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Abstract

Constrained multi-objective optimization problems exist widely in real-world applications, and they involve a simultaneous

optimization of multiple and often conflicting objectives subject to several equality and/or inequality constraints. To deal with

these problems, a crucial issue is how to handle constraints effectively. This paper proposes a simple yet effective constrained

decomposition-based multi-objective evolutionary algorithm. In the proposal, the evolutionary process is divided into two stages

in which constraints are handled differently. In the first stage, constraints are totally ignored and the population is pulled toward

the unconstrained Pareto-optimal front (PF) by optimizing objectives only. This can help the proposed algorithm handle well

problems with the following features, i.e., the constrained PF has an intersection with the unconstrained counterpart, and there

are infeasible regions blocking the way of convergence. In the second stage, with the purpose of approximating the constrained PF

well,constraint satisfaction is emphasized over objective minimization.Moreover, different evolutionary frameworks are adopted

in the two stages to promote the performance of the algorithm as much as possible. The proposed algorithm is comprehensively

compared with several state-of-the-art algorithms on 39 problems (with 266 test instances in total), including one real-world

problem (with 36 instances) in search-based software engineering. As shown by the experimental results, the new algorithm

performs best on the majority of these problems, particularly on those with the aforementioned features. In summary, the

suggested algorithm provides an effective way of handling constrained multi-objective optimization problems.
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Abstract—Constrained multi-objective optimization problems
exist widely in real-world applications, and they involve a simul-
taneous optimization of multiple and often conflicting objectives
subject to several equality and/or inequality constraints. To deal
with these problems, a crucial issue is how to handle constraints
effectively. This paper proposes a simple yet effective constrained
decomposition-based multi-objective evolutionary algorithm. In
the proposal, the evolutionary process is divided into two stages
in which constraints are handled differently. In the first stage,
constraints are totally ignored and the population is pulled to-
ward the unconstrained Pareto-optimal front (PF) by optimizing
objectives only. This can help the proposed algorithm handle well
problems with the following features, i.e., the constrained PF has
an intersection with the unconstrained counterpart, and there are
infeasible regions blocking the way of convergence. In the second
stage, with the purpose of approximating the constrained PF well,
constraint satisfaction is emphasized over objective minimization.
Moreover, different evolutionary frameworks are adopted in the
two stages to promote the performance of the algorithm as
much as possible. The proposed algorithm is comprehensively
compared with several state-of-the-art algorithms on 39 problems
(with 266 test instances in total), including one real-world prob-
lem (with 36 instances) in search-based software engineering. As
shown by the experimental results, the new algorithm performs
best on the majority of these problems, particularly on those
with the aforementioned features. In summary, the suggested
algorithm provides an effective way of handling constrained
multi-objective optimization problems.

Index Terms—Constrained multi-objective optimization;
decomposition-based algorithms; constraint handling techniques;
two frameworks

I. INTRODUCTION

CONSTRAINED multi-objective optimization problems
(CMOPs) exist widely in real-world applications, such

as the optimal scheduling of energy storage systems [1], the
optimization of biped robot gaits [2] and reliability-based opti-
mization for crashworthy structures [3]. This type of problems
involves a simultaneous optimization of multiple and often
conflicting objectives, and a set of equality and/or inequality
constraints. Without loss of generality, a CMOP can be defined
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as follows.

Minimize F (x) = (f1(x), f2(x), . . . , fm(x))T

s.t. gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , q

x ∈ Ω ⊂ Rn,

(1)

where F (x) = (f1(x), f2(x), . . . , fm(x))T ∈ Rm and
x = (x1, x2, . . . , xn)

T ∈ Ω (the decision space) are the
objective vector and decision vector, respectively. In Formula
(1), gi(x) ≤ 0 defines the i-th of the p inequality constraints,
and hj(x) = 0 defines the j-th of the q equality constraints.
According to [4], CMOPs with more than three objectives are
known as constrained many-objective optimization problems
(CMaOPs).

From the perspective of decision makers, feasible solutions
are naturally emphasized over infeasible ones. A solution to
CMOP (1) is said to be feasible provided that it meets all
the equality and inequality constraints. If any constraint is
violated, this solution is infeasible. To distinguish between
solutions, one applicable and often used principle is Pareto-
dominance. The x1 is said to Pareto-dominate x2 (written as
x1 ≺ x2) if and only if fi(x1) ≤ fi(x2) for all i = 1, . . . ,m
and fj(x1) < fj(x2) for at least one j ∈ {1, . . . ,m}. For
a solution x∗, if there exist no other solutions dominating it,
then x∗ is called a Pareto-optimal solution. All the Pareto-
optimal solutions constitute the Pareto-optimal set (PS), and
the Pareto-optimal front (PF) is defined as the image of the
PS in the objective space.

The CMOPs can be divided into three types based on
the relationship between the constrained PF (CPF) and the
unconstrained PF (UPF). For Type-I CMOPs, as shown in
Fig. 1 (a), the CPF is exactly the same as the UPF. For Type-
II problems, the CPF is or contains a part of the UPF. As
illustrated in Fig. 1 (b) and (c), the CPF consists of a part of
the unconstrained front, while in Fig. 1 (d) the CPF contains
not only a part of the UPF but also a part of the feasible
boundary. Finally, as illustrated in Fig. 1 (e), the CPF for Type-
III CMOPs has no intersection with the UPF. Mathematically,
if the intersection of CPF and UPF is A, then |A| = |UPF |,
0 < |A| < |UPF | and |A| = 0 for Type-I, Type-II and Type-
III CMOPs, respectively. Moreover, as shown in Fig. 2, each
type of CMOPs may have infeasible regions blocking the way
of converging towards the CPF [4], [5]. To emphasize this
feature, CMOPs with infeasible barriers are called Type-I′,
Type-II′ and Type-III′ problems in this paper.
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Fig. 1. Illustration of three types of CMOPs. For Type-I CMOPs, CPF = UPF . For Type-II CMOPs, CPF
∩

UPF = A, where A is a set and
0 < |A| < |UPF |. For Type-III CMOPs, CPF

∩
UPF = ∅.

Despite that most, if not all, real-world problems have
various constraints in nature, it is quite surprising that s-
tudies on constrained multi-objective evolutionary algorithms
(CMOEAs) have not attracted enough attention from the evo-
lutionary multi-objective optimization (EMO) community [5],
[6]. Instead, much more attention has been paid to the solv-
ing of unconstrained multi-objective optimization problems
(MOPs). Indeed, a number of unconstrained multi-objective
evolutionary algorithms (MOEAs) have been proposed during
the last two decades [7]–[11]. In these algorithms, a key
issue that should be well addressed is how to maintain a
balance between convergence and diversity. This promotes
researchers to propose various selection schemes in different
genres of MOEAs [9]. For example, in Pareto-dominance-
based algorithms, e.g., NSGA-II [12], GrEA [13], VaEA [14],
NSGA-III [15], solutions in the first several non-dominated
layers are selected in priority to improve convergence, and the
remaining solutions are selected based on density information
to maintain diversity. In decomposition-based algorithms, e.g.,
MOEA/D [16], RVEA [17], MOEA/DD [18], the convergence
is driven by optimizing scalarization functions, and the diver-
sity is maintained by specifying a set of uniformly distributed
weight/reference vectors. In indicator-based algorithms, such
as IBEA [19] and HypE [20], the performance is promoted
by maximizing the hypervolume (HV) metric [21], which
measures convergence and diversity in a simultaneous way.

Generally speaking, CMOPs are much more difficult than
their unconstrained counterparts, due to that another key
issue—how to handle constraints—should be also properly
addressed. In fact, there have already been some representative
constraint handling techniques (CHTs), including constraint-
domination principle (CDP) [12], penalty functions [22], s-
tochastic ranking (SR) [23], ε constrained method [24] (called
ε for brevity), methods based on multi-objective optimiza-
tion [25], and hybrid methods [26]. Although most of the
above CHTs were originally proposed for constrained single-
objective optimization problems (CSOPs), they have been
integrated into MOEAs to handle CMOPs as well, leading to
some representative CMOEAs. Like the taxonomy adopted in
the unconstrained scenario, CMOEAs can be divided into three
mainstreams according to the selection mechanism used, i.e.,
Pareto-dominance-based, decomposition-based and indicator-
based algorithms.

Typical Pareto-dominance-based CMOEAs include NSGA-
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Fig. 2. In Type-I′, Type-II′ and Type-III′ problems, there are infeasible
regions blocking the way of converging towards the CPF.

II-CDP [12], C-NSGA-III [27], IDEA [28], C-VaEA [29], the
CMOEA proposed by Woldesenbet et al. [6], etc. Although
all the above algorithms use the Pareto dominance to rank
solutions, they are distinct with respect to the way in which
constraints are handled. More specifically, constraints in both
NSGA-II-CDP and C-NSGA-III are handled by CDP, which
prefers consistently a feasible solution over an infeasible
solution. In both IDEA [28] and C-VaEA [29], a smal-
l percentage of infeasible solutions are retained to exploit
information carried by them. This allows the algorithms to
approach the constrained boundaries from both the feasible
and infeasible sides of the search space. In [6], constraints
are handled based on an adaptive penalty function and a
distance measure. Since decomposition-based algorithms con-
vert an MOP into a number of scalar sub-problems, most
CHTs can be directly or at least easily integrated into this
framework to tackle CMOPs. This makes decomposition-
based CMOEAs popular in the field. Representative algorithms
include ε-based methods (e.g., CMOEA/D [30], MOEA/D-
IEpsilon [31], PPS-MOEA/D [32]), CDP-based method (e.g.,
CMOEA/D-CDP [33]), SR-based methods (e.g., CMOEA/D-
SR [33], MOEA/D-ASR [34]), and extended decomposition-
based MOEAs (e.g., C-MOEA/DD [18], C-RVEA [17]). No-
tice that indicator-based CMOEAs have been rarely studied
in the EMO community [35]. Recently, Liu et al. [36] made
the first study on combining indicator-based MOEAs with
different CHTs, including feasibility rule (FR) [12], SR and ε.
Results suggest that the performance of this kind of CMOEAs
is sensitive to both indicator-based MOEAs and the adopted
CHTs.

By Ignoring Constraints and using two evolutionary frame-
works, we propose in this paper a simple yet effec-
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tive constrained decomposition-based algorithm (called CIC-
MOEA/D). In the algorithm, the evolutionary process is auto-
matically divided into two stages, in which different evolution-
ary frameworks are adopted and constraints are also handled in
different ways. In the first stage, constraints are totally ignored,
and a clustering-based ranking framework is developed to
balance convergence and diversity (details are given in Section
III-A). In the second stage, a steady-state framework as in
MOEA/D [16] is applied as usual, and a new solution is al-
lowed to replace only a small number of neighboring solutions
(to ensure diversity) [37]. With the purpose of approximating
the CPF well, constraints are emphasized over objectives by
employing a CHT that considers in order three criteria when
comparing solutions, i.e., constraint violations (CV), Pareto-
dominance and scalarization functions. Note that the third
criterion makes this technique also effective in dealing with
CMaOPs.

The rationales of ignoring constraints in the first stage are
twofold. First, as shown in Fig. 1, it would be salutary to
ignore constraints in searching for CPF of Type-I and Type-
II problems. In fact, these types of CMOPs can be totally or
partially “solved” because the whole CPF or parts of it can be
well approximated by ignoring constraints. Second, for Type-
I′, Type-II′ and Type-III′ problems, by ignoring constraints,
the working population can easily get across obstacles caused
by infeasible regions, being likely to escape from traps which
are feasible regions surrounded by infeasible blocks [5], [32].
It must be noted that the recently proposed push and pull
search (PPS) [32] applied a similar idea. That is, constraints
are not taken into consideration in the early stage. However,
our method differs from PPS in the frameworks used, and
particularly in the search in the second stage1. As for the
reasons why two evolutionary frameworks should be adopted
simultaneously, a recent study in [38] has revealed that it
is not expected that a single framework can perform fairly
well on different CMOPs. It will be also demonstrated by
the experimental results in Section VI-B that the simultaneous
use of the two frameworks indeed performs significantly better
than the use of only one framework.

Main contributions of the paper are summarized as follows.
• By analyzing the relationship between CPF and UPF, we

demonstrate that ignoring constraints is an effective way
of handling some specific CMOPs, like Type-I and Type-
II problems, and those with infeasible barriers.

• A simple yet effective CMOEA is proposed. The main
characteristic of the new algorithm is that the evolution-
ary process is automatically divided into two stages, in
each of which a different evolutionary framework and a
different CHT are adopted.

• We demonstrate the effectiveness and efficiency of the
proposed algorithm by conducting a comprehensively
comparative experimental study, in which CIC-MOEA/D
is compared with several state-of-the-art CMOEAs on a
number of both artificial and practical CMOPs, includ-
ing MW test problems [38], DC-DTLZ test problems

1More discussions on the differences between CIC-MOEA/D and PPS are
provided at the end of Section III-F after giving technical details of CIC-
MOEA/D.

[5], DAS-CMOPs/DAS-CMaOPs [4] and the real-world
constrained optimal software product selection (OSPS)
problem [39]. All these problems have been proposed
recently and can be classified based on our taxonomy.

The remainder of the paper is organized as follows. Section
II reviews related work on CHTs. In Section III, we give
details of the proposed CIC-MOEA/D. Section IV specifies
the experimental setup, followed by results and discussions
presented in Section V. Subsequently, investigations on the
effect of ignoring constraints and using two frameworks are
given in Section VI. Finally, Section VII concludes the paper
and outlines possible directions for future studies.

II. RELATED WORK

The CDP, first proposed in the NSGA-II paper [12], and
also adopted in C-NSGA-III [27] and the MOEA/D framework
[33], may be the simplest and most widely used CHT for
CMOPs. This principle prefers feasible solutions to infeasible
ones. Such a preference drives the population to feasibility
before improving the objectives [28], and hence may encounter
difficulties in getting across obstacles caused by infeasible
regions.

Another common approach to handle constraints is to use
penalties. Penalty-function-based techniques normally convert
CMOPs into unconstrained MOPs by adding a penalty term
to the objectives [22], [32]. In these techniques, the penalty
factor plays an important role in maintaining the balance be-
tween minimizing the objectives and satisfying the constraints.
However, the tuning of this factor is not always easy because
it is often problem-dependent [38]. This limitation promotes
researchers to develop self-adaptive penalty (SP) functions
[40], [41], in which penalty factors are adjusted adaptively
on the basis of the feedback taken from the search process.
To handle CMOPs, Woldesenbet et al. [6] proposed to modify
each objective by using a distance measure, and an SP function
in which two penalties are involved. The first one is based on
objective functions and the second is based on the constraint
violation. The balance between the two penalties is adaptively
controlled by the ratio of feasible individuals presented in the
current population.

In SR [23], for any two solutions, they are compared either
according to the objective function with the probability Pf

(a user-defined parameter), or according to the constraint
violations with the probability 1 − Pf . Although SR was
originally proposed for CSOPs, it can be applied to handle
CMOPs as well. In [42], a new CHT with infeasible elitists
preservation and SR-based selection is proposed to handle
constraints in multi-objective optimization. Given that the
Pareto dominance may lead to incomparable solutions, the
new method assigns each solution a fitness value based on
its ranking in the nondominated sorting and its crowding
distance. In [33], the extended version of SR was implemented
for the first time in the MOEA/D framework [16]. To solve
CMOPs effectively, Ying et al. [34] proposed an adaptive SR
mechanism in MOEA/D. In this mechanism, the probability
Pf is adaptively adjusted by borrowing the idea of metropolis
acceptance criterion.
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In ε constrained method [24], the constraint violations are
relaxed by the ε-level. Solutions with constraint violations less
than ε are treated as feasible ones, and they are compared
according to the objective functions. In [30]–[32], [43], this
CHT was adopted in the framework of MOEA/D to deal with
CMOPs. Since MOPs in MOEA/D are transformed into a
number of scalar sub-problems using weight vectors, the ε
constrained method can be directly applied. However, finding
an optimal (or near-optimal) value for ε is not at all trivial.
Therefore, the ε level in most cases is set dynamically during
the evolutionary process [31], [32], [43].

By converting constraints into one or more extra objectives,
a constrained problem is reformulated as an unconstrained
MOP, which can be solved by MOEAs [44]. Typical work
using this method includes Cai and Wang’s method [25],
the infeasibility driven evolutionary algorithm [28], a general
framework of dynamic CMOEAs for constrained optimization
[45], and the tri-goal evolution framework for CMaOPs [46],
etc. Inversely, a CMOP can be handled by first transforming
a CMOP into a CSOP to find the promising feasible area,
and then by applying a specific CMOEA to obtain the final
solutions [47].

Constraints can be handled by combining several popular
CHTs together in either different evolutionary stages or d-
ifferent sub-populations. For example, the adaptive tradeoff
model (ATM), proposed by Wang et al. [26], divides the
search process into three scenarios. If solutions in the current
population are all infeasible, a multi-objective approach is
adopted to deal with constraints. If the population contains
both feasible and infeasible solutions, ATM uses a penalty
function to select solutions for the next generation. In case of
all feasible solutions, the comparison is performed based on
entirely the objective values. Despite that ATM was originally
proposed for CSOPs, Ma et al. [38] have recently investigated
its performance on CMOPs, showing that ATM could obtain
competitive results as well, particularly on those with narrow
feasible regions. The ensemble of constraint handling methods
(ECHM), suggested by Qu et al. [48], was used to tackle
CMOPs. In ECHM, three CHTs are involved, including an
SP function [6], the superiority of feasible solutions [49] and
the ε constrained method [24]. Note that the ECHM uses three
sub-populations, each of which employs a different constraint-
handling method.

Recently, ignoring constraints has become a feasible way of
handling CMOPs. In PPS-MOEA/D [32], the search process is
divided into push and pull stages. In the push stage, constraints
are entirely ignored, and the population is pushed toward the
UPF as close as possible by optimising objectives only. In
the pull stage, the population is pulled back to the CPF using
an improved ε constraint-handling approach. In C-TAEA [5],
two collaborative archives are maintained simultaneously. The
convergence-oriented archive (CA) is the driving force to push
the population toward the PF, and diversity-oriented archive
(DA) focuses on maintaining the population diversity. One of
the main characteristics of the update mechanism for DA is
that constraint violation is not taken into consideration.

III. THE PROPOSED CIC-MOEA/D

The pseudo-code of the proposed CIC-MOEA/D is outlined
in Algorithm 1. As shown, CIC-MOEA/D has two algorithm-
level parameters: the neighbor size (T ) and the parameter used
in the switch between two stages (gap)2, in addition to two
common parameters, i.e., the population size (N ) and the num-
ber of the maximum generations (G). The algorithm begins
with the initialization of N weight vectors Λ = {λ1, . . . ,λN}
(Line 1), the determination of neighbor structure for sub-
problems (Line 2) and the initialization of N random solutions
P = {x1, . . . ,xN} (Line 3). Note that the i-th weight vector
λi in Λ is denoted as λi = (λi1 , . . . , λij , . . . , λim), where
λij ≥ 0 and

∑m
j=1 λij = 1. In the algorithm, we record the

best feasible solution for each sub-problem, and these solutions
are stored in the set P ′. According to Line 5, members in P
are used to initialize P ′. Specifically, the i-th member in P ′

(denoted by x′
i) is initialized as xi if xi is feasible, and NULL

otherwise. Subsequently, as shown in Line 6, the variable
stage, indicating the current stage, is initialized to 1.

According to Lines 10-25, the evolutionary process is then
divided into two stages, where the population is evolved by
the first framework (evolutionF1) and the second framework
(evolutionF2 ), respectively. Notice that constraints are not
taken into account in the first stage. During the search, non-
dominated feasible solutions are stored in an external archive
A (being empty initially), which is updated periodically in the
second stage for every gap generations. Finally, after ranking
A, which is updated in Line 27, by using the constrained non-
dominated sorting [27], the algorithm returns the first layer L1.
Specifically, L1 contains either all the non-dominated feasible
solutions in case that feasible solutions appear in A, or the
solution(s) with the smallest constraint violation if all the
solutions are infeasible.

In the following subsections, we will give details on the
main algorithmic components.

A. The first evolutionary framework

In the first stage, the primary goal is to aid the population in
getting across infeasible barriers (if any), and to pull the pop-
ulation towards the UPF. Therefore, constraints are not taken
into consideration in the adopted evolutionary framework (i.e.,
evolutionF1 (Λ, P ) in Algorithm 2). Instead, this framework
puts more emphasise on balancing convergence and diversity.
To this end, a clustering-based ranking method is developed to
select N promising solutions for the next generation. Based on
the order in which the solutions are selected, they are grouped
into different layers. Each solution has an attribute “rank”,
indicating which layer it belongs to. This attribute can aid in
the mating selection, where solutions with small “rank” values
are preferred.

As shown in Line 1 of Algorithm 2, an offspring population
Q is generated from the current population P . Details on
the reproduction are as follows: for each sub-problem i, a
candidate set D is set either to B(i) (with the probability δ,
a parameter), or to {1, . . . , N} (with the probability 1 − δ),

2The parameter gap serves also as the archive update period.
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Algorithm 1 The framework of CIC-MOEA/D
Input: population size (N ), number of maximum generations

(G), neighbor size (T ) and the parameter used in the
switch between two stages (gap)

Output: Final archived solutions
1: Initialize N weight vectors: Λ = {λ1, . . . ,λN}
2: For each i ∈ {1, . . . , N}, set B(i) = {i1, . . . , iT }, where

λi1 , . . . ,λiT are T closest weight vectors to λi

3: Initialize N random solutions: P ← {x1, . . . ,xN}
4: Compute objectives and evaluate constraints for

x1, . . . ,xN

5: Initialize feasible solution set P ′ = {x′
1, . . . ,x

′
N} using

members in P
6: stage← 1 // stage ∈ {1, 2} indicates the stages
7: g ← 1 // g is the current generation
8: A← ∅ // The archive A is empty
9: while g ≤ G do

10: if stage = 1 then
11: P ← evolutionF1 (Λ, P ) // Evolve P using the first

framework
12: g ++
13: trials ← updateFeasibleSet (P ′, P ) // The trails

is the number of unsuccessful trials when updating
the ideal point for feasible solutions

14: if (trials > gap×N) || (g > G/2) then
15: stage← 2
16: P ← reconstruct (P ′, P ) // Reconstruct the

population P
17: end if
18: else
19: P ← evolutionF2 (P ) // Evolve P using the second

framework
20: g ++
21: // Update archive A for every gap generations
22: if g % gap = 0 then
23: A← updateArchive (A ∪ P )
24: end if
25: end if
26: end while
27: A← updateArchive (A ∪ P )
28: Perform the constrained non-dominated sorting [27] to A,

and identify the first layer L1

29: return L1

from which two different elements k1 and k2 can be chosen.
We then apply a binary selection to xk1 and xk1 , and the one
with a smaller “rank” wins out. Notice that a random selection
can be performed in case that both solutions have the same
“rank” value. In a similar way, we can choose another parent
xl. After crossover, the two parents reproduce two offspring,
from which we randomly select the final one (to be mutated
and evaluated subsequently). Since only one child is generated
each time in the above procedure, the set Q contains exactly
N offspring.

According to Line 2 of Algorithm 2, the parent and offspring
populations are merged into a single set S, and members in

Algorithm 2 P ← evolutionF1 (Λ, P )

Input: the set of weight vectors Λ and the population P
Output: the updated population P

1: Q← reproduction (P )
2: S ← P ∪Q // |S| = 2N
3: S ← normalize (S)
4: z∗∗ ← (−ϵ, . . . ,−ϵ) // Set the reference point
5: r ← 1
6: k ← 0 // The number of selected solutions
7: while k < N do
8: {C1, . . . , CN} ← clustering (Λ, S)
9: for each i ∈ {1, . . . , N} do

10: if |Ci| ≥ 2 then
11: y ← argmin

x∈Ci

gpbi(x|z∗∗,λi)

12: y.rank ← r
13: xi ← y // Update the i-th solution in P using y
14: k ++ // The counter k is increased by one
15: If k = N , then return P
16: S ← S \ {y} // Remove y from S
17: Λ← Λ \ {λi} // Remove λi from Λ
18: end if
19: end for
20: r ++
21: end while
22: return P

this set are suggested to be normalized (Line 3). Specifically,
for each x ∈ S, the i-th objective value fi(x) is normalized
to f̃i(x) as follows.

f̃i(x) =
fi(x)− z∗i
zmax
i − z∗i

(2)

where z∗i is the best objective value for the i-th objective found
during the search, and zmax

i is the worst objective value for
the i-th objective among members in S. In fact, the point
z∗ = (z∗1 , . . . , z

∗
m) is an estimation to the ideal point. After

normalisation, z∗ should be (0, . . . , 0). Following the practice
in [50], [51], the reference point z∗∗ = (z∗∗1 , . . . , z∗∗m ), used to
calculate scalarization functions, can be more optimistic than
the normalised z∗. Therefore, as shown in Line 4, z∗∗ is set
to (−ϵ, . . . ,−ϵ), where ϵ is a positive number and takes 0.1
in this paper.

Lines 7-21 in Algorithm 2 depict the clustering-based rank-
ing method. First, individuals in S are classified into clusters
using the function clustering (Λ, S) (Line 8). More precisely,
we calculate the perpendicular distance (in the objective space)
from each solution x to each of the search directions (de-
termined by weight vectors), and associate this solution with
the weight vector to which x has the shortest perpendicular
distance. As shown in Fig. 3, for example, solutions 1, 9
and 10 are associated with λ1, forming the first cluster
C1 = {1, 9, 10}. Analogously, C2 = {8}, C3 = {2, 3, 7},
C4 = {6} and C5 = {4, 5}.

Second, the solution with the best gpbi(x|z∗∗,λi) is se-
lected within each cluster that contains at least two members,
and is then used to replace the old solution xi (Line 13).
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Fig. 3. Illustration of the clustering-based ranking method. The first layer
L1 = {1, 3, 4} and the second layer L2 = {2, 5}. For solutions 6-10, they
are not chosen in the ranking process.

The gpbi(x|z∗∗,λi) is the penalty-based boundary intersection
(PBI) function proposed in [16], and is in the following form.

gpbi(x|z∗∗,λi) = d1 + θd2, (3)

where θ is a user defined penalty parameter; d1 and d2 are
defined as

d1 =
(f̃(x)− z∗∗)Tλi

∥λi∥
, d2 =

∥∥∥∥f̃(x)− (z∗∗ + d1
λi

∥λi∥
)

∥∥∥∥ .
(4)

These solutions, with the “rank” being r, constitute the r-th
layer Lr. For example, the solutions 1, 3 and 4 are selected
within C1, C3 and C5, respectively. Therefore, L1 = {1, 3, 4}.
Notice that, to introduce competition, we only consider clus-
ters with at least two members. As a result, those with less
than two members are not taken into account in the current
iteration. For example, as shown in Fig. 3, both C2 and C4

have only one associated solution, and therefore they are not
considered currently.

Third, the selected solutions are removed from S (Line 16).
Similarly, the corresponding weight vectors are also removed
from Λ (Line 17). In Fig. 3, for example, S and Λ become
{2, 5, 6, 7, 8, 9, 10} and {λ2,λ4}, respectively.

Finally, repeat the above steps until N solutions are selected.
Taking Fig. 3 as an example again, in the second-round of
clustering, solutions 2 and 8-10 are associated with λ2, and
solutions 5-7 are associated with λ4. Since both the two new
clusters have more than one solution, we can identify the best
solution within each of the clusters to form the second layer
L2 = {2, 5}, with the assumption that the solutions 2 and 5
are selected from C2 and C4, respectively3.

At the end of this section, we make the following remarks
on the first framework.

• Since the clustering is not performed in a one-off manner
(and may be repetitively executed if necessary), solutions
are not restricted to a fixed cluster during the ranking
process, thus enabling a comprehensive evaluation of
solutions under different weight vectors. In Fig. 3, for
example, the solution 5, belonging to C5 in the first-
round clustering, is re-assigned to C4 in the second round.
Clearly, this solution is not the best under λ5, but it

3The solution 5, rather than solution 6, is selected within C4, because we
assume that solution 6 is far away from the true front.

indeed performs best under λ4 given that the solution
6 is far away from the PF.

• In the first framework, both diversity and convergence are
considered. The diversity is promoted by clustering while
the convergence is guaranteed by the PBI scalarization
function. The balance between them is controlled by the
dynamic clustering strategy. As discussed early in Section
I, using the first framework alone is able to handle Type-I
and Type-II CMOPs/CMaOPs.

B. Update feasible solution set and switch between two stages

For each sub-problem i, we record two best solutions: One
is the current best solution xi ∈ P , and the other is the current
best feasible solution x′

i ∈ P ′. After P is evolved by using
the first framework (Line 11 in Algorithm 1), members in P
are utilized to update P ′ via the function updateFeasibleSet,
which returns trails — the number of unsuccessful trials when
updating the ideal point for feasible solutions (Line 13 in
Algorithm 1). To be specific, x′

i is replaced by xi if and only
if one of the following conditions is true.

• Solution xi is feasible and solution x′
i is NULL.

• Solution xi is feasible, and xi Pareto-dominates solution
x′
i.

• Solution xi is feasible and is also non-dominated with
x′
i, but gpbi(xi|z∗∗,λi) < gpbi(x′

i|z∗∗,λi).

If x′
i is replaced by xi, then xi is used to update the

ideal point for feasible solutions. If any dimension of this
point is updated, then the variable trails is reset to 0.
Otherwise, it is increased by one. The role of the variable
trails is to determine the switch between the two stages. If
trials > gap × N , as shown in Line 14 in Algorithm 1,
the process enters into the second stage by assigning 2 to the
variable stage. Note that the computational resources allocated
to the first stage is at most G/2. That is to say, the evolution
is switched from the first stage to the second stage if the ideal
point for feasible solutions has not been updated for gap×N
times, or the current number of generations (i.e., g) exceeds
G/2.

Before the second stage starts, the current population is
reconstructed based on P ′ and P (Line 16 in Algorithm 1).
This construction is quite simple. To be specific, we scan each
member xi ∈ P and replace it with x′

i ∈ P ′, if xi is infeasible
and x′

i is not NULL. The purpose of reconstruction is to
conduct the subsequent search from the current best feasible
solutions, rather than from the current best solutions because
some of them, if not all, may be infeasible.

C. The second evolutionary framework

To approximate well the CPF, constraints are emphasized
over objectives in the second-stage evolution. In this stage, we
adopt a steady-state evolutionary framework, which integrates
a normalization procedure and a better function that compares
solutions in the presence of constraints. To begin with, we
give the definition of constraint violation (CV) [12], [15] that
is widely used to measure the degree of constraints violated
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by a solution.

CV (x) =

p∑
i=1

max{gi(x), 0}+
q∑

j=1

max{|hj(x)| − δ, 0},

(5)
where δ is a very small positive value (e.g., 10−4) [38] adopted
to relax the equality constraints. Apparently, the CV value is
equal to 0 for feasible solutions, and larger than 0 for infeasible
ones.

As shown in Line 1 of Algorithm 3, evolutionF2
(P )

starts by normalizing the parent population P using the same
method as in the first framework. The function normalize (P )
returns the estimated ideal point (z∗) and the max point of P
(denoted by zmax). After this, the reference point z∗∗ is set
to (−ϵ, . . . ,−ϵ). Subsequently, for each sub-problem i, a new
solution y is generated by performing in order the mating
selection, crossover and mutation (Lines 4-12). According to
Line 14, after the evaluation of objectives and constraints, the
new solution y is normalized using z∗ and zmax that are
obtained in Line 1. The normalized objectives are then adopted
to update z∗∗: for each j = 1, . . . ,m, if f̃j(y) < z∗∗j is true,
then z∗∗j is replaced by f̃j(y) (Line 15).

Algorithm 3 P ← evolutionF2 (P )

Input: the population P
Output: the updated population P

1: {z∗, zmax} ← normalize (P )
2: z∗∗ ← (−ϵ, . . . ,−ϵ)
3: for each i ∈ {1, . . . , N} do
4: if rnd < δ then
5: D = B(i)
6: else
7: D = {1, . . . , N}
8: end if
9: Randomly select two indexes k and l (k ̸= l) from D

10: {y1,y2} ← crossover(xk,xl)
11: y ← a random selection between y1 and y2

12: Apply mutation to y
13: Compute objectives and evaluate constraints for y
14: f̃j(y) =

fj(y)−z∗
j

zmax
j −z∗

j
, j = 1, . . . ,m

15: Update z∗∗: For j = 1, . . . ,m, if f̃j(y) < z∗∗j , set
z∗∗j ← f̃j(y)

16: /* Update sub-problems */
17: times← 0
18: for each q ∈ D do
19: if better(xq,y, z

∗∗) then
20: Replace xq with y
21: times++
22: end if
23: If times ≥ nr, then break
24: end for
25: end for
26: return P

The newly generated y is employed to update at most nr

(a control parameter) sub-problems, and this is achieved by
utilizing a variable named times. According to Line 23, the

procedure breaks in the for loop in case that times ≥ nr.
For each q in D, being either B(i) or {1, . . . , N} (see Lines
4-8), the procedure checks whether y is better than xq or not.
If y is better, then xq is replaced by y. At the same time,
times is increased by one. It should be mentioned that, to
introduce randomness, we do not follow a fixed order (from
the first element to the last one) when scanning the set D in
Line 18. Instead, members in D are visited in a random way
such that each one has an equal chance to be reached. In this
framework, the convergence is promoted by minimizing PBI
scalarization, and the diversity is maintained by specifying a
set of weight vectors. The balance between them is handled
by restricting the number of sub-problems to be updated by a
new solution [37].

Algorithm 4 better(xq,y, z
∗∗)

Input: xq and y
Output: True or False

1: if CV (y) < CV (xq) then
2: return True
3: else if CV (y) = CV (xq) then
4: if (y ≺ xq) then
5: return True
6: else if (y ⊀ xq) ∧ (xq ⊀ y) then
7: if gpbi(y|z∗∗,λq) < gpbi(xq|z∗∗,λq) then
8: return True
9: end if

10: end if
11: end if
12: return False

The last point is related to the better function, which is
detailed in Algorithm 4. The y is said to be better than xq if
and only if one of the following conditions is true.

• y has a smaller CV than xq;
• Both y and xq have the same CV, but y dominates xq

(i.e., y ≺ xq);
• Both y and xq have the same CV, and they are also

non-dominated with each other, but gpbi(y|z∗∗,λq) <
gpbi(xq|z∗∗,λq).

Clearly, the above comparison follows a constraint-first
and objective-second principle, emphasizing first the solutions
violating less constraints over those violating more, and second
the solutions dominating others over those being dominated.
Finally, those with small PBI values are preferred in case that
the solutions are incomparable regarding both CV values and
the Pareto-dominance relation. It should be mentioned that this
constraint handling technique shares a similarity with CDP.
That is, both of them compare solutions using CV values first
and Pareto-dominance second. However, the new constraint
handling technique adopts another criterion, i.e., PBI scalar-
ization function, making this technique more suitable than
CDP in handling CMaOPs. As discussed elsewhere [9], [15],
[52], the Pareto dominance can lead to insufficient selection
pressure as the number of objectives increases. In contrast,
scalarization functions compare individuals using a scalar
value, being effective in distinguishing between solutions even
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in the context of many-objective optimization [15].

D. Update archive

In the second-stage evolution, as shown in Algorithm 1,
the external archive A is updated for every gap generations.
In this paper, we adopt the procedure introduced in [53] to
maintain the archive A. In fact, this procedure was originally
designed for the environmental selection in the unconstrained
optimization, aiming at choosing N solutions for the next
generation from the mixed population with 2N solutions.
Since the task is similar in maintaining the archive (selecting
also N solutions from A ∪ P with 2N individuals), this
procedure can be automatically transferable in this context.
Different from the environmental selection performed at each
generation, however, the maintenance of archive is executed
periodically. Due to space limit, we give a brief introduction
to this procedure in Section I in the supplement. Interested
readers can find more details in the original study [53].

E. Time complexity

The clustering operation in Line 8 of Algorithm 2 requires
O(mN2) computations, and the for loop from Line 9 to
Line 19 requires at most O(N2) computations. Given that
O(mN2) > O(N2), the time complexity of the interior
of the while loop in Algorithm 2 is O(mN2). Since the
while loop is repeated at most N times. Hence, the worst-
case time complexity of Algorithm 2 is O(mN3). For the
second framework (Algorithm 3), the worst time complexity
is O(mN2) in the case in which |D| = N . Considering all
the above, the worst-case time complexity of CIC-MOEA/D
is O(mN3). In practice, however, CIC-MOEA/D runs much
faster than expected. As will be shown in Sections V-A and
VI-C, CIC-MOEA/D runs faster than C-NSGA-III [15], C-
MOEA/DD [18] and C-TAEA [5]. The following are some
possible reasons. First and most importantly, the theoretical
time complexity of the first framework (Algorithm 2) is
obtained in the worst case in which each solution forms an
independent layer. However, this scenario rarely occurs in
practice. It is common that multiple solutions belong to a
same layer. Hence, the clustering operation in Algorithm 2
is repeated much less than N times. Naturally, this improves
the running speed significantly. Second, according to Line 14
in Algorithm 1, the first framework is applied at most G/2
generations. This further reduces the runtime consumed.

F. Some discussions on CIC-MOEA/D

• The proposed CIC-MOEA/D share some similarities with
C-MOEA/DD. For example, both of them estimate den-
sity by associating solutions with weight vectors, and
delete/select solutions according to the PBI function.
Moreover, solutions are ranked into different layers in
both algorithms. However, CIC-MOEA/D is different
from C-MOEA/DD in the following aspects. First, C-
MOEA/DD divides the population into different layers
according to the Pareto dominance relation, whilst CIC-
MOEA/D ranks solutions based on the order in which

solutions are selected according to PBI function values.
Second, when associating solutions with weight vectors,
C-MOEA/DD uses angles whereas CIC-MOEA/D uses
perpendicular distances.

• Both CIC-MOEA/D and PPS-MOEA/D ignore con-
straints in the first stage. However, the working principles
of the two algorithms are quite different in the second
stage. Specifically, as illustrated in Fig. 4, PPS-MOEA/D
should at first push the population towards the UPF
as close as possible, and then gradually pull it back
from UPF to CPF by using the ε constraint handling
strategy. When the gap between UPF and CPF is large,
however, the pull stage can be time-consuming, and
wastes computational resources. In CIC-MOEA/D, the
search in the second stage starts with the best feasible
solutions recorded during the search in the first stage.
This in general makes CIC-MOEA/D more efficient in
approximating the CPF in the above scenario. Moreover,
the CHTs adopted in the two algorithms are different
in the second stage. Finally, each of the two stages in
CIC-MOEA/D, as mentioned previously, uses a differ-
ent evolutionary framework, being different from PPS-
MOEA/D in which only one framework is adopted in
both stages. The advantages of using two frameworks will
be experimentally investigated in Section VI-B.

• We must admit that some techniqes/strategies used in
CIC-MOEA/D are inspired by ideas adopted previous-
ly. Nevertheless, as will be demonstrated in the fol-
lowing section, the combination of these simple tech-
niqes/strategies can be surprisingly effective in handling
most of the existing CMOPs, both artificial and practical.
Moreover, the proposed CIC-MOEA/D is computation-
ally efficient (in terms of the actual execution time),
being faster than some state-of-the-art CMOEAs, e.g., C-
NSGA-III [27], C-TAEA [5].

o
1
f

2
f

UPF 

 CPF

Feasible region

Feasible solution

Fig. 4. Illustration of the difference between CIC-MOEA/D and PPS-
MOEA/D. In the second stage, the search in PPS-MOEA/D starts from the
UPF, while that in CIC-MOEA/D starts from the best feasible solutions ever
recorded.

IV. EXPERIMENTAL SETUP

A. Test suites

To perform empirical evaluations, we choose four suites of
CMOPs/CMaOPs, i.e., the MW test problems proposed by
Ma and Wang [38], the DC-DTLZ test problems proposed by
Li et al. [5], the DAS-CMOPs/DAS-CMaOPs test problems
proposed by Fan et al. [4], and the real-world constrained
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OSPS problem proposed by Xiang et al. [39]. All the four
test suites have been proposed recently, and each of them has
its own features. For example, the MW test suite, consisting
of 14 problems, covers diverse characteristics extracted from
real-world CMOPs, such as small feasibility ratio, sufficient
nonlinearity of constraints [38]. The DC-DTLZ test suite,
developed on the basis of DTLZ problems [54], is charac-
terized by constraints acting on the decision space [5]. The
most important feature of DAS-CMOPs/DAS-CMaOPs is that
the difficulty of the problems can be adjusted using a triplet
(η, ζ, γ), where the three parameters specify the difficulty level
of diversity-hardness, feasibility-hardness and convergence-
hardness, respectively [4]. Finally, the constrained OSPS is a
real-world problem in search-based software engineering, with
the features of being large-scale and discrete. More details on
these test suites can be found in Section II-A in the online
supplement. Notice that, apart from CMOPs with 2 or 3
objectives, we also take into account CMaOPs with 4, 5 and 10
objectives. This setting allows us to investigate the scalability
of the algorithms with respect to the number of objectives.

B. Peer algorithms and performance metrics

To carry out performance comparisons, we compare the
proposed CIC-MOEA/D with six state-of-the-art algorithms,
i.e., PPS-MOEA/D [32], C-NSGA-III [27], C-MOEA/D [27],
NSGA-II-CDP [12], C-MOEA/DD [18] and C-TAEA [5]. The
recently proposed PPS-MOEA/D is an instantiation of the
PPS framework embedded in MOEA/D, and constraints in
this algorithm are handled by an improved ε method. The
C-NSGA-III is the constrained version of NSGA-III [15], and
it uses CDP to sort a population into different nondomination
layers. Similarly, NSGA-II-CDP also handles constraints via
CDP. In C-MOEA/D, a modification of MOEA/D-DE [37],
feasibility information, in addition to aggregation function
values, is adopted to compare solutions to emphasize feasible
and small-CV solutions. The C-MOEA/DD combines Pareto
dominance and decomposition into a single paradigm, and
feasible solutions are in general emphasized over infeasible
ones. However, if an infeasible solution is associated with
an isolated subregion, then it will survive without reservation
so as to improve population diversity. Finally, the C-TAEA
is a tailored algorithm for CMOPs, in which two archives
are maintained simultaneously. Note that constraints are not
considered when updating the diversity-oriented archive4.

Each algorithm is independently run 30 times in each
test instance, and the medians of performance metrics are
used to evaluate and compare algorithms. The performance
metrics used in this study are HV [21] and IGD+ [55].
According to [56], both metrics are able to simultaneously
measure convergence and diversity. It should be noted that a
larger HV value indicates a better solution set. In contrast, a
smaller IGD+ value is desired. A brief introduction to the two
performance metrics can be found in Section II-B in the online
supplement.

4The proposed CIC-MOEA/D is independently compared with C-TAEA in
Section VI-C due to their similarity.

C. Experimental settings

Due to space limit, experimental settings used in our study
are summarized in Section II-C in the online supplement.
These settings include the population size N , the termination
conditions, reproduction operators along with corresponding
parameter settings, and control parameters in peer algorithms.

V. RESULTS AND DISCUSSIONS

In this section, we give computational results on MW
test problems [38] (Section V-A), DC-DTLZ test problems
[5] (Section V-B), DAS-CMOPs/DAS-CMaOPs [4] (Section
V-C), and the real-world constrained OSPS problem [39]
(Section V-D). Moreover, some necessary discussions are also
presented.

A. Results on MW test problems

Table S-5 in the supplement summarizes the medians of
the HV results obtained by each algorithm on the MW test
problems. In that table, as well as other related tables, the best
and the second-best results for each test problem are shaded
with a dark gray and a light gray background, respectively.
Moreover, the Wilcoxon’s rank sum test [57], at a 0.05
significance level, is performed for each pairwise comparison
between CIC-MOEA/D and each of the algorithms on each
test problem. The statistical results are represented by three
symbols: •, ◦ and ‡, indicating that CIC-MOEA/D performs
significantly better than, significantly worse than and statisti-
cally equivalently to the compared algorithms, respectively.

As seen in Table S-5 in the supplement, CIC-MOEA/D
obtains 12 best/second-best results on the MW test suite,
outperforming dramatically all the others. This conclusion is
further confirmed by the statistical results, summarized in
Table I, showing that CIC-MOEA/D is significantly better
than its competitors on at least 10/14 ≈ 71% and at most
13/14 ≈ 93% test problems. Inversely, CIC-MOEA/D is
inferior to all the other algorithms, except for PPS-MOEA/D,
on at most one test problem. Compared with PPS-MOEA/D,
CIC-MOEA/D presents significantly worse performance on
only two problems. According to Table S-6 in the supplement,
behaviors of the algorithms regarding the IGD+ results are
consistent with those regarding HV. This well demonstrates
that CIC-MOEA/D is the best-performing algorithm on the
MW test problems.

TABLE I
SUMMARY OF COMPARISONS REGARDING HV ON MW TEST PROBLEMS.

CIC-MOEA/D v.s. • ‡ ◦

PPS-MOEA/D 10 2 2
C-NSGA-III 12 2 0
C-MOEA/D 13 0 1
NSGA-II-CDP 10 3 1
C-MOEA/DD 13 0 1

For each type of problems, we count the number of test
problems on which CIC-MOEA/D obtains the best or second-
best HV results, and then calculate the percentages by di-
viding this number by the total number of problems in each
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type. After calculation, we find that CIC-MOEA/D performs
best or second best on 100% Type-I problems, 88% Type-II
problems, and 67% Type-III problems, indicating that CIC-
MOEA/D is particularly suitable for solving Type-I and Type-
II problems. Recall that we have asserted in Section I that, by
ignoring constraints, CIC-MOEA/D would perform effectively
on problems whose CPF contains the entire or part of the
UPF. This assertion is well validated by the experimental
results presented in this section. In fact, the CPFs of Type-
I and Type-II MW problems come either entirely or partly
from the unconstrained counterparts [38]. Results show that
CIC-MOEA/D can indeed perform well on these problems,
particularly on Type-I problems whose CPF is the same as
the UPF.

To compare the computational efficiency, we show in Fig.
5 the logarithm of the runtime on all the MW test problems.
As seen, CIC-MOEA/D runs slower than C-MOEA/D and
NSGA-II-CDP, but faster than C-MOEA/DD and C-NSGA-
III. It is observed that, on the 2-objective test problems, the
speed of CIC-MOEA/D is very close to that of PPS-MOEA/D.
On the 3-objective MW4, MW8 and MW14, however, CIC-
MOEA/D runs obviously faster than PPS-MOEA/D. Clearly,
CIC-MOEA/D has a moderate running speed among all the
algorithms considered here. Without introducing much com-
putational burden, the proposed CIC-MOEA/D can achieve
high performance on these problems. This feature makes CIC-
MOEA/D a very promising tool for handling CMOPs.
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Fig. 5. Runtime comparison on MW test problems.

At the end of this section, we investigate the scalability
of the algorithms with respect to the number of objectives
by extending MW4, MW8 and MW14 to CMaOPs. The HV
results are given in Table S-7 in the supplement, where we
can find that CIC-MOEA/D performs best or second best in
all the test instances, except for the 5-objective MW8. Being a
highly competitive algorithm to CIC-MOEA/D, C-MOEA/DD
obtains the best/second-best HV in four test instances. Com-
pared with PPS-MOEA/D, C-MOEA/D and NSGA-II-CDP,
CIC-MOEA/D performs significantly better in all the 6 test
instances. In comparison with C-NSGA-III, CIC-MOEA/D
shows worse performance in only one test instance, i.e., the
5-objective MW8. According to Table S-7 in the supplement,
CIC-MOEA/D is the most effective algorithm on the Type-
I problems, obtaining the best HV results in all the four test
instances. On Type-II problems, for which the best algorithm is
C-MOEA/DD, the proposed algorithm performs competitively.

We remind the readers that, due to page limit, visualized
comparisons on the MW test problems are presented in Figs.
S-1 and S-2 in the supplement.

B. Results on DC-DTLZ test problems

According to our taxonomy, the DC-DTLZ test problems
can be classified into three types: I, II and II′. The HV results
on these problems are listed in Table S-8 in the supplement.
Considering the number of the best/second-best results, CIC-
MOEA/D is the best-performing algorithm, followed by PPS-
MOEA/D and C-MOEA/DD. It is clear from that table that
CIC-MOEA/D performs fairly well on all the three types of
problems. This is consistent with our expectation. In fact,
as discussed in Section I, the three types of problems poss
features which can be effectively handled by mechanisms
adopted in CIC-MOEA/D. These features include that the CPF
has an intersection with UPF, and that there are infeasible
regions blocking the way of convergence. For example, DC2-
DTLZ1 and DC2-DTLZ3 belong to Type I. However, the
feasible region of the two problems is very narrow, and the
CV value of a solution does not monotonically decrease when
it converges toward the CPF. Moreover, there exist several
local optima of the CV function [5]. The above characteristics
make the two problems extremely difficult. As shown in Fig.
S-3 (a) in the supplement, some algorithms under investigation
fail to return any feasible solution (e.g., C-MOEA/DD), and
some get stuck in a locally optimal front (i.e., C-NSGA-III, C-
MOEA/D and NSGA-II-CDP). Note that, like CIC-MOEA/D,
PPS-MOEA/D can also escape from local optima, but its
solution set is worse than that of CIC-MOEA/D concerning
both convergence and diversity. We are aware that only CIC-
MOEA/D and PPS-MOEA/D are able to jump over local
optima on DC2-DTLZ1 and DC2-DTLZ3. The reason is that
both algorithms do not consider CV values in the early stage
of the evolutionary process, and this will make the algorithms
immune to local optima of the CV function.

For the 3-objective DC1-DTLZ1, as shown in Fig. S-3 (b)
in the supplement, the solutions obtained by CIC-MOEA/D,
NSGA-II-CDP and C-MOEA/DD can cover all the discon-
nected segments. In contrast, at least one segment is missed
by the remaining three algorithms (i.e., PPS-MOEA/D, C-
NSGA-III and C-MOEA/D). Compared with the solutions of
NSGA-II-CDP, those of CIC-MOEA/D are distributed more
widely and more uniformly. In addition, it can be observed
that C-MOEA/DD returns much less final solutions than CIC-
MOEA/D does. Finally, by observing Fig. S-3 (c) in the
supplement, we find that only CIC-MOEA/D can yield (nearly)
converged solutions on the 3-objective DC3-DTLZ3, while the
solutions of other algorithms are all stuck at locally optimal
front. According to [5], the feasible region of DC3-DTLZ3
is disconnected. In other words, there are many infeasible
segments blocking the way of converging towards the CPF. As
discussed in Section I, ignoring constraints as done in CIC-
MOEA/D can easily overcome these infeasible barriers. On
the contrary, feasibility-driven algorithms, e.g., C-NSGA-III,
C-MOEA/D and NSGA-II-CDP, may struggle in converging
into the true front primarily because the working population
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can hardly jump out from a feasible region to an infeasible
one. Notice that constraints are also ignored in the first stage
in PPS-MOEA/D, the algorithm, however, cannot well handle
DC3-DTLZ3 either. One of the possible explanations is that
the population has not been pushed onto or near to the UPF
in the push stage where constraints are not considered, thus
making it difficult to pull the population back to the CPF in
the subsequent pull stage.

C. Results on DAS-CMOPs and DAS-CMaOPs problems

According to the taxonomy adopted in this paper, the DAS-
CMOPs and DAS-CMaOPs with convergence-, diversity- and
feasibility-hardness are Type-I′/-II′5, Type-II and Type-III
problems, respectively. Since the main characteristic of the two
test sets is the difficulty adjustability, we choose a difficulty
triplet with moderate hardness for each type. More specifically,
the difficulty triplet is (0, 0, 0.5), (0.5, 0, 0) and (0, 0.5, 0) for
Type I′/II′, Type II and Type III, respectively. The HV and
IGD+ results on DAS-CMOP test problems are available in
Tables S-9 and S-10 in the supplement, and the summary
of the statistical test results is given in Table II. As seen,
CIC-MOEA/D performs significantly better than the peer
algorithms in at least 74% and 67% test instances regarding
HV and IGD+, respectively. In addition, the CIC-MOEA/D
outperforms obviously other algorithms in at most 89% test
instances concerning both performance metrics. Clearly, CIC-
MOEA/D obtains the best overall performance on DAS-
CMOPs. For visualized comparisons on this test suite, please
refer to Fig. S-4 in the supplement.

TABLE II
SUMMARY OF COMPARISONS REGARDING HV AND IGD+ ON

DAS-CMOPS.

CIC-MOEA/D v.s.
HV IGD+

•/ ‡ /◦ •/ ‡ /◦

PPS-MOEA/D 74%/11%/15% 78%/15%/ 7%

C-NSGA-III 78%/ 4%/19% 67%/15%/19%

C-MOEA/D 85%/ 4%/11% 81%/ 7%/11%

NSGA-II-CDP 85%/ 4%/11% 85%/11%/ 4%

C-MOEA/DD 89%/ 4%/ 7% 89%/ 4%/ 7%

We are particularly interested in comparing the algorithms
for each type separately. Fig. 6 (a) presents the percentage
of each type of DAS-CMOPs on which the best HV results
are obtained by CIC-MOEA/D, PPS-MOEA/D and C-NSGA-
III, the three most competitive algorithms on this test suite. It
can be found that CIC-MOEA/D overwhelmingly outperforms
PPS-MOEA/D and C-NSGA-III on Type-I′/-II′ and Type-II
problems, obtaining the best HV results on 78% problems
for both types. On Type-III problems, CIC-MOEA/D is com-
parable with C-NSGA-III, and both of them gain the best
performance on 33% problems. As observed in Table S-9 in
the supplement, however, CIC-MOEA/D shows a significant

5According to [4], some DAS-CMOPs with convergence-hardness are Type-
I′ problems, i.e., DAS-CMOP1-6, while some are Type-II′ problems, i.e.,
DAS-CMOP7-9. Notice that a common feature is that the convergence is
hampered by infeasible regions in both types. Therefore, we use Type I′/II′
to group them to emphasize this common feature.

improvement over C-NSGA-III if we consider the number of
both the best and the second-best HV results obtained. As
expected, Fig. 6 (a) shows that CIC-MOEA/D, as well as
PPS-MOEA/D, performs better on Type I′/II′ and Type II
than on Type III. On the contrary, C-NSGA-III presents better
performance on Type III than on the other two types.
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Fig. 6. The percentage of each type of DAS test problems on which the best
HV results are obtained. (a): DAS-CMOPs; (b): DAS-CMaOPs.

TABLE III
SUMMARY OF COMPARISONS REGARDING HV ON DAS-CMAOPS.

CIC-MOEA/D v.s. • ‡ ◦

PPS-MOEA/D 78% 9% 13%
C-NSGA-III 76% 7% 17%
C-MOEA/D 89% 2% 9%
NSGA-II-CDP 91% 2% 7%
C-MOEA/DD 94% 2% 4%

Similarly, we analyze the performance of the algorithms on
DAS-CMaOPs. The statistical test results are summarized in
Table III6. As seen, CIC-MOEA/D outperforms its competitors
on at most 94% and at least 76% test problems. Clearly, the
proposed CIC-MOEA/D is the best-performing algorithm on
DAS-CMaOPs. Moreover, Fig. 6 (b) presents percentages of
each type of problems on which the best HV results are ob-
tained by CIC-MOEA/D, PPS-MOEA/D and C-NSGA-III. It
can be found that CIC-MOEA/D, outperforming dramatically
the other two algorithms, obtains the best HV results on 72%
Type-I′/-II′, 78% Type-II and 67% Type-III problems. Similar
to the behaviors on DAS-CMOPs, CIC-MOEA/D shows better
performance on Type I′/II′ and Type II than on Type III.

D. Results on the constrained OSPS problem

In this section, we investigate the performance of the
algorithms on a practical problem in search-based software
engineering, i.e., the constrained OSPS problem proposed in
[39]. This problem aims at selecting optimal software products
from a software product line, which is usually represented by a
feature model (FM). This selection should be (nearly) optimal
with respect to a set of objectives and a set of constraints.
Mathematically, this is a large-scale (with more than 1000
decision variables in general) and discrete (each variable
takes either 0 or 1) multi-objective optimization problem with

6The HV results on DAS-CMaOPs are available in Table S-11 in the online
supplement.
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constraints [39]. Using objectives and constraints defined in
[39], we can construct 2-, 3- and 4-objective OSPS instances
for each FM. In this paper, we use 12 real-world FMs, also
adopted in [39], to construct 36 OSPS instances. For more
details on how to construct these instances, please refer to the
original study [39].

TABLE IV
SUMMARY OF COMPARISONS REGARDING HV AND IGD+ ON THE

CONSTRAINED OSPS PROBLEM.

CIC-MOEA/D v.s.
HV IGD+

•/ ‡ /◦ •/ ‡ /◦

PPS-MOEA/D 86%/11%/ 3% 83%/17%/ 0%

C-NSGA-III 81%/14%/ 6% 78%/14%/ 8%

C-MOEA/D 83%/14%/ 3% 83%/14%/ 3%

NSGA-II-CDP 81%/11%/ 8% 78%/11%/11%

C-MOEA/DD 83%/ 3%/14% 81%/ 8%/11%

SATVaEA 72%/ 3%/25% 64%/ 8%/28%

Notice that the SATVaEA7 [58], a tailored algorithm for
the OSPS problem, is also included in the performance
comparisons. To make it fair, all the algorithms use the
same single-point crossover, bit-flip mutation and satisfiability
solver based repair operator [39] in the decision space. The
HV and IGD+ results are presented in Tables S-12 and S-13
in the online supplement. As seen from these tables, CIC-
MOEA/D performs best in most of the instances regarding
both metrics. Specifically, the algorithm obtains the best HV
and IGD+ results in 69% (25/36) and 61% (22/36) instances,
respectively. Considering the pairwise comparisons between
CIC-MOEA/D and each peer algorithm, as shown in Table IV,
CIC-MOEA/D outperforms other algorithms in at least 72%
and 64% instances concerning HV and IGD+, respectively.
It can be inferred from Table IV that SATVaEA is the most
competitive algorithm to CIC-MOEA/D. Fig. S-5 in the online
supplement compares the distribution of solutions obtained
in three 3-objective instances constructed based on toybox,
uClinux and 2.6.28.6-icse11. As observed in that figure, the
solutions of CIC-MOEA/D are distributed more widely than
those of others. In particular, CIC-MOEA/D is more effective
in finding better solutions on the boundary.

The above results indicate that the proposed CIC-MOEA/D
gains the best overall performance on this real-world problem.
According to [39], the constraints are mainly designed in such
a way that the UPF is made partially feasible. In other words,
most of the constructed OSPS instances are Type-II CMOPs.
Therefore, the high performance of CIC-MOEA/D is not
surprising because, as discussed previously, the mechanisms
adopted in the algorithm fit well this type of problems.

VI. FURTHER INVESTIGATIONS

In this section, we start by showing the positive effect of
ignoring constraints, and then investigate in depth why two
evolutionary frameworks should be adopted in the proposed

7The codes of SATVaEA can be found at https://www.researchgate.net/
profile/Xiang Yi9/publication/320007398 This is the code of SATVaEA/
data/59c71ff2458515548f32a02c/SATVaEArelease.zip

algorithm. In Section VI-C, CIC-MOEA/D is comprehensively
compared with C-TAEA, a highly-related algorithm proposed
recently.

A. On the effect of ignoring constraints

Experimental results in Section V have well validated the
effectiveness of the proposed CIC-MOEA/D on particularly
Type-I, -II, -I′ and -II′ problems. As discussed in Section I,
ignoring constraints is one of the major reasons for the high
performance of the proposed algorithm. In this section, we
explicitly show that ignoring constraints can indeed make a
difference by comparing CIC-MOEA/D with CIC-MOEA/D-
Variant, a variant of the new algorithm which considers
constraints throughout the evolutionary process. Table S-14
in the supplement gives medians of the HV results obtained
by the aforementioned two algorithms. As shown clearly, CIC-
MOEA/D performs better than, or at least comparably to, the
variant in 31 out of 33 test instances (94%). In particular,
CIC-MOEA/D significantly surpasses the variant in (almost)
all the DC2-DTLZ1, DC2-DTLZ3, DC3-DTLZ1 and DC3-
DTLZ3 test instances regardless of the number of objectives.
As discussed in Section V-B, these problems are extremely
difficult in terms of convergence because of local optima and
infeasible barriers. By ignoring constraints, however, they can
be well handled by our algorithm framework. As shown in Fig.
7, the solutions of CIC-MOEA/D converge (much) better than
those of CIC-MOEA/D-Variant on three typical DC-DTLZ and
DAS-CMOP test problems.
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Fig. 7. Final solutions obtained by CIC-MOEA/D and its variant on DC2-
DTLZ3 (Type I), DC3-DTLZ1 (Type II′) and DAS-CMOP6 (Type I′).

B. Why two evolutionary frameworks?

Another prominent feature of CIC-MOEA/D is that it
adopts two evolutionary frameworks in different stages. To
be more specific, the first framework (F1) used in the first
stage performs a clustering-based ranking to the union of
the parents and offsprings to select solutions for the next
generation. In the second framework (F2), a steady-state
mechanism is employed to update sub-problems immediately

https://www.researchgate.net/profile/Xiang_Yi9/publication/320007398_This_is_the_code_of_SATVaEA/data/59c71ff2458515548f32a02c/SATVaEArelease.zip
https://www.researchgate.net/profile/Xiang_Yi9/publication/320007398_This_is_the_code_of_SATVaEA/data/59c71ff2458515548f32a02c/SATVaEArelease.zip
https://www.researchgate.net/profile/Xiang_Yi9/publication/320007398_This_is_the_code_of_SATVaEA/data/59c71ff2458515548f32a02c/SATVaEArelease.zip
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once a new solution has been generated. Then, is it real-
ly necessary to use two evolutionary frameworks in CIC-
MOEA/D? In this section, we investigate in depth the benefits
of using two frameworks by comparing CIC-MOEA/D with
two variants, CIC-MOEA/D-F1 and CIC-MOEA/D-F2, where
the used framework is unified to F1 and F2, respectively.
Table S-15 in the supplement summarizes the HV results
obtained by the three algorithms. As shown, CIC-MOEA/D
performs better than the two variants in the majority of
the test instances. More specifically, CIC-MOEA/D signifi-
cantly outperforms CIC-MOEA/D-F1 and CIC-MOEA/D-F2

in 36 and 30 out of 44 test instances, respectively. Note
that both CIC-MOEA/D-F1 and CIC-MOEA/D-F2 are able to
obtain the best performance in some specific test instance,
like for example, CIC-MOEA/D-F1 on the 2-objective DC1-
DTLZ1 and DC1-DTLZ3, and CIC-MOEA/D-F2 on MW11
and MW12. Regarding the number of the best HV results,
however, CIC-MOEA/D overwhelmingly outperforms the two
variants. Therefore, the answer to the question posed at the
beginning becomes clear. That is, it is indeed necessary to
use two frameworks in the new proposal. In this way, by
utilizing advantages of both frameworks, the performance of
the algorithm can be promoted as much as possible.

C. Comparisons with C-TAEA

The C-TAEA8, proposed by Li et al. [5], is one of the
latest algorithms proposed for CMOPs. The algorithm uses
two collaborative archives simultaneously. Note that constraint
violations are not taken into consideration when updating
the diversity-oriented archive. As both CIC-MOEA/D and C-
TAEA maintain archives and both ignore constraints in a
certain way, we make a special comparison between CIC-
MOEA/D and C-TAEA in an independent section. Due to
page limit, the HV results obtained by the two algorithms
on four types of test problems are given in Table S-16 in
the supplement. As seen, CIC-MOEA/D performs better than,
equally to and worse than C-TAEA in 52%, 16% and 32% test
instances, respectively. It is also found that C-TAEA signifi-
cantly outperforms CIC-MOEA/D on Type-I test problems, but
performs in general worse on Type-II, Type-II′ and Type-III
problems. Considering the overall performance, however, CIC-
MOEA/D is better than C-TAEA. The visualized comparisons
of the solutions obtained by the two algorithms are presented
in Fig. S-6 in the supplement.

Having compared the two algorithms with respect to the
effectiveness, we further compare them in terms of the com-
putational efficiency. Compared with CIC-MOEA/D, as shown
in Fig. 8, C-TAEA runs much slower, requiring at least 11
times more runtime on the 3-objective DC-DTLZ problems.
Note that the largest ratio of runtime is 24 (which is found on
DC1-DTLZ3 and DC2-DTLZ1), indicating that the runtime of
CIC-MOEA/D on the two problems is only 1/24 (nearly 4%)
of the time consumed by C-TAEA. The above results suggest
that CIC-MOEA/D is (much) more computationally efficient
than C-TAEA. The following are some possible explanations.

8The codes of C-TAEA are downloaded from the home page of Dr. K Li:
https://cola-laboratory.github.io/docs/publications/

First and foremost, C-TAEA maintains two archives simulta-
neously, one for convergence and one for diversity, whereas
CIC-MOEA/D maintains only one archive. Second, the two
archives in C-TAEA are updated at each generation. Different
from this, the archive in CIC-MOEA/D is updated for every
gap (e.g., 10) generations, and this reduces dramatically the
time cost.
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Fig. 8. Runtime comparisons between CIC-MOEA/D and C-TAEA on the
3-objective DC-DTLZ problems. The y-axis is the ratio of runtime, i.e.,
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VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a simple yet effective
decomposition-based algorithm for constrained multi-/many-
objective optimization problems. In the algorithm, the evolu-
tionary process is automatically divided into two stages, in
which different constraint handling techniques and different
evolutionary frameworks are adopted. In the first stage, con-
straints are entirely ignored, and the population is evolved by
optimizing objectives only using a clustering-based ranking
framework. In the second stage, constraints are emphasized
over objectives to approximate well the constrained PF, and a
steady-state framework as in the original MOEA/D is applied
as usual.

The proposed algorithm is comprehensively compared with
several state-of-the-art CMOEAs on a large number of artifi-
cial and real-world problems, which are all suggested recently.
The experimental results well demonstrate the effectiveness
and efficiency of the new proposal. The following are some
main conclusions that we draw.

• The proposed algorithm obtains the best overall perfor-
mance on the problems considered. Notably, the new
algorithm performs particularly well on Type-I, Type-II,
Type-I′ and Type-II′ problems. The common features of
these problems are that the CPFs come either entirely
or partly from the unconstrained counterparts, and/or
that there are infeasible regions blocking the way of
convergence. As discussed early in Section I, ignoring
constraints can fit well these features, and this is indeed
the truth according our experimental results. For Type-III
problems, the proposed algorithm is also competitive to
the state-of-the-art CMOEAs, e.g., C-NSGA-III.

• The proposed algorithm is computationally efficient. Con-
cerning the actual running speed, the new proposal is
faster than C-TAEA, C-MOEA/DD and C-NSGA-III. The

https://cola-laboratory.github.io/docs/publications/
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new algorithm is able to achieve a good tradeoff between
effectiveness and efficiency.

• It is indeed necessary to use two frameworks in the new
proposal. By utilizing advantages of both frameworks, the
performance of the algorithm can be promoted as much
as possible on a wide range of problems.

. Although the proposed algorithm obtains the best overall
performance regarding the algorithms considered and the
problems selected, it may be further improved on problems
with some specific features. For example, in the future, we
intend to enhance the algorithm on problems with narrow
feasible regions [32] by using/desiging new constraint han-
dling strategies, or on problems with diversity-hardness [4] by
adapting weight vectors. Moreover, it is interesting to develop
new implementations for the two frameworks to be used in the
two stages. Finally, study on the applications of the algorithm
to other real-world problems is also an important part of our
future work.
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