-
sembles. Other techniques have used clustering to group iso-contours
in scalar fields [8, 64] or streamlines in flow fields [47]. Bruckner and
Möller [5] proposed the use of signed distance functions to analyze
different iso-contours of the same scalar field, Rathi et al. [55] used
such functions for shape analysis, and Ferstl et al. [14,15] demonstrated
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Fig. 2: Method overview. (a) Input is an ensemble of 2D scalar fields, which is (b) first inspected using statistical summaries and spaghetti plots.
The user selects the region to be clustered and (c) uses different visualizations to interactively select a suitable number of clusters and of principal
components to be used for clustering. Finally, (d) by means of linked views in which specific clusters and ensemble members can be selected, the
value in a specific clustering and the robustness of clusters with respect to changes in the input region are analyzed.

the use of clustering to find visual abstractions for conveying the major
trends in ensembles of trajectories and iso-contours. Recently, Ferstl
et al. [16] proposed the use of clustering to detect similarities in the
temporal variation of ensemble members.

2.3 Quality and robustness of clustering results

Common techniques to judge the quality and robustness of clustering
results are surveyed in the book by Everitt et al. [12, Ch. 9]. Graphical
depictions include banner plots, silhouette plots, and stripes plots (the
latter are also used in our workflow). Garcı́a-Escudero et al. [20] review
robust clustering methods.

For the visualization of single clusterings, a number of standard
techniques are known, including dendrograms to show hierarchical
clusterings, heatmaps and clustergrams [61, 69], 2D principal com-
ponent plots [44], and graph-based visualization techniques. Most
commonly, clusters are visualized by giving each data point a location
in a 2D map, so that similar data points are grouped together. For
high-dimensional data, dimensional reduction is typically used to find
appropriate locations [7, 24, 39]. Another option is to display clusters
by means of parallel coordinates [23, 27]; a number of techniques have
been proposed to extend parallel coordinates towards the visualiza-
tion of clusters [19, 38, 50, 72], including the combination with heat
maps [46] and radial tree displays [2, 32]. Lex et al. [36] introduce the
Caleydo Matchmaker technique to visualize clusterings of subgroups
of data using special parallel coordinate plots. This framework can also
be used to compare different clustering strategies.

Only few approaches, to the best of our knowledge, combine the
output of several clusterings into one; examples include the “cluster en-
sembles” by Strehl and Ghosh [62]. They applied different methods to
obtain different clustering outcomes, and generated a single clustering
from all outcomes. The probability accumulation by Wang et al. [67]
aggregated multiple clustering outputs into a new one.

3 WORKFLOW OVERVIEW

Our proposed visual analytics solution enables meteorologists to in-
teractively analyze the confidence in clustering results obtained from
a selected spatial region. Fig. 2 shows an overview of the proposed
workflow. Input (Fig. 2a) is a set of scalar forecast fields representing
physical quantities including air temperature and potential vorticity (PV,
a quantity computed from vorticity and stratification of an air mass; fre-
quently employed to analyze the dynamics of weather systems). In this
work, we consider scalar field data from the ECMWF Ensemble Predic-
tion System (ENS; e.g., [35]). The ensemble comprises 50 perturbed
members and an unperturbed control forecast (that is started from the
“best” initial conditions). Past forecast data is available from the TIGGE
archive [63] on a regular longitude–latitude grid in the horizontal; in
the vertical, data is available on levels of constant pressure.

The user first inspects the data by means of non-cluster-based visual-
izations of the ensemble data (Fig. 2b). We provide maps of ensemble
mean and STDEV, and spaghetti plots of relevant features including
isocontours. This initial inspection is used to select the data region
over which the clustering should be performed. Additionally, the user
defines a range of numbers of clusters that are subsequently evaluated.

Following common practice in meteorology (cf. the operational
ECMWF clustering [13] and research studies [1, 22]), our meteorologi-
cal collaborators have explicitly requested the application of principal
component analysis (PCA; e.g., [28]) to reduce input data dimensional-
ity and k-means clustering. For the user-selected parameters, different
types of diagrams facilitate determination of the optimal number of clus-
ters suitable for separating major trends in the data (Fig. 2c). Cluster
split-merge diagrams (CSMD) and “elbow plots” [65] indicate the num-
ber of clusters beyond which no significant gain in the cluster-specific
objective function is achieved. “Stripes plots” [34] and displays of the
reduction of STDEV achieved by a clustering convey how well clusters
are separated and how well similar members have been identified (to
resolve Q1).

For the determined number of clusters and the corresponding clus-
tering (the ”reference clustering“), a further CSMD visualizes changes
in the clusters relative to the reference clustering when the number
of used principal components (PCs) is changed. By default, as many
PCs are used as to explain 80% of the variance of the data (default
at ECMWF [13]; yielding on the order of 5 to 15 PCs), yet to judge
robustness with respect to the number of PCs, the user is concerned
with finding the smallest number of PCs that explain sufficient variance
such that the clustering result does not change if more PCs are added.

Finally, with the selected region, number of clusters, and number of
PCs, linked cluster- and member-centric views facilitate investigation
of Q2, the robustness of the clustering with respect to changes in the
selected region (Fig. 2d). If the clustering is found to be not robust,
the user can focus on a particular cluster or ensemble member and
visually analyze variation in cluster composition and membership to
investigate the questions of: (Q3a) Which clusters are robust and which
are not robust, and under which region changes are ensemble members
changing cluster assignment? (Q3b) Which ensemble members are
robust and which are changing ensemble assignment, and are sub-
groups of ensemble members changing in a similar way? (Q4) What are
the effects of these changes on per-cluster quantities that are interpreted
in a subsequent analysis?

4 VISUALIZATION TECHNIQUES

We motivate and introduce details of our interactive visual analysis
workflow using a synthetic dataset that illustrates data characteristics
that our users need to be able to analyze. This dataset with known
clustering allows, e.g., to intentionally perform robust and non-robust



(a)

(b) (c)

Fig. 3: The synthetic dataset. (a) Each member contains two dipoles
(hedged) and in between each one a monopole. The polarities for all
4 poles are randomly chosen for each member. Neither (b) ensemble
mean (contour lines) and STDEV of geopotential height in meters
(color) nor (c) spaghetti plot of the thick black contour line in (b)
indicate the dataset’s features or a suitable number of clusters. The
green box is chosen as clustering region.

parameter changes in order to demonstrate correct identification by our
methods.

4.1 Synthetic dataset as guiding example
The synthetic 2D dataset was generated with the same data modality as
the real-world ECMWF ENS forecasts, comprising 51 members. We
use a horizontal grid-spacing of 1° in longitude and latitude. Fig. 3a
illustrates the patterns contained in the dataset. The individual ensemble
members contain a wave-like pattern (the same in all members) that
mimics the wave-patterns typically encountered in atmospheric data.
In each member, noise is added to slightly distort the waves.

Clustering information is added by constructing features that
uniquely group the members but are not discernible in plots of en-
semble mean, STDEV or in spaghetti plots. Four independent features
–two dipoles and two monopoles– are added to each member with a
randomized polarity for each feature and member. The dipole located
in the western part adds a stronger disturbance to the background wave
than the eastern dipole. It is hence expected to dominate the cluster-
ing result when covered by the clustering domain. The uncorrelated
monopoles are centered between the northern and southern parts of
each dipole to further disturb the field so that an increased number of
clusters can be identified.

In total, 16 different cases are generated, randomly distributed over
the 51 members. However, due to the dominance of the western dipole
and the high degree of non-correlation between the features, fewer
clusters are expected to be detected by clustering. For instance, if both
dipoles are covered by the cluster region, it is unlikely that a clustering
result can separate both signals.

Figs. 3b, c show ensemble mean and STDEV, as well as a spaghetti
plot for the initial data inspection. In the ensemble mean field, the
features average out; the ensemble STDEV does not separate distinct
features (Fig. 3b). The spaghetti plot of a contour line shows high un-
certainty but gives no indication for the existence or number of clusters
(Fig. 3c). Based on these plots, a user may choose the cluster region
shown in Fig. 3b, covering the region containing high uncertainty.

4.2 Visualizing clustering “value”
Fig. 4 shows the interactive linked views we provide to determine the
most suitable number of clusters by judging the value of the computed
clusterings for different numbers (Q1). Here it is important that quanti-
tative (about the number of members per cluster) and qualitative (about
the spread of the members per cluster) information is provided, so
that the domain expert can analyze which ensemble members belong
robustly to a certain trend, and how representative the trend indicated
by a certain cluster is. This information allows judging which clusters
can be relied upon in the following meteorological application (Q4).

(a)

(c)

(b)

(d) (e)

Fig. 4: Visualizations to judge clustering value for the synthetic case.
(a) Cluster split-merge diagram (CSMD) for increasing number of clus-
ters. (b) Elbow plot. (c) Stripes plot showing separation of clusters
for the clustering selected in (a) (highlighted by green bar). (d) Reduc-
tion (blue) in fraction of STDEV (red, in meters) for four clusters is
significantly improved compared to (e) three clusters.

An abstract CSMD (Fig. 4a) shows how clusters split as the number
of clusters is increased and depicts where members change into different
clusters. Each cluster is visualized by a vertical bar with constant width
and unique color. A bar’s height represents the number of ensemble
members contained in the corresponding cluster. Connecting bands
between bars in subsequent clusterings indicate the number of ensemble
members that stay in the same cluster or leave a cluster and merge
into a different one. The view is augmented by an elbow plot (cf.
Thorndike [65]), a simple plot of how the objective function minimized
by the clustering algorithm decreases as the number of clusters is
increased (Fig. 4b). The elbow plot indicates a suitable number of
clusters; the point of the strongest “bend” in the curve can be interpreted
as a trade-off between a small number of clusters and a small objective
function. Unfortunately, the shape of the curves do not always allow
this bend to be unambiguously identified.

For the synthetic use case (Fig. 4), we compute clusterings using
k = 2, . . . ,10 clusters. Evaluation of the elbow plot indicates 4 clusters.
The CSMD shows that for 5 clusters only the first cluster is split and
all other clusters stay the same. For even more than 5 clusters we judge
the further decrease of the objective function to be insufficient. So, we
choose 4 clusters and keep in mind that the first cluster could be split
into two if it does not show a clear trend.

To further evaluate a specific clustering, the user can select this
clustering, i.e., by moving the green vertical line in the split-merge-
diagram to this clustering. Upon movement, a linked stripes plot
(Fig. 4c) is updated and displays specific information for this clustering.
The stripes plot provides an abstract view on cluster separation; it
has been proposed by Leisch [34] and shows the distance of each
member to its cluster center and the distance to its second closest
cluster center. If those two distances differ only little, the clusters are
poorly separated, indicating that a different number of clusters may
yield better results. The stripes plot, which notably does not provide
any robustness information, indicates good separation for all numbers
of clusters in the synthetic case, so in this case, it does not argue against
any. For real world cases, clusters are usually less separated (e.g.,
clusters 1 and 5, Fig. 13). Linked spatial map views (Fig. 4d, e) provide
further information on spatial characteristics of a selected clustering,
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Fig. 5: Visualizations of cluster robustness. (a) Rand index and (b)
CSMD visualizing the robustness with respect to changes in the number
of principal components (PCs). For the synthetic case, using more than
4 PCs does not lead to further changes. (c) Rand matrix shows high
sensitivity (red) to translations of the region to the east.

i.e., about the spread of the members in one cluster. A central quantity
in our workflow is the reduction of STDEV per model grid-point [60],
providing direct information about the average compactness of a cluster
(Fig. 4d, e). STDEV reduction represents the ratio of STDEV within
each cluster to the STDEV of the entire ensemble, thereby summarizing
how much the identified clustering has grouped similar members into
clusters. It can be computed for individual clusters and for the set of all
clusters; in our workflow we display the total reduction of all clusters.
STDEV reduction is computed as

rk = 1−
�

fk(S )

f1(S )
(1)

where fk is the same as the k-means objective function

fk(S ) =
k

∑
i=1

∑
x∈Si

�x−µi�2, {S1, . . . ,Sk} ∈ S , (2)

which is the sum of the intra-cluster sums of the squared errors. Si
denotes the set of all members in cluster i, x a member in cluster Si, µi
the mean of cluster Si. S is the set of all disjoint partitions of members
{1, . . . ,n} into k clusters. The k-means algorithm minimizes Eq. 2
globally, it hence makes sense to use this measure for per-grid-point
calculations as well. However, other measures exist which can be used
for different clustering algorithms [31].

For the synthetic use case, STDEV reduction confirms four clusters
to be appropriate (Fig. 4d); it is significantly improved compared to
three clusters (Fig. 4e) but only marginally worse compared to five
clusters (not shown).

4.3 Visualizing clustering robustness
Figs. 5 and 6 show the visualizations we provide to judge the robustness
of the obtained clustering (Q2). In a first step, for the determined
number of clusters and the corresponding clustering (the reference
clustering), a plot of the Rand index [54] and a CSMD (Fig. 5a, b)
are used to visualize changes in the clusters relative to the reference
clustering when the number of used PCs is changed. The Rand index
is a central summary measure to compare clusterings with differing
input parameters; it measures agreement and disagreement of all pairs
of members in two partitions. An index of 1 implies identical, an index
of 0 maximally distinct clusterings. An index of 0.5 already indicates
large changes; we clamp the transfer function at this value. Wu et
al. [71] compared external clustering validity measures for k-means
and recommended the use of the Rand index among others. For the
synthetic case, 4 PCs are sufficient since more do not lead to changes
in the cluster assignment anymore.

Next, the user can analyze the robustness of the identified clusters
(Q3a, cluster-centric visualization), the robustness of the per-member
assignment to specific clusters (Q3b, member-centric visualization),
and the robustness of statistical quantities (including spatial fields, Q4)

clusterings from sensitivity analysis linearized using Rand index.

Fig. 6: Cluster-centric robustness display (CRD). The size of the bars
represents cluster size, colors represent membership in reference clus-
tering (black background bar). In clusterings (+,++), the blue and green
clusters exchange members; in clusterings (+++), cluster 4 changes
almost completely. Turquoise background bar corresponds to turquoise
clustering in Fig. 5c.

derived per-cluster to summarize cluster statistics. The latter includes
robustness of cluster mean and STDEV, and the robustness of trend
plots including CPPs.

For the synthetic case we evaluate the robustness of the clustering
result with respect to domain translations up to 8◦ in each cardinal
direction, using a 9 × 9 grid of 2◦ translations. Fig. 5c shows an
example of the Rand index color-mapped to a 2D matrix representing
these horizontal and vertical translations. The matrix highlights those
region translations which strongly affect the clustering result (Q3a).
The Rand matrix shows that for small perturbations the clustering is
very robust; in fact, it hardly changes at all. For larger translations
towards the east, however, the clustering changes significantly. This
change could be caused by outliers, or it can indicate a new feature
not captured in the initially selected region that starts to dominate. In
the following, we introduce an additional type of diagram to further
analyze the changes in clustering results due to region translations.

4.3.1 Cluster-centric robustness display

To provide to the user an overview of cluster changes for different
region translations relative to the reference clustering (Q3a), we provide
a cluster-centric robustness display (CRD; Fig. 6). The CRD is linked
to the Rand matrix, to let the user select a clustering by picking on
the corresponding matrix entry, and highlighting the corresponding
information in the CRD. The CRD depicts on the horizontal axis the
different clusterings for all possible region translations. Cluster sizes
are indicated by the height of the bars, the colors show which proportion
of which cluster of the reference clustering is contained in the selected
clustering. To reduce overlap, the clusters are centered and the total
space used by the bars in vertical direction can be adjusted.

To fit two-dimensional parameter changes into this view, a simple
linearization of the clustering, or alternatively, an ordering minimizing
the number of cluster membership changes, can be selected. To com-
pute this ordering, all permutations of all clusterings are tested, which
works well for up to 10 clusters. For more clusters, the Kuhn-Munkres
algorithm [33] can be used, for which efficient implementations exist
with a runtime complexity of O(n3). When reducing the horizontal
size of the bars, connections between them become visible which show
where and how many members changed from one cluster to another
(e.g., in Fig. 5b). Further, any realization can be selected in the CRD
and all connected views automatically update using the selected real-
ization. In Fig. 6, it can be seen that many translations do not affect the
clustering at all, followed by some only affecting the orange and blue
clusters. For extreme translations to the east, completely new cluster
compositions arise, indicating that a new feature is starting to dominate.



Fig. 7: The member-centric robustness display (MRD) shows a pie-
chart for each ensemble member, each encoding robustness information.
Stable and unstable members can be identified by means of cluster
membership information encoded in the pie-chart. Matrix pop-ups
show cluster membership changes with respect to region translations,
arranged as in Fig. 5c.

(a) (b) (c)

Fig. 8: Possible glyph designs for the MRD. (a) Spherical arrangement
of membership information. (b) Membership information represented
by a pie-chart, with reference cluster information surrounding the chart.
(c) As (b) but reference cluster information in the chart center.

4.3.2 Member-centric robustness display

A further important task is the analysis of the changes in cluster mem-
bership of the ensemble members (Q3b). Such an analysis, in particular,
has the purpose to identify members that remain together in the same
cluster when region translations are performed or the number of clusters
or PCs are changed. To visualize this member-centric information, we
propose a member-centric robustness display (MRD) using a separate
glyph for every member (see Fig. 7 for the synthetic use case).

In the design of the MRD the following criteria were considered:
a) Each glyph needs to show simultaneously different types of infor-
mation, i.e., the cluster of the member in the reference clustering, the
member’s unique ID, the frequency of changes in cluster membership
for the performed region translations, and a detailed view of the relation
between cluster membership and region translations. b) A large number
of glyphs, i.e., one for each ensemble member, needs to be shown at
once to enable a comparative study of members. Due to b), our first
design decision was to separate the visual encoding of the latter type
of information in a) from the others, to avoid visual overloading and
clutter. Our second design decision was with respect to the glyphs
shape and structure. In Fig. 8, we show possible circular (to mini-
mize coverage) glyph designs, of which the third one is the design we
propose.

In our design, each member is represented by an inner circle and
a surrounding pie-chart. The color of the inner circle indicates the
reference cluster of the member, and the member ID is shown in the
inner circle. The pie-chart shows how often member i was in cluster j,
with the frequency sorted decreasingly –but always starting with the
reference cluster– and displayed counter-clockwise. If the member is
the cluster representative in the reference clustering, a dashed border
around the outer circle is added. When looking at the two alternative
designs, one can clearly observe the following: In design 8a, where
the pie chart is replaced by circular rings depicting the membership
variations, the inner circle and rings might become so small and thin
that the important information cannot be perceived clearly any more. In

(a) (b)

(c)

Fig. 9: MRD layouts based on (a) the first two PCs, (b) as (a) but
squeezed and without overlap, (c) a force directed graph layout.

design 8b, the member ID obscures some of the pie-slices, and the outer
ring encoding the reference cluster can become too thin to be clearly
observable (under the constraint that the glyph cannot be arbitrarily
large and the pie-cart needs sufficient space).

A click on a pie-chart opens a matrix plot giving a detailed view of
the member-specific relation between cluster membership and region
translations. Color in the displayed matrix indicates the member’s clus-
ter assignment in all clusterings. Double-clicking on a pie-chart opens
matrix plots for all members with similar cluster change characteristics,
which can immediately reveal similar patterns across multiple members.
The pop-ups are placed around the convex hull of the already drawn pie
charts to avoid occlusions. In case the closest pop-up position leads to
overlap with another pop-up, it is translated to the next closest position
without producing overlap.

For the placement of pie-charts on the 2D canvas, we use the mem-
bers’s locations in the 2D coordinate system spanned by the 1st and
2nd PCs (Fig. 9a). Despite more PCs being used for the clustering
in most cases, the first two components provide the most separation
between members and, thus, yield least overlap when glyphs are drawn.
Nevertheless, overlaps can occur, requiring strategies to avoid them.

A force-directed graph layout as proposed by Fruchtermann and
Reingold [18] can be used to enforce that members of the same clusters
are placed close to each other. Here, the members are initially placed
on a circle, then ”pulled” together by using their clustering distance
measure as a force. In the resulting plot, the members are placed
very homogeneously in the 2D image (Fig. 9c). On the downside, the
visual separation of the clusters which is present in Fig. 9a gets lost.
Due to this, we perform a different placement strategy, which tries to
resolve the overlaps that are introduced by the initial approach. First,
the distance between the two pairwise closest members is determined,
and these two members are then considered being processed. All
remaining members are successively moved in the direction of the
processed members until their distance to them is approximately the
same as the minimum distance. After all glyphs are shrunk together,
the domain is rescaled to fit the available space. The result is shown
in Fig. 9b. In the MRD in Fig. 7, there are multiple entirely stable
members in the blue and green cluster (e.g., member 0), indicating
stable sub-clusters. When picking member 35, the pop-ups display 4
members also changing only for extreme eastward translations. Those
4 members are always clustered together forming a stable sub-scenario.

4.3.3 Robustness of per-cluster summary statistics
Finally, we provide information on the robustness of per-cluster sum-
mary statistics, including plots of major-trends and cluster mean and
STDEV. To visualize major trends, variability plots [15] and contour
boxplots [68] are well suited, however, since they do not show point-



(a) (b) (c)

Fig. 10: We propose (a) “contour probability plots” (CPPs), lobes enclosed by iso-contours of constant probability of a set of members exceeding
the threshold value for which the lobe is shown. The lobes have similar shape as (b) contour boxplots [68] (50% inner lobe) and (c) variability
plots [15] (1.5 STDEV) but are more straightforward to interpret when overlaid with robustness stippling.

wise quantitative information that can be overlaid by clustering ro-
bustness information, we propose a variation, which we call “contour
probability plots” (CPP). A CPP depicts lobes which indicate the prob-
ability that a contour line is locally contained in the lobe. CPPs are
generated by grid-point-wise computation of the probability that the
considered isocontour threshold is exceeded in the ensemble. Isocon-
tours of this probability field are then used to construct the lobes, e.g.,
the 25% and 75% isocontours enclose the 50% band. The example
in Fig. 10a displays lobes indicating bands for the inner 50%, and
outer 15% and 10% on each side. When CPPs for multiple clusters
are overlaid, a reduced set of lobes is beneficial to avoid cluttering.
A distinct advantage of CPPs is that the sensitivity, calculated as the
STDEV of this probability over different clusterings, can be interpreted
as the average translation of the contour plot borders. This allows the
user to see right away how the contours of a cluster might change when
using a different clustering region.

To visualize the robustness of a cluster, i.e., its variation in terms of
membership changes, a distinct visual channel that can be combined
with CPPs is required. Retchless and Brewer [59] investigated different
types of overlays to depict uncertainty in climate variables. Following
their study, we use stippling since it can be clearly distinguished from
the colored underlay and does not interfere with other communication
channels. Our rendering technique follows the texture-based approach
presented by Maskey and Newman [42].

Fig. 1b shows the sensitivity of a CPP, Fig. 11 that of STDEV
reduction plots via stippling. In Fig. 1b, the stippling shows a large
area where the STDEV of the probability is on the order of 0.1–0.2,
indicating, e.g., that the lobes could well extend into the white region if
the selected region is changed. The displayed cluster characteristics are
hence very uncertain. In Fig. 11, a high uncertainty is visible throughout
the initially clustered area, indicating that for translated domains the
geographical areas in which variance is reduced by clustering also
change. For instance, when considering a clustering region translated
to the east (Fig. 11b), we see a very different area being clustered
“well”. Here, the two eastward dipole features were detected. The
contour probability plots clearly confirm this detection of the distinct
features by different cluster regions (Fig. 11c and d).

5 RESULTS

All visualization techniques, as well as PCA and clustering methods,
have been implemented in the open-source meteorological ensemble
visualization tool “Met.3D” [43, 57]. Met.3D provides a suitable infras-
tructure that already included an ensemble data processing pipeline and
visualization functionality for meteorological maps. Stippling function-
ality, as well as all abstract and linked charts presented in this article,
have been added in the context of this work. Clustering is implemented
using the library “Cluster 3.0” [9].

To compensate for the denser geometric grid-point spacing towards
the poles in the regular longitude–latitude grid, each grid-point needs
to be weighted by the size of its grid-cell. We follow Ferranti and
Corti [13] and weigh each grid point with the cosine of its latitude
prior to applying PCA to the data. Clustering and cluster matching for
different realizations require most computing resources; on an Intel®
Xeon CPU E5-1650 v2 with 6 cores @ 3.50GHz, each cluster run took
from a few seconds up to two minutes depending on the data. Cluster
runs are executed in parallel, for the presented case study clustering

(a) (b)

(c) (d)

Fig. 11: (a) Reduction (blue) in fraction of ensemble STDEV (red, in
meters) for the synthetic case, overlaid with robustness due to region
translations (stippling shows STDEV of reduction). The intense stip-
pling indicates that region translations can cause clusterings to reduce
ensemble STDEV in different regions. (b) STDEV reduction caused
by a region shifted eastward. (c, d) CPPs 85% bands of the respective
regions indicate that different features dominated the clusterings.

and cluster matching required on the order of 20 minutes. Once the
data are clustered, visualization performance is interactive.

5.1 Tropical Cyclone Karl
To demonstrate the application and value of our method, we discuss
a real-world forecast issued during the North Atlantic Waveguide and
Downstream Impact Experiment (NAWDEX [10]), a field campaign in
which three of the authors have been involved. Tropical Cyclone Karl
crossed the North Atlantic in late September 2016 and was associated
with heavy precipitation in Norway. A number of days prior to mea-
surement flights it posed significant difficulties in forecasting due to
high uncertainty in the forecasts. A major objective of the data analysis
activities of the campaign is an investigation of ensemble behavior and
determination of the physical processes that caused the uncertainty.

We consider the ECMWF ENS forecast from 00:00 UTC 22 Septem-
ber 2016 (data are at 1° horizontal resolution, on pressure levels in the
vertical and at 6-hourly time steps) and focus on the development of
Karl in subsequent days. In this ensemble, very different developments
for Karl were predicted. Of critical interest for the analysis of the
situation is the interplay between upper-level PV (of particular interest
is the 2-PV-units (PVU) isosurface used to represent the tropopause, the
boundary between the troposphere and stratosphere), the upper-level jet
stream (strong winds in the vicinity of the tropopause), lower-level tem-
perature and moisture fields, and Warm Conveyor Belts (airstreams that
lift warm and moist air from near the surface to the upper troposphere;
c.f. [56]). In the analysis presented here, we –the meteorological do-
main experts in the author team– are interested in whether we can
determine distinct scenarios (i.e., clusters) in the upper-level PV field to
investigate the relationship between PV and lower-level developments,
e.g., the low-level potential temperature field.



(a) (c) (e)
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Fig. 12: Case study. A clustering region is chosen based on (a) ensemble mean (black contours) and standard deviation (color in PVU) of potential
vorticity at 250 hPa, and (b) a spaghetti plot of the 2-PVU isocontour. Shown is the ECMWF ENS forecast from 00:00 UTC 22 September 2016,
valid at 00:00 UTC 26 September 2016. Thick blue contour shows ground-truth observation; red, green and yellow boxes represent clustering
regions. (c) STDEV reduction (blue) when clustering the red region. There is almost no STDEV reduction in the yellow region. (d) Clustering
the yellow region leads to only little STDEV reduction. (e) CPP (85% bands) of the 2-PVU isocontour showing clusters of the yellow clustering
region. No particularly different scenarios have been identified. (f) When clustering the green region, distinct scenarios for the ridge are identified.

(a)

(b)

Fig. 13: (a) CSMD and (b) stripes plot (for five clusters) showing weak
separation of clusters 1 and 5 (+). The CSMD shows the creation of a
robust cluster 5 when increasing the number of clusters from four to
five.

(a)

(b)

(c)

Fig. 14: Case study. (a) Rand index and (b) CSMD for changes in the
number of PCs; more than 11 PCs do not change the result. (c) Rand
matrix shows high sensitivity to translations of the domain in particular
at the northern and southern edges.

For initial data inspection (Fig. 2b), we consider PV at an elevation
of 250 hPa at 00:00 UTC 26 September 2016 (96 hours lead time).
Fig. 12a shows the ensemble mean PV field, the ground-truth 2-PVU
isocontour that was observed later, and the ensemble STDEV computed
from all members. The corresponding spaghetti plot of the 2-PVU line
is shown in Fig. 12b. Over the North Atlantic, the STDEV field shows
high uncertainty in the vicinity and to the north of the tropopause. We
are in particular interested in the formation of the ridge (the northward
undulation of the 2-PVU line) to the south of Iceland and Greenland
and the local tropopause depression over Southern Greenland (which is
particularly hard to discern in Fig. 12b).

Based on Fig. 12a and b, we choose the large red clustering region
shown in Fig. 12b, encompassing both features. To determine the num-

ber of clusters, a rather smooth curve of the elbow plot does not provide
particularly strong visual guidance (not shown), we hence investigate
the difference between the clusterings containing four, five, and six
clusters in the corresponding CSMD and stripes plots (Fig. 13). At the
transition from four to five clusters, a rather robust and substantially
sized cluster 5 (light green) is formed. With six clusters, only a very
small new cluster is formed (Fig. 13a). While the stripes plot shows
that clusters 1 and 5 have only limited separation, STDEV reduction
is further improved with five clusters compared to four clusters in the
region of meteorological interest, i.e., along the tropopause in which
most variability occurred (only shown for the five-cluster realization in
Fig. 12c). The optimal number of PCs is found to be 11 (Fig. 14).

Interestingly, while the STDEV is reduced along the ridge, there is
virtually no reduction in the vicinity of the local tropopause depression
(Fig. 12c). We conclude that the ridge feature dominates the clustering
but re-configure our method to use two smaller regions centered on the
ridge (green region) and on the local depression (yellow region) for
confirmation and to determine if we can obtain a useful clustering of
the depression region. Both regions cluster best with five clusters. The
green region yields slightly better separated clusters for the ridge, the
STDEV reduction largely resembles that of the red region (not shown).
Clustering the yellow region, however, still only leads to marginal
STDEV reduction even though it is now centered on the depression
(Fig. 12d). The stripes plot confirms that identified clusters are not well
separated (not shown). Similarly, the CPP displaying the scenarios of
the 2-PVU line shows neither well separated trends in the depression
region nor in the ridge region (Fig. 12e). We conclude that data in this
region cannot be well clustered.

We focus on the clustering obtained from the green region. Fig. 12f
shows the corresponding CPP, showing the 2-PVU trends identified by
this clustering. Cluster 2 (orange) most closely matches the observation;
however, none of the cluster means represents the observation very well.
The scenarios differ with respect to amplitude and orientation of the
ridge. While the strongest ridge is represented by cluster 2 (orange),
cluster 3 (blue) represents the cluster with the weakest ridge. In terms of
ridge orientation the largest difference is found between cluster 4 (pink)
and 3 (blue). Clusters 5 (light green) and 1 (dark green) are very similar
to each other. This is confirmed by the CSMD and stripes plot, they are
not strongly separated and cluster 5 contains a large number of members
that in the four-cluster realization belong to cluster 1. We perform a
robustness analysis for region translations from 2° to 8° in 2° steps in all
four cardinal directions. The resulting Rand matrix and CRD are shown
in Figs. 15 and 14c. While the clustering result is rather robust for east-
west translations, a high sensitivity can be observed for translations in
the north-south (N/S) direction. In particular for translations by more
than 4° N/S the results change strongly. A closer inspection reveals,



clusterings from sensitivity analysis linearized using Rand index.

Fig. 15: Case study CRD for region translations. The green clusters (1
and 5) exchange many members (+) and in extreme cases, clusters 3
and 4 change completely (++, +++).

(a) (b)

(c) (d)

Fig. 16: (a) The CPP of the 2-PVU isocontour at 250 hPa for the pink
cluster 4 is very sensitive to changes in the selected region (stippling
shows STDEV of probability). (b) It becomes much more robust if the
north-south region translations by 6°and 8° are omitted (cf. Fig. 14c).
(c) Cluster means for cluster 4 and (d) cluster 1 (dark green) of potential
temperature at 850 hPa (stippling shows STDEV of potential temper-
ature with extreme north-south translations omitted) show distinctly
different scenarios.

however, that the dominant feature (the variability associated with the
strong PV gradient along the tropopause) of the cluster region is more
or less removed by these translations. The high sensitivity related to
these translations is thereby plausible from a physical viewpoint.

The CRD (Fig. 15) shows that members often change between clus-
ters 1 and 5 when translating the cluster region – this is plausible due
to their weak separation. The MRD (Fig. 1a) reveals the members
that are switching cluster assignment. Less intuitive are exchanges
between the blue and pink clusters indicated in both CRD and MRD,
as the CPP shows these two clusters to represent quite different trends
(Fig. 12f). Selection of the corresponding realizations in the CRD
reveals that these exchanges occur for the extreme N/S translations; in
these translated regions the two clusters seem to be more similar.

For further analysis, we are interested in cluster summary statistics
as well as individual members that robustly remain within a given
cluster. For the sake of brevity, here we only consider upper-level PV
and lower-level potential temperature. The MRD (Fig. 1a) shows that
for the orange cluster, the members in the upper left region of the plot
appear to be robust. Inspection of further robustness details (we have
selected member 26; our system also shows further members with the
same robustness characteristics) reveals that these members indeed are
robust with respect to E/W translations; changes occur only for N/S
shifts. As a contrary example, member 50 (pink cluster) is particularly
unstable (Fig. 8) and is therefore to be used with caution.

With respect to cluster summary statistics, Fig. 16 shows CPPs of
the 2-PVU line at 250 hPa for cluster 4 and cluster means of potential
temperature at 850 hPa for clusters 4 and 1. The variability of the
respective fields due to clustering robustness is encoded as stippling.
Confirming the above findings of CRD and MRD, the cluster summary
statistics become much more robust when the physically unreasonable,
extreme translations in the N/S directions are not considered (Fig. 16a

vs. b). This increased robustness strongly increases our confidence in
the subsequent physical interpretation. Clusters 1 and 4 differ with
respect to the longitudinal position of the ridge maximum (cf. Fig. 12f),
and also, the corresponding potential temperature fields (Fig. 16c vs. d)
show distinct structure differences similar to the structure differences of
the upper-level ridges. This similarity yields evidence for a baroclinic
nature of the evolution, i.e., a strong coupling between the evolutions
at upper and lower levels.

We conclude by noting that our preliminary analysis provides the
key insight that there are robust and physically-meaningful forecast
scenarios associated with the evolution of Karl in the region that was of
interest during the NAWDEX campaign. Future analysis will consider
in more detail the processes that lead to the divergence of the forecasts
into these scenarios and the ramifications to the heavy precipitation
event in Norway a few days later. Compared to methodology previously
applied in the meteorological community, the method proposed here
greatly facilitates the analysis and provides at the same time unprece-
dented quantification and visual representation of cluster robustness.

6 SUMMARY AND CONCLUSIONS

We have proposed a novel visual analysis workflow to visualize the
value and, in particular, the robustness of cluster-based analyses of
ensemble weather forecasts. This information is required for analysis
and interpretation of the obtained clusters, however, it has been largely
neglected in the context of ensemble cluster analysis in the past.

Our approach enables the user to identify a suitable number of clus-
ters by visualizing how clusters split, are separated, and reduce an
ensemble’s STDEV. To investigate the robustness of a clustering, its
sensitivity to changes in the selected clustering region and the number
of PCs used for data reduction can be visualized. Cluster-centric and
member-centric views show the stability of clusters and how members
change cluster assignment when region or PCs are changed; linked visu-
alizations of per-cluster summary statistics are augmented by overlays
that indicate the sensitivity of the displayed quantities.

We have developed our methodology in a team of visualization and
atmospheric scientists, integrated it into the open-source meteorological
ensemble visualization software Met.3D for straightforward application
by users, and have demonstrated its benefit with a real-world case study
taken from ongoing work aimed at improving the accuracy of numeri-
cal weather prediction. Compared to methodology previously applied
in the meteorological community, the method proposed here greatly
facilitates the analysis and provides at the same time unprecedented
quantification and visual representation of cluster robustness. In the
near future, the method will actively be used in data analysis activities
related to the NAWDEX campaign. Except for the region translations
and meteorological views, we believe that the proposed workflow and
the CRD and MRD can be used in other domains than meteorology as
well. The extension to other deterministic clustering algorithms such as
hierarchical clustering would only need small adoptions such as the use
of dendrograms. Investigation of its extensibility to further clustering
parameters, to time-dependent data, and to further clustering methods
including fuzzy clustering would in our opinion be beneficial to the
atmospheric community; it is left as an open issue for future work. A
further limitation is the current brute-force computation of the cluster-
ing realization to obtain robustness information; here, approaches that
can estimate this information based on fewer clustering runs would be
beneficial.
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