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Abstract

Using graph theory to identify essential proteins is a hot topic at present. These methods are called network-based methods.

However, the generalization ability of most network-based methods is not satisfactory. Hence, in this paper, we consider

the identification of essential proteins as a multi-objective optimization problem and use a novel multi-objective optimization

method to solve it. The optimization result is a set of Pareto solutions. Every solution in this set is a vector which has a certain

number of essential protein candidates and is considered as an independent predictor or voter. We use a voting strategy to

assemble the results of these predictors. To validate our method, we apply it on the protein-protein interactions (PPI) datasets

of two species (Yeast and Escherichia coli). The experiment results show that our method outperforms state-of-the-art methods

in terms of sensitive, specificity, F-measure, accuracy, and generalization ability.
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ABSTRACT
Using graph theory to identify essential proteins is a hot topic
at present. These methods are called network-based methods.
However, the generalization ability of most network-based
methods is not satisfactory. Hence, in this paper, we consider
the identification of essential proteins as a multi-objective op-
timization problem and use a novel multi-objective optimiza-
tion method to solve it. The optimization result is a set of
Pareto solutions. Every solution in this set is a vector which
has a certain number of essential protein candidates and is
considered as an independent predictor or voter. We use a
voting strategy to assemble the results of these predictors. To
validate our method, we apply it on the protein-protein inter-
actions (PPI) datasets of two species (Yeast and Escherichia
coli). The experiment results show that our method outper-
forms state-of-the-art methods in terms of sensitive, speci-
ficity, F-measure, accuracy, and generalization ability.

Index Terms— Essential proteins, graph theory, multi-
objective optimization, protein-protein interactions.

1. INTRODUCTION

To living organisms, proteins are indispensable components
in cellular life activities, they perform varied functions like
catalyzing metabolic, DNA replication reactions, and trans-
porting molecules [1]. Among them, there is a kind of pro-
teins called essential proteins, living organisms would die or
be infertile if they lack them [2]. Some essential proteins have
been found to be related to human disease genes, hence, the
study of the identification of essential proteins is very neces-
sary [3].

With the development of high-throughput technologies,
a lot of protein-protein interactions (PPI) have been ob-
tained which makes using computational methods to study
the identification of essential proteins possible [4]. In general,
protein-protein interactions are constructed to an undirected
network which is called protein interaction network (PIN).
Network-based methods are successfully used in the iden-
tification of essential proteins. According to wether they
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integrate the biological information or not, they can be di-
vided into two classes: (1) topological characteristics based
methods; (2) integration methods.

The topological characteristics based methods use the fea-
tures of node or edge of network to search the vital nodes, and
they are also widely used in the field of complex networks.
Degree centrality (DC) is the most well-known and simplest
one applied on the identification of essential proteins. Some
studies have confirmed that proteins with high degree tend to
be essential proteins [5]. Besides DC, other node-aided meth-
ods were also applied to the identification of essential pro-
teins, such as eigenvector centrality (EC) [6], betweenness
centrality (BC) [7], closeness centrality (CC) [8], etc. Ad-
ditionally, a few of edge-aided methods [9, 10, 11] have also
been proposed to identify essential proteins from PIN, the typ-
ical one is edge clustering coefficient (ECC) [10]. A centrality
method which is based on ECC called new centrality method
(NC) is proposed to identify essential proteins from PIN [11].
Besides above node-aided and edge-aided methods, some re-
searchers proposed a centrality method which combines the
node and the edge characteristics of the network (NEC) [12].

Whereas, the PPI data obtained by high-throughput tech-
nologies have high false positives and these topological char-
acteristics based methods are very sensitive to the stability of
the PIN which consists of the PPI data. Hence, the perfor-
mance of these methods is limited. Considering this problem,
some researchers try to combine the biological information
into the topological characteristics based methods to reduce
the effect of high false positives of PPI data and improve the
prediction accuracy of essential proteins. Some researchers
proposed PeC which combines gene expression data into the
NC and achieves a higher prediction accuracy than NC [13].

However, the generalization ability of these methods
above is not good. In this paper, to improve the generaliza-
tion ability, we consider the identification of essential proteins
as a multi-objective optimization problem and use the adap-
tive multi-objective black hole algorithm (AMOBH) [14] to
solve it, the new method is called IMAMOBH. After the op-
timization, we get a Pareto solution set. Each solution in this
set will be considered as a predictor or voter. Each predictor
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will give a list of essential protein candidates. Then we use a
voting mechanism to assemble them and get a final list of es-
sential protein candidates. To validate our method, we select
two species’ PPI datasets (Yeast and Escherichia coli) and
apply IMAMOBH on them. In the comparison experiments,
our method achieves better results compared to some state-of-
the-art methods like BC, CC, DC, EC, LAC[15], NC, NEC,
PageRank[16], and PeC. The contributions of this paper can
be concluded as follows,

• This is the first attempt of applying multi-objective op-
timization into the identification of essential proteins.

• A method with satisfactory generalization ability is
proposed for the identification of essential proteins.

2. MATERIALS

The PPI data of Saccharomyces cerevisiae (Yeast) and Es-
cherichia coli are downloaded from the DIP [17] database.
The PPI dataset of Yeast contains 4,979 proteins and 22,061
interactions. The PPI dataset of Escherichia coli owns 2528
proteins and 11496 interactions.

The essential genes lists of Yeast and Escherichia coli are
collected from OGEE [18]. The Yeast network consists of
1,209 essential proteins, 3,322 nonessential proteins, and 448
unknown proteins. The Escherichia coli network consists of
444 essential proteins, 1403 nonessential proteins, and 681
unknown proteins.

The gene expression datasets of Yeast and Escherichia
coli are downloaded from GEO [19]. We use the Pearson
correlation coefficient (PCC) to evaluate the gene expression
similarity (GES) of two interacting proteins [13]. The gene
ontology data used in this paper is collected from paper [9].
GO semantic similarity is based on the biological characteris-
tics of genes. It is used to represent the genes functional sim-
ilarity [20]. Using biological process category of GO, genes
functional similarity (GFS) between two proteins can be cal-
culated by the algorithm proposed in paper [21].

3. METHOD

3.1. Identification of Essential Proteins using Adaptive
Multi-objective Black Hole Algorithm

The identification of essential proteins can be considered as
a multi-objective problem (MOP), which has two objectives:
gene expression similarity (GES) and genes functional simi-
larity (GFS), as follows,

f1 =
nX

i=1

NTE(i) ⇤GES(i), (1)

f2 =
nX

i=1

NTE(i) ⇤GFS(i), (2)

where, n is the number of elements in one solution, NTE(i)
is the number of triangles consist of a certain edge includes
protein i. The objectives of our methods consist of network
topological feature NTE and biological information like
GES and GFS. Here we choose NTE because it is highly
correlated with GES and GFS. Hence, we construct objective
functions like this type.

To solve above MOP, we use the adaptive multi-objective
black hole algorithm (AMOBH) [14] which has several ad-
vantages: lower computational complexity, faster conver-
gence rate, and better population diversity compared to state-
of-the-art methods. The Pareto solution set of above MOP
is corresponding to a set of different weighted combination
of two objectives. The optimization method will guarantee
the diversity of solution. Hence, we can avoid the subjective
selection of the weights of two objectives. To assemble the
results of solutions in the Pareto solution set, we build a vot-
ing system to select a certain number of solutions to form the
final essential protein candidates. Every solution in Pareto
solution set is considered as a voter. The larger number of
votes of a protein obtained means it has the bigger probability
to be chosen into the final essential protein candidates.

The brief pseudo code of AMOBH is as Algorithm 1
show.

Algorithm 1 Adaptive multi-objective black hole algorithm
Input: Size of population N , size of archive M

Output: Pareto solution set Ar

Initialize the population set Pop

Calculate the fitness values of each solution on two objec-
tive functions
Initialize the black holes Bh and save them into the Ar

repeat
Population Pop updates
if rand < l (learning rate) then

Eilte Bh(j) mutation
end
Determine whether to accept the new solution Pop(i) to

Ar or not
Update the evolution statues based on Shannon entropy
if kPop(i)�Bh(j)k2 < ✓1 (threshold) then

Reinitialize Pop(i)
end

until error < ✓2 (threshold)

The original AMOBH is used to solve the continuous
MOPs. The solution update formula is as follow,

Popt+1(i) = Popt(i) + rand(Bh(j)� Popt(i)), (3)

where, Pop(i) represents the solution i, t + 1 means current
iteration, t means previous iteration, and Bh(j) means one of
black holes (elite solutions) from the black hole set. However,
here is a discrete MOP. The update rule needs to be changed.



The new solution update rule is shown in Fig 1. As Fig 1
shows, a solution is a vector. It will get close to a certain
black hole. At first, we get the different parts of two vectors
(eg. solution i and black hole j) and call them PartA from
the black hole j and PartB from the solution i respectively.
Then we select several elements from PartA randomly and use
them to replace the same number of elements in PartB. The
maximum of selecting elements is the size of PartA. After
that, we will get a new solution i which is much similar to
the black hole j as Fig 1 shows since there are more similar
elements between two vectors. What’s more, the order of an
element in a solution vector is not important in this problem.
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Fig. 1. The process of solution update. Green box represents
the common element which is in both black hole j and solu-
tion i, orange box represents the unique element which is only
in black hole j, and blue box represents the unique element
which is only in solution i. After the update, the number of
green boxes in two vectors becomes larger which means the
similarity becomes higher.

After using AMOBH to solve above MOP, we will get
a Pareto solution set Ar. Every Pareto solution represents a
possible essential protein candidate list provided by a certain
weighted combination of two objectives. It is considered as a
voter. To assemble the results of different voters and maintain
a good generalization ability, we adopt a voting strategy. If a
protein i is in the Pareto solution j, it gets a vote from j. The
more number of votes a solution obtained means it is more
possible to be selected as an essential protein candidate.

3.2. Computational Complexity

The computation of core AMOBH algorithm is O(MN
2). M

is the number of objectives, and N is the size of archive. The
values of NTE ⇤GES and NTE ⇤GFS of all proteins are
calculated before the optimization, and max computation of
this step is O(K2). K is the total number of proteins. How-
ever, because of the property of small-world, the computation
of this step is much smaller than O(K2). Thus the compu-
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Fig. 2. Comparison of the number of true essential proteins
identified from Yeast PPI dataset (different colors means dif-
ferent top ranked proteins intervals).

tation of core AMOBH algorithm dominates the computation
of IMAMOBH.

4. RESULTS AND DISCUSSION

4.1. Validation Metrics

To verify the proposed method, in this paper, we select several
most frequently used validation metrics: sensitive, specificity,
F-measure, and accuracy [4].

4.2. Performance Analysis

We applied IMAMOBH on the PPI datasets of Yeast and
Escherichia coli and compared its performance with several
state-of-the-art methods: BC, CC, DC, EC, LAC, NC, NEC,
PR (PR is the abbreviation of PageRank), and PeC. All meth-
ods adopt the default parameters and all experiments are run
on a personal computer with Windows 10 OS, Intel Core i7
2.3GHz CPU, and 8GB memory. As most of validation meth-
ods for the identification of essential proteins, we also ranked
all proteins by using each essential protein search method
and selected a certain number of top ranked proteins as the
essential protein candidates. Considering the number of true
essential proteins in the PPI data of Yeast and Escherichia
coli, we set the range of essential protein candidates of Yeast
from top 1% to top 24% and the range of essential protein
candidates of Escherichia coli from top 1% to 18%1.

Fig 2 shows the comparison of the number of true essen-
tial proteins identified from Yeast PPI dataset using BC, CC,
DC, EC, LAC, NC, NEC, PR, PeC, and IMAMOBH. From
Fig 2 we can see that, our method identifies the most num-
ber of true essential proteins in almost all essential protein
candidates. Fig 3 shows the results of 4 evaluation metrics
(sensitive, specificity, F-measure, and accuracy) obtained by

1All the work (data and codes of our proposed method) can be down-
loaded on: https://github.com/ProfHubert/IMAMOBH.
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Fig. 3. Comparison of sensitive, specificity, F-measure, and accuracy obtained by all methods on the Yeast and Escherichia coli
PPI dataset. Upper row is the results from Yeast PPI dataset. Bottom row is the results from Escherichia coli PPI dataset.

all identification methods on the PPI network of Yeast. We
can see that IMAMOBH outperforms rest methods in terms
of all evaluation metrics in all top ranked proteins.

Fig 4 shows the comparison of the number of true essen-
tial proteins identified from Escherichia coli PPI dataset using
BC, CC, DC, EC, LAC, NC, NEC, PR, PeC, and IMAMOBH.
It can be seen clearly that our method identifies more true es-
sential proteins against rest methods in all essential protein
candidates. And Fig 3 shows the results of 4 evaluation met-
rics obtained by all identification methods on the PPI network
of Escherichia coli. It can be seen clearly that IMAMOBH
achieves the best results of all evaluation metrics in all top
ranked proteins. What’s more, we can see that some meth-
ods like NC, LAC, and NEC achieve good results on Yeast
PPI dataset. However, when they are applied on Escherichia
coli PPI dataset, their performance is largely degraded. This
proves that the generalization ability of our method is better
than other state-of-the-art methods used in this paper.

5. CONCLUSION

In this paper, we consider the identification of essential pro-
teins as a multi-objective optimization problem and use
AMOBH algorithm to solve it. We call this identification
method IMAMOBH. Our method avoids the subjective selec-
tion of weights and achieves a better generalization ability.
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Fig. 4. Comparison of the number of true essential proteins
identified from Escherichia coli PPI dataset (different colors
means different top ranked proteins intervals).

The validation experiments on the PPI data of Yeast and
Escherichia coli show that our method achieves better per-
formance in terms of sensitive, specificity, F-measure, and
accuracy compared to some state-of-the-art methods. In fu-
ture, we will validate our method on more different species’
PPI datasets and sought to introduce many-objective opti-
mization methods to the identification of essential proteins.
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