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Abstract

There is a rise of interest within the applied physics and engineering electromagnetics community in exploring the topological

structure of various systems and devices. This paper provides an outline for a new approach to microwave circuit theory via

Lie theory emphasizing the deep topological structure of transmission lines and is expected to shed light on related issues like

nano-EM and MTMs.
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The Topological Structure of Microwave Circuit Theory

Said Mikki

Abstract— We present a general theory of linear microwave
circuits based on continuous (Lie) groups. It is shown that
the fundamental relationship between the low- and high-
frequency circuits can be fully understood only using the
machinery of Lie theory. By identifying classes of microwave
circuit with matrix (Lie) groups, we managed to derive
the most general differential equation of n-port network,
in which the low-frequency circuit turns out to be the
associated Lie algebra. The solution of the equation is
formally expressed in terms of ordered exponential operators.

Index Terms— Microwave network theory, nonuniform
transmission line, Lie groups.

I. INTRODUCTION

A microwave circuit is essentially a transmission line
(TL), which in turn is a distributed-element circuit. In this
view, a TL is understood as a high-frequency circuit that
behaves “globally” in a very different manner compared to
the low-frequency counterpart, which represents the local
structure of the system. In particular, only an infinitesimal
(electrically small) section of a TL looks like a lumped-
element circuit. This immediately suggests to us the
analogy with differentiable (topological) manifolds, which
by definition look locally like Euclidian spaces. Indeed,
the universe of lumped-element circuit theory is taken as
the point of departure for any circuit theory. We know
very well how to do things in the low-frequency regime.
Subsequently, the behavior of the global system, i.e., the
full high-frequency circuit, is constructed in the following
way. We start with an initial small section of a TL. Cascade
another small section. The resulting system is larger than
the initial one, but sill lying in its “neighborhood” (a
topological concept). The process is iterated by inserting
new infinitesimal sections till the global (full) picture of
the complete high-frequency system is obtained. In this
case, any microwave circuit can be described in terms
of repeated application of infinitesimal transformations,
acting in an abstract differentiable (and hence topological)
space. The most natural mathematical device to handle
this problem is the theory of Lie groups [2], which is
well developed for classical (matrix) groups. It is a happy
coincidence that microwave networks are described by
(invertible) square matrices, which motivates direct appli-
cation of topology and group theory to the traditional area
of microwave engineering. This we endeavor to achieve in
the present paper.

Fig. 1. Derivation of the master equation.

II. DEVELOPMENT OF THE THEORY

A. Derivation of the Master Differential Equation

Let G be a Lie group1 of dimension M and the
composition operation are analytic

χ′m = φm (Υm, χm) ,m = 1, 2, ...,M, (1)

In the case of n input/output ports microwave circuits, the
largest possible G is the general linear group GL(2n;C).2

Each point g ∈ G in the differential manifold of the
group will correspond to a microwave network. Here one
may think of the arrays of numbers χ′m, χm, and Υm

as coordinates chosen in a coordinate patch containing the
point (group element) g in the manifold G. It is understood
that the representation of this group element is the usual
chain matrix and the group operation (1) is the usual matrix
multiplication.

Now, consider Figure 1. The infinitesimal circuits con-
necting Ti and Tf are described by the matrices δΛ
defined along the line, and χ is the total attained chain
matrix while progressing with the infinitesimally continued
steps δΛ. We begin with the chain matrix χ seen after
the reference (identity) line. The initial network T i will

1A Lie group is defined as a differential manifold equipped with a
group operation such that the multiplication of two elements and the
inverse are smooth. A matrix group is a Lie group [2].

2This is the group of square 2n×2n invertible matrices over the field
C of complex numbers (we assume time-harmonic excitation throughout
the paper.) Interesting physically realizable microwave circuits are matrix
subgroups of GL(2n;C) (and hence Lie groups) for reasons to be given
elsewhere.



transform this value into χ′. The continuation process is
started by inserting a small section with a chain matrix
δΛ, producing in turn χ′′. We calculate dχ′m = χ′′m−χm

using the group operation functions (1); this can be written
as χ′′m = χ′m + dχ′m = φm (δΛ, χ′) . Expanding the
functions φm in Taylor series with respect to the first
argument, we find to the first order

dχ′m =
∑M

n=1
δΛn ∂

∂Υn
φm (Υ, χ′)

∣∣∣∣
Υ=0

. (2)

On the other hand, we can compute the same quantity
by treating the inserted section δΛ as the germ of new
analytical continuation of χ.3 To see this, notice that
Λ′m = Λm + dΛm = φm (δΛ,Λ), where here Λ′ can be
interpreted as the new chain matrix obtained by cascading
T i and then δΛ, i.e., Λ′ = δΛT i. By again expanding in
Taylor series, we obtain to the first order

dΛm =
∑M

n=1
δΛn ∂

∂Υn
φm (Υ,Λ)

∣∣∣∣
Υ=0

. (3)

Now, define the following matrix

U−1,m
n (Λ) :=

∂

∂Υn
φm (Υ,Λ)

∣∣∣∣
Υ=0

. (4)

Therefore, (3) can be written as δΛm =
∑M

n=1 U
m
n dΛn.

Substituting this into (2), we obtain

dχ′m =
∑M

n=1

∑M

n′=1
dΛn′

Un
n′ (Λ)V m

n (χ′) , (5)

where the matrix V is defined as

V m
n (χ′) :=

∂

∂Υn
φm (Υ, χ′)

∣∣∣∣
Υ=0

. (6)

Differentiating (5) and carefully labeling the indices, it
easily follows that

∂χ′m

∂Λn
=
∑M

r=1
Ur
n (Λ)V m

r (χ′). (7)

The key observation in the previous derivation is that,
generally speaking, δΛ and dΛ are different quantities.
We can freely vary δΛ, which represents the inserted
infinitesimal section of the tapered line; however, we can
not control dΛ, or equivalently dχ, which are governed
by the particular Lie group structure encapsulated in the
functions (1).

We develop now the problem in terms of one parameter
l, which serves as the longitudinal index of the TL. We
can express the response of the network at the location l
as χm (l) =

∑M
n=1 P

m
n (l)χn (0), where we define P as

the one-parameter propagator of the network. Using the

3This is possible because both the new cascaded section’s chain matrix
and the law upon which we calculate the new value of χ are the same,
i.e, matrix multiplication.

chain rule, the total derivative of the response χ can be
computed as

d

dl
χm (l) =

∑M

n=1

∂χm (l)

∂Λn

dΛn (l)

dl
. (8)

Substituting (7) into (8), we obtain

d

dl
χm (l) =

M∑
n=1

M∑
r=1

Ur
n (Λ)V m

r (χ)
dΛn (l)

dl
. (9)

The infinitesimal generators of the Lie group are defined
as [2]

Xn (χ) := −
∑M

m=1
V m
n (χ)

∂

∂χm
. (10)

Therefore, equation (9) can be put in the convenient form4

d
dlP

m
n (l) = −

M∑
v=1

M∑
r=1

dΛv(l)
dl Ur

v [Λ (l)]

×Xr

[
M∑
r=1

P 1
r (l)χr (0), ...,

M∑
r=1

PM
r (l)χr (0)

]
Pm
n (l) .

(11)
This is a system of first-order ordinary differential equa-
tions with the initial condition Pm

n (l = 0) = δmn . It
is the dynamic equation governing the propagation of
electromagnetic signals along the n-port TL, and appears
to be derived here for the first time in this context. It
can be shown that (11) reduces to the familiar TL model
using KCL/KVL analysis of RLC infinitesimal sections.
However, (11) was derived in a systematic manner for
arbitrary n-port network without any special assumption
about the physical realization of the low-frequency ele-
ment. The physical content is injected into (11) through
the per-unit length parameters dΛv (l)/dl. However, the
essential content of the relationship between the low- and
high- frequency circuits is encoded in the Lie algebra (see
next section), or the algebraic structure of the infinitesimal
generators Xi. Our equation (11) clearly relates these
generators to the formal solution, although in a rather com-
plicated way. In particular, the coupling between multiple
ports (e.g., chain matrices in GL(2n;C), n > 1) at the low-
frequency level will be reflected into the rich mathematical
structure of the Lie algebra, presenting the appropriate
form of the internal configuration of microwave circuits.5

B. The Lie Algebra of Microwave Circuits

Lie agebra6 represents a linearization of the Lie group,
or a local viewpoint. Surprisingly, it turns out that one
can learn much about the global behavior of the group
from the structure of the Lie algebra [2], [3]. In order

4To prove this, just substitute (10) to (9) and use the relation δmn =
∂ (xm)/∂xn and the definition of the circuit propagator P .

5The expanded version of the present paper will pay detailed consid-
erations to some of these subtle issues.

6The Lie algebra is the vector space spanned by the infinitesimal
generators Xi closed under the commutation operation [Xi, Xk] :=
XiXk −XkXi and satisfying the Jacobi identity [2].



to motivate the concept of infinitesimal generator, it will
be easier to work directly with a matrix group Λ than
the original (more general) definition (10). Expanding in
Taylor series, we find Λ = I +

∑M
i=1 δΛ

iXi + O
(
δΛ2

)
,

where the infinitesimal matrix generators Xi are defined
by Xi := ∂Λ

(
Λ1, ...,ΛM

)/
∂Λi. Here we notice that the

parameters Λm are chosen such that Λ(0) = I and the
derivatives are calculated at Λi = 0. To the first order,
we approximate an infinitesimal section of a TL by the
matrix δΛ ≈ I+

∑M
i=1 δΛ

iXi. Each infinitesimal network
is the low-frequency (lumped-element) circuit with per-
unit length parameters δΛ; the effective chain matrix of
the TL is the multiplication of all these small sections.
Therefore, by carrying out the formal limit, one can use
this method to systematically compute the chain matrix of
a uniform TL using the matrix exponential [2]

Λ = exp

(∑M

i=1
ξiXi

)
. (12)

Concrete calculations with familiar uniform TLs using (12)
will be given elsewhere. The generalization to nonuniform
TLs is the subject of the next section.

C. General Solution of Generalized Nonuniform Transmis-
sion Line

Start by defining

− i
~
H(l) := −

M∑
v=1

M∑
r=1

dΛv (l)

dl
Ur
v (Λ)Xr (χ), (13)

where H plays the role of the Hamiltonian operator in
quantum field theory and ~ the Planck constant. The master
equations assumes then the following compact form

d

dl
Pm
n (l) = − i

~
H(l)Pm

n (l) . (14)

Integrating (14), we obtain the following integral equation

Pm
n (l) = Pm

n (0)−
∫ l

0

dl′
i

~
H (l′)Pm

n (l′), (15)

which can be viewed as the first-order iteration. Re-
iterating, we obtain

Pm
n (l) = Pm

n (0)− Pm
n (0) i

~
∫ l

0
dl′H (l′)Pm

n (l′)

+
(
i
~
)2 ∫ l

0
dl′H (l′)

∫ l′

0
dl′′H (l′′)Pm

n (l′′) + · · ·
(16)

The final expression can be written compactly as

Pm
n (l) = τ exp

[
− i
~

∫ l

0

dl′H (l′)

]
, (17)

where τ is the ordered exponential operator [3]. To our
knowledge, the TL’s propagator (17) is derived here for
the first time.

Fig. 2 illustrates the space of the Lie algebra of a
generalized TL problem. Two nonuniform TLs are rep-
resented by pathes I and II. The particular shape of the

Fig. 2. Various trajectories in the Lie algebra of microwave networks.

path reflects how the low-frequency circuit is changing
while progressing along the TL. Path III models a uniform
TL and can be computed by the exponential map (12).
From Lie theory, a neighborhood of the identity 0 in the
Lie algebra will be mapped injectively into the connected
identity competent of a Lie group having the same Lie
algebra. As it turns out, the exponential map is not always
onto, which provides a significant insight into the relation
between high- and low- frequency circuits. In general, our
strategy will be to start from a given Lie algebra, i.e., a
low-frequency description, and then study the structure of
the microwave network, i.e., the high-frequency circuit,
generated by the exponential relation.

D. Further Development of the Theory

It can be shown that both reciprocal and lossless net-
works form matrix (Lie) subgroups of the general linear
group. By studying the group’s topology of these and
other classes, we obtain general theorems about path-
connectedness, which is translated into the possibility of
performing continuous matching (taper design.) On the
other hand, by applying techniques from linear algebra to
analyze the structure of the corresponding Lie algebras, it
will become possible to decide which microwave circuits
can be represented by uniform TLs, a cascade connections
of two uniform TLs, etc. Also, new light will be shed on
the analysis and design of nonuniform TLs by exploiting
the logic of the interrelation between Lie subalgebras and
Lie subgroups.

III. CONCLUSION

The theory developed above allows conducting thorough
investigations of the fundamental aspects of how low-
and high- frequency phenomena in electromagnetic wave
propagation, examined here within the specialized context
of circuit theory, are structurally interrelated to each other.
We anticipate that the theory will provide a rigorous
conceptual framework for current and future microwave
circuit research.
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