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Abstract

Wireless fidelity (WiFi) and long term evolution (LTE) coexistence system has attracted significant attention recently.

However, most studies on coexistence only consider the issues about downlink performance and fairness between WiFi network
and LTE network.

In this paper, we take a comprehensive consideration of both the performance of WiFi and LTE, to propose a downlink/uplink
decoupling (DUDe) scheme for the fairness of the coexistence system.

Through the process of modeling construction, problem formulation with reformulation, solution and simulations, we illustrate
that DUDe can achieve proportional fairness in terms of sum throughput and load balancing between uplink and downlink.

In our decoupling model for coexistence between WiFi and LTE, resource allocation is under adaptive spectrum partitioning
and users can access each network of WiFi and LTE.

Moreover, to make our proposal more realistic, we adopt support vector machine (SVM) to predict the total number of users
in WiFi and LTE coexistence system, where the predictive simulation shows its high prediction accuracy with low complexity.
We further apply the prediction results to the optimization problem of DUDe.

Simulation results manifest that the proposed DUDe scheme has better performance in terms of sum throughput.

The sum throughput of DUDe scheme can come up to almost twice more than that of coupled association scheme.

The result shows that DUDe can also achieve load balance between uplink and downlink in the coexistence system.
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Abstract—Wireless fidelity (WiFi) and long term evolution
(LTE) coexistence system has attracted significant attention
recently. However, most studies on coexistence only consider
the issues about downlink performance and fairness between
WiFi network and LTE network. In this paper, we take a
comprehensive consideration of both the performance of WiFi
and LTE, to propose a downlink/uplink decoupling (DUDe)
scheme for the fairness of the coexistence system. Through
the process of modeling construction, problem formulation with
reformulation, solution and simulations, we illustrate that DUDe
can achieve proportional fairness in terms of sum throughput and
load balancing between uplink and downlink. In our decoupling
model for coexistence between WiFi and LTE, resource allocation
is under adaptive spectrum partitioning and users can access each
network of WiFi and LTE. Moreover, to make our proposal more
realistic, we adopt support vector machine (SVM) to predict the
total number of users in WiFi and LTE coexistence system, where
the predictive simulation shows its high prediction accuracy with
low complexity. We further apply the prediction results to the
optimization problem of DUDe. Simulation results manifest that
the proposed DUDe scheme has better performance in terms
of sum throughput. The sum throughput of DUDe scheme can
come up to almost twice more than that of coupled association
scheme. The result shows that DUDe can also achieve load
balance between uplink and downlink in the coexistence system.

Index Terms—Downlink/uplink decoupling, proportional fair-
ness, support vector machine, coexistence system.

I. INTRODUCTION

Owning to the rapid expansion of mobile Internet and the
widespread use of smart terminal devices such as mobile
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TABLE I: Adv. and disad. of existing coexistence between WiFi and LTE.

Method Advantage Disadvantage
Experiment only [17] Accurate No derivation
Human central [18] Semi-adaptive Reduce satisfaction
Adaptive access [19] More access Complex
LBT [20][21] Graceful coexistence Feasible or not
Duty circle [22] WiFi improving Losing time
Cognitive coexist [23] Near-optimal access Complex
Couple [24] Optimal QoS Unfairness
Decouple[25]-[27] Fairness No prediction

phones, laptops and others, the demand of mobile data traffic
in cellular systems like long term evolution (LTE) is increasing
exponentially [1]–[8]. From 2010 till now, mobile data traffic
raises up to one thousand times [9]. But the spectrum resources
for wireless communications are valuable and limited while
the demand for higher transmission rates increases incredibly.
Therefore, how to further improve the capacity of existing
communication systems becomes a key issue in the commu-
nication field.

However, there are a large quantity of spectrum resources
in the unlicensed band, which are currently utilized by other
wireless systems like wireless fidelity (WiFi). For example, in
5GHz band, there is up to 500MHz of spectrum bandwidth
available. In order to overcome spectrum shortage, we plan
to apply LTE in the unlicensed spectrum, known as LTE-
U [10], [11], which is deemed as a promising solution to
support the ultra-capacity foreseen in a few years. According
to the report of Qualcomm and Huawei [12], [13], LTE-U
shows a lot of advantages of carrying more mobile data traffic
and bringing users higher quality of mobile communication
experiences. However, the rapid development of LTE-U also
raises concern about whether or not LTE-U can coexist with
WiFi harmoniously and fairly. Typically, for channel access,
an LTE system always adopts a fixed time-frequency structure
while a WiFi system uses a mechanism based on contention
[14]–[16]. Due to the different access mechanisms between
those two systems, the coexistence in the same unlicensed
band may lead to some problems, such as unfairness between
WiFi and LTE, and between uplink and downlink.

There have been many existing studies on investigating co-
existence mechanisms for WiFi and LTE to obtain optimal net-
work performance [17]–[27]. The advantage and disadvantage
of them can be found in Table I. In [19], J. Xiao et al. proposed
an optimal mechanism of channel access by providing LTE
and WiFi users with equal access opportunities. In [20], [21],
they used listen-before-talk (LBT) mechanism for detection of
channel occupation and collision avoidance between different
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networks. In [22], E. Almeida et. al introduced the duty-
circle mechanism, using almost blank sub-frames technique to
enable LTE mute for a certain ratio of time slot, where WiFi
transmission can be guaranteed first. And how to design the
ratio of duty circle to optimize the throughput was dicussed
in [23]. Moreover, since the real-time applications of mobile
networks are continuously improved, the traffic in uplink has
greatly increased than before. Therefore, the fairness between
uplink and downlink becomes more important. However, most
existing studies only focus on the analysis of downlink, so that
a full consideration of both uplink and downlink should be
emphasized. In heterogeneous networks, coupled association
may result in unfairness between uplink and downlink [24].
Correspondingly, the basic idea of downlink/uplink decoupling
(DUDe) has been given in [25]–[27]. DUDe can balance the
data rates of uplink and downlink, which has already been
sustained by the current LTE/LTE-A specifications. Because
of the possibility that DUDe can be carried out for the
case of various base stations (BSs) in cellular networks, it’s
important and necessary for LTE-U to implement DUDe. In
this paper, we consider the coexistence between an LTE-U
network and a WiFi network as shown in Fig. 1. And we
propose a decoupling scheme, i.e., DUDe, to enable users to
optimally decide which network to access their uplinks and
downlinks. This scheme may achieve the goal of improving
the performance of the whole coexistence system and realize
the proportional fairness in terms of sum throughput between
uplink and downlink. At the same time, an adaptive resource
allocation framework in the unlicensed band will be given to
guarantee the requirements of fairness.

Besides, to make our proposal more realistic, we will
consider machine learning algorithm based on the regression
model for predicting the total number of users in coexistence
system between WiFi and LTE. Then the predicted results can
be used in the formulation of the above fairness problem with
DUDe. Due to high prediction accuracy with low complexity,
support vector machine (SVM) can be used to extensively
predict system characteristics in the future [28]. In this paper,
hence, we will apply SVM to predict the total number of users.
Under this case, based on the prediction and further analysis
of associations of users’ behaviors, we can not only allocate
appropriate spectrum resources for the coexistence system but
also obtain load balance between uplink and downlink in the
future.

The main contribution of this paper is to develop a novel,
adaptive spectrum partitioning to optimize the sum throughput
and obtain load balance with DUDe in the coexistence system
between WiFi and LTE. Different from traditional wireless
communication systems, our proposed method enables users
to optimally choose their uplinks and downlinks and access
different networks. This scheme can take full advantage of
spectrum resources and achieve fairness between uplink and
downlink of the coexistence system. We also adopt adaptive
spectrum partitioning method to allow users to choose their
optimal resource allocation. Besides, we apply the SVM algo-
rithm to predict the total number of users in the coexistence
network. According to the predicted users’ number by SVM,
we can allocate an appropriate quantity of spectrum resources

for the coexistence system. And we can further analyze the
associations of users’ behavior. Also we can achieve load bal-
ance between uplinks and downlinks in the future. Therefore,
our proposed DUDe scheme based on SVM prediction can be
used for analyzing not only static problems but also dynamic
problems of the coexistence network.

The remainder of this paper is organized as follows. In
Section II, the feasibility and benefits of applying DuDe
scheme are introduced in WiFi and LTE coexistence system.
In Section III, we give a mathematic model and its formulation
for coexistence between WiFi and LTE. In Section IV, we use
SVM to predict the users’ number in the coexistence network.
In Section V, numerical simulation results are presented. And
Section VI concludes this paper.

II. FEASIBILITY AND BENEFITS

In this section, we give a brief introduction of the feasibility
of DUDe in the coexistence system, and some discussions on
DUDe under the base of theoretical and practical perceptions.

The conventional mobile networks such as the 2G-4G are
always designed to couple the uplink and downlink. In other
words, mobile users should tie with the same BS or access
point (AP) in both uplink and downlink. This method is
sufficient for the homogeneous networks due to the similar
or same power level transmitted by all the BSs. Meanwhile,
the homogeneous network is designed mainly based on the
downlink, because the throughput requirement of the downlink
is often higher than that of the uplink in traditional networks.
The associations in homogeneous networks only take into
account the received signal power [27]. However, to catch up
with increasing network traffic, it should shift from a type
of the homogeneous network with a single tier to a type of
the heterogeneous network (HetNet) with multiple tiers, where
the HetNet is composed of different types of networks. It is
a popular and efficient way to improve the network capacity
such as the coexistence system between WiFi and LTE. This
changing trend in wireless networks demands a new look on
how to design the associations of uplink and downlink in the
coexistence system.

Obviously, the coupled associations of uplink and downlink
in HetNets, will lead to asymmetric traffic between the uplink
and downlink in WiFi and LTE coexistence system. But with
the rapid growth of real-time applications, video-calling, and
online social networking, the fairness between uplink and
downlink is becoming more and more important and necessary.
Therefore, the concept of DUDe has been proposed to deal
with this problem, which represented an innovative association
way to improve the whole network performance [26]. As a
consequence, in this paper, we consider to use DUDe in WiFi
and LTE coexistence system. The transmissions for uplink and
downlink will be independent while DUDe has already been
supported by the existing LTE specifications. Therefore, from a
theoretical point of view, the DUDe can be also accomplished
in the coexistence system. In this paper, we assume the LTE
BS and WiFi APs have the same service provider and a cloud
server is deployed at the back-end. The links between them are
wired so that the delay can be ignored. The communication
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Fig. 1: Decoupling for WiFi and LTE coexistence system in a
specific area.

process can be expressed as follows. If a user sends an
acknowledgement (ACK) for service request to LTE BS, BS
will transfer the ACK to the cloud server, which is capable
of powerful computation. The cloud server can calculate the
optimal solution to guarantee both the total throughputs and
load balance between uplink and downlink based on all the
inputs from WiFi and LTE. Then, it will send the schemes of
users’ association and the plan of bandwidth allocation back to
the BS or APs. Finally, the BS or APs will send an ACK to the
users that they will provide service for. To sum up, applying
DUDe in WiFi and LTE coexistence system is feasible.

The benefits of DUDe in WiFi and LTE coexistence system
are obvious and evident. DUDe in WiFi and LTE coexistence
system can be supported by the existing network architecture
so that there are no big changes in the design and implemen-
tation of networks and hardware facilities. And the users of
WiFi and LTE coexistence system can choose which network
to access based on their own requirements. For example,
if a user needs stable transmission in the uplink and high-
speed transmission in the downlink, it can choose to access
BS in uplink and AP in downlink. Furthermore, the fairness
between uplink and downlink can be greatly improved by
DUDe. At last, it can decrease the interference in WiFi and
LTE coexistence system.

III. MODELING AND FORMULATION

In this section, we first introduce the system model. Then,
we analyze the throughputs of uplink and downlink. Finally,
we will give the formulation of our problem of proportional
fairness.

A. Coexistence system model

The coexistence system model is considered in Fig. 1,
consisting of one LTE BS and several WiFi APs. One BS is
located at the center of the geographical area while multiple

WiFi APs are covered by the BS. Under this coexistence archi-
tecture, we denote K as the group of WiFi APs and L as the BS
of LTE. Denote N as the group of users within BS and APs,
who hope to access this network. The LTE system is designed
to support orthogonal frequency division multiplexing access
(OFDMA) transmission. The WiFi network operates with the
current CSMA/CA protocol and all users contend to access the
whole channels for transmission opportunities. Here, a specific
unlicensed band is shared by the LTE network and the WiFi
network, where the bandwidth is B and is divided into BL
and BW for LTE and WiFi, respectively. Since there is no
overlap between BW and BL, the interference between WiFi
and LTE can be completely avoided. Therefore, the bandwidth
allocation can be expressed as:

BW +BL = B , (1)
where BW and BL are continuous variables and can be
adjusted with the current situation of the network. In order
to maximize the throughputs of uplink and downlink simulta-
neously with load balance, we assume that the uplink and
downlink could be decoupled. It means that each user is
allowed to choose any network to access its own uplink or
downlink.

To model one user’s access status for its uplink and down-
link, we denote binary decision variables xUiL and xDiL as
whether user i (i ∈ N ) chooses LTE BS, i.e.,

xUiL =


1 If user i chooses LTE BS to provide

its service in the uplink;
0 else.

(2)

xDiL =


1 If user i chooses LTE BS to provide

its service in the downlink;
0 else.

(3)

Similarly, we denote binary decision variables yUij and yDij as
whether user i (i ∈ N ) accesses WiFi AP j (j ∈ K), i.e.,

yUij =


1 If user i chooses WiFi AP j to provide

its service in the uplink;
0 else.

(4)

yDij =


1 If user i chooses WiFi AP j to provide

its service in the downlink;
0 else.

(5)

Therefore, all the users in WiFi and LTE coexistence
network are divided into four groups: (I) Users attached to
both the uplink and downlink of BS, (II) Users attached to
the uplink of AP and the downlink of BS, (III) Users attached
to the uplink of BS and the downlink of AP, and (IV) Users
attached to both the uplink and downlink of AP. Since the
uplink or downlink of a user can be served by either LTE BS
or one of WiFi APs, for each user i, we have:

xUiL +
∑
j∈K

yUij ≤ 1, (6)

xDiL +
∑
j∈K

yDij ≤ 1. (7)

We assume that the channel in our model is Rayleigh
channel. When the signal s(t) of power P is transmitted on
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the Rayleigh channel, the received signal r(t) can be obtained
as r(t) = h(t)l(t)s(t) + n(t), where n(t) ∼ N(0, σ2

n) is the
white Gaussian noise (WGN). l(t) = d−α is the amplitude
attenuation caused by path loss, where d is the distance from
transmitter to receiver, 2 ≤ α ≤ 4 is the factor of path loss.
l(t) is a constant while the distance is fixed. h(t) is the channel
gain and obeys independent and identically distributed (i.i.d)
Rayleigh distribution, which means h(t) changes randomly
at different time slots. And its probability density function is
fh(s) =

s
σ2 e
− s2

2σ2 , s ≥ 0. Hence, at time t, the actual received
signal power can be obtained as Pr(t) = γ(t)Pd−α =
h2(t)Pd−α, where h2(t) obeys exponential distribution and
its probability density function is fγ(s) = 1

2σ2 e
− s2

2σ2 , s ≥ 0.
Based on the above analysis, at time t, the SNR of the channel
can be expressed as SNR = h2(t)Pd−α

σ2
n

.

B. WiFi Throughput Analysis

Assuming that each user is under the coverage of at least one
AP j, we model the coverage of one WiFi AP by defining Ai
as: (1) the set of users covered by a WiFi AP i, or (2) the set of
WiFi APs covering the user i. For simplicity, we assume each
user’s traffic is saturated. Hence, we can apply the empirical
throughput model in [29] to our formulation. With CSMA/CA,
all the users and APs have the same probabilities to access the
channel. For user i, who is served by the WiFi AP j, it should
contend the channel access with other WiFi users in Ni and
the WiFi APs in Wi within its contention range.

Note that, if there is any user in downlink access WiFi AP
j, it indicates that AP j is active, which can be expressed as∑
i∈Aj y

D
ij 6= 0. We define a new variable Kj as whether the

WiFi AP j is active or not. That is,

Kj =

{
1 If

∑
i∈Aj y

D
ij 6= 0;

0 else;
(8)

where j ∈ Wi. Based on the above discussion, we can express
the total number of active users’ uplink and WiFi APs that is
within user i’s CSMA contention range as follows:

Mi =
∑
k∈Ni

∑
j∈Ak

yUkj +
∑
j∈Wi

Kj . (9)

Therefore, if user i’s uplink is served by the WiFi networks,
the channel access time is shared equally by Mi. And the
achievable throughput for user i’s uplink can be obtained as
follows:

rUW,ij =
εi

Mi + 1
yUijBW log2(1 +

QW,id
−α
ij h

2
ij

σ2
n

), (10)

where εi is the channel efficiency, QW,i is the power spectral
density (PSD) of user i, dij is the distance between user i and
AP j, α is the factor of path loss, hij is the channel gain, and
σ2
n is the Gaussian PSD.
Now we discuss the achievable downlink throughput of user

i. User i is served by WiFi AP j. WiFi AP j performs the same
rule as a user to access the channel by contending with users
and other WiFi APs, who are all within j’s CSMA contention
range. Therefore, the channel access time for a WiFi AP
j is 1

Mj+1 . We assume the WiFi AP j equally shares the
channel access time to its users’ downlinks for service. Then
the throughput of user i for the downlink can be obtained:

rDW,ij =y
D
ij

1

Mj + 1

1∑k 6=i
k∈Aj y

D
kj + 1

· εiBW log2(1 +
QW,id

−α
ij h

2
ij

σ2
n

).

(11)

The throughput in (10) and (11) can only represent one
user’s uplink and downlink throughput, respectively. And the
total uplink and downlink throughput of WiFi system are as
follows, respectively:

rUW =
∑
i∈N

∑
j∈K

rUW,ij , (12)

rDW =
∑
i∈N

∑
j∈K

rDW,ij . (13)

To guarantee there is a minimum bandwidth for the WiFi
users, the minimum bandwidth requirement of WiFi system
can be assumed as BWmin. Then the bandwidth constraint is:

BW ≥ BWmin, (14)

C. LTE Throughput Analysis

LTE BS has a central management to divide its bandwidth
BL into a group of distinct channels for its users. Denote BUi
as the bandwidth allocated to the uplink of user i as well as
BDi to the downlink of user i. To ensure the performance of
LTE network, we denote BLmin as the minimum bandwidth
allocated to one user’s uplink or downlink, which is served by
LTE BS. Then, we have:

xUiL ·BLmin ≤ BUi ≤ xUiL ·BL, (15)

xDiL ·BLmin ≤ BDi ≤ xDiL ·BL, (16)

And in order to maximize spectrum efficiency, no more
bandwidth will be allocated to LTE system in excess of their
demands. Then, we have:∑

i∈N
(xUiL ·BUi + xDiL ·BDi ) = BL. (17)

Therefore, the achievable throughput for user i’s uplink can
be expressed as follows:

rUL,i = xUiL ·BUi log2(1 +
QL,id

−α
iL h

2
iL

σ2
n

), (18)

where QL,i is the PSD for user i under LTE, diL is the distance
between user i and LTE BS, α is the factor of path loss, hiL
is the channel gain and σ2

n is the Gaussian PSD. And the
achievable throughput of user i’s downlink is:

rDL,i = xDiL ·BDi log2(1 +
QL,id

−α
iL h

2
iL

σ2
n

). (19)

Therefore, the total uplink and downlink throughput of LTE
system are as follows, respectively:

rUL =
∑
i∈N

rUL,i, (20)

rDL =
∑
i∈N

rDL,i. (21)
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Fig. 2: An illustration of piece-wise linear approximation for
log function.

D. Problem Formulation

With the aim of achieving the relatively fair throughput
between uplink and downlink in the coexistence system, we
introduce a utility function U(S), which is widely used to
achieve proportional fairness in various systems [23], [30],
and [31], i.e.,

U(S) = ln(S), (22)

where ln(·) denotes the natural logarithmic (log) function. In
order to realize both the sum throughput and load balance, a
utility function F for the coexistence network can be defined
as:

F = ln(rUW + rUL ) + ln(rDW + rDL ), (23)

where (rUW + rUL ) is the whole uplink throughput of the
coexistence network and (rDW + rDL ) is the whole downlink
throughput of the coexistence network. Thus, an optimization
framework can be formulated as follows:

OPT-W
max F
s.t. Utility function:(23);

Decoupling constraints: (6), (7);
Bandwidth constraints: (1), (14)–(17);
Throughput constraints: (10)–(13), (18)–(21).

In this formulation, xUiL, x
D
iL, y

U
ij and yDij are binary variables,

Kj and Mi are integer variables, BW , BL, BUi , BDi , rUW,ij ,
rDW,ij , r

U
L,ij , r

D
L,ij , r

U
L , rDL , rUW , rDW and F are continuous

variables. Since there are not only the product terms but also
the log function terms in constraint of this formulation, this
optimization problem is obvious of a mixed-integer Non-linear
program (MINLP). In general, it is NP-hard [32].

E. Reformulation

In this subsection, we transform the nonlinear constraints
in OPT-W into the linear ones. Our first step is to employ
Reformulation-Linearization technique (RLT) [32] to remove
the nonlinear terms in OPT-W without loss of optimality. Then
we substitute the log function term in (23) with a set of linear
constraints using piece-wise linear approximation technique.

After these two steps, we will have a linearized problem OPT-
S, which can be solved by the software named CPLEX.

In the above formulation, constraints (10), (11), (15) – (19)
are nonlinear. We show how to transform them into a series
of linear constraints.

In (15)–(19), we have nonlinear terms xUiLB
U
i , xDiLB

D
i ,

xUiLBL and xDiLBL. Taking the term xUiLB
U
i as an example

and defining zUi = xUiLB
U
i , we have the following associate

constraints:
xUiL ≥ 0, 1− xUiL ≥ 0. (24)

BUi ≥ 0, B −BUi ≥ 0. (25)

The two constraints involving xUiL can be cross-multiplied
with the two constraints involving BUi . The product term
xUiLB

U
i can be substituted with zUi . Then, xUiLB

U
i can be

substituted by the following linear constraints:

zUi ≥ 0, (26)

zUi ≤ xUiLB, (27)

zUi ≤ BUi , (28)

zUi ≥ xUiLB +BUi −B, (29)

where i ∈ N .
The same can be done for xDiLB

D
i , xUiLBL and xDiLBL.

Define zDi = xDiLB
D
i , AUi = xUiLBL and ADi = xDiLBL.

Therefore, (15), (16), (17), (18) and (19) can be replaced
by a series of linear constraints for zUi , zDi , AUi and ADi ,
respectively. To simplify, we omit these similar processing
with RLT and give them in Appendix A.

We can rewrite the constraint (10) into the following form:

Mi · rUW,ij+ rUW,ij = εi ·yUijBW log2(1+
QW,id

−α
ij h

2
ij

σ2
n

). (30)

By defining Dij = Mir
U
W,ij and µUij = yUijBW , we can

similarly replace (10) by a series of linear constraints for Dij

and µUij in Appendix B.
Also, the similar processing can be done for (11). Define

the new variables θij =
∑k 6=i
k∈Aj y

D
kjr

D
W,ij and µDij = yDijBW .

Then, we have

(θij + rDW,ij)(Mj + 1) = µDijεi log2(1 +
QW,id

−α
ij h

2
ij

σ2
n

). (31)

By defining τij = θij + rDW,ij and ζij = τijMj , we can
similarly replace (11) by a series of linear constraints for θij ,
µDij , τij and ζij in Appendix C.

For (23), we employ a piece-wise linear approximation
technique in [33] to transform the nonlinear term inside the
logarithmic function into the linear one. Through introducing
the new variables fU and fD, the following constraints can be
obtained:

F = ln(fU ) + ln(fD). (32)

Taking ln(fU ) as an example, the idea is to use a set of finite
M line segments for the approximation of the log function
with guaranteed performance as shown in Fig. 2.

We denote fminU and fmaxU as the lower and up-
per bounds of fU , respectively. We define the value of
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Process of piece-wise linear approximation
1. Initialization: Set k ← 0 and fm

U ← fmin
U ;

2. Output: Output result
3. While fm

U ≤ fmax
U do

4. m← m+ 1
5. Obtain the slope qm of m-th segment:
6. 1

qm
− qm(fU − fm−1

U )− ln(fm−1
U )− δ = 0

7. Calculate fm
U with qm via (33).

8. End
9. M ← m and fM

U ← fmax
U

10. Recalculate fM
U via (33).

11. Result

Fig. 3: An algorithm to linearize the nonlinear term inside log
function.

f0U , f
1
U , · · · , fmU , · · · , fMU on the horizontal axis as the end

point of M segments, where fminU = f0U , f
max
U = fMU .

The minimum number of line segments M can be found
through the iterative process as follows, where our algorithm
of the linearizing technology is shown in Fig. 3. Starting from
f0U , we should calculate the slope of the first segment while
guaranteeing that the requirement of approximation error δ can
be achieved. Then, based on this determined slope, we can find
the second point f1U on the horizontal axis, which represents
the right-side end point of the first segment. From the second
point f1U , we can repeat the similar process for the next one
and so forth. Once the value of last point exceeds fmaxU , the
whole process will be terminated.

Specially, we denote slope of the m-th linear segment as
qm, i.e.,

qm =
ln(fm+1

U )− ln(fmU )

fm+1
U − fmU

. (33)

Denote ym(fU ) as the m-th linear segment that approximates
ln(fU ) and it can be expressed as:

ym(fU ) = qm(fU − fm−1U ) + ln(fmU ). (34)

For a given error bound δ, we can iteratively find
the values of f0U , f

1
U , · · · , fmU , · · · , fMU and slopes

q1, q2, · · · , qm, · · · , qM by the above piece-wise linear
process as shown in Fig. 3. Meanwhile, we can obtain the
values of fmU and qm by exploiting numerical methods like
Newton’s method or bisection method as in [34]. The same is
for ln(fD), assuming the slope is pm. Then, we can substitute
utility function F with the following linear constraints:

F = ym(fU ) + ym(fD), (35)

ym(fU ) ≤ qm(fU − fm−1U ) + ln(fmU ), (36)

ym(fD) ≤ pm(fD − fm−1D ) + ln(fmD ), (37)

where m = 1, 2, · · · ,M . Therefore, the OPT-W can be
reformulated into a new optimization problem OPT-S.

OPT-S
max F
s.t. Utility function: (35)–(37);

Decoupling constraints: (6), (7);
Bandwidth constraints: (1), (14), (15)–(17);
Throughput constraints: (10)–(13), (18)–(21).

Note that, in the formulation of OPT-W problem, (10), (11),
(15)–(19) are already the linear constraints, which can be
replaced with a series of linear constraints in Appendix A, B
and C. Obviously, this optimization problem is a mixed-integer
linear program (MILP), in general, which is still NP-hard [32].
And it can be easily solved by CPLEX.

IV. USERS’ NUMBER PREDICTION

In order to make our research more realistic, we plan to use
machine learning algorithm based on the regression model for
predicting the total number of users in the coexistent networks
between WiFi and LTE, where the predicted result can be used
in the formulation of the above fairness problem with DUDe. It
seems that deep learning algorithm and other machine learning
algorithms show great potential in optimization of wireless
communications [35]–[40]. However, as a traditional method
with low complexity, SVM is still an effective and attractive
algorithm with high prediction accuracy to extensively predict
future system characteristics, which can be referred to in [28].
Therefore, in this paper, we will apply SVM to predict the total
number of users, which can enable not only static analysis
but also dynamic analysis of the coexistence system. As we
all know, dynamic traffic prediction or analysis is useful for
predictive network traffic control, resource management and
network management in wireless networks. To simplify, we
will focus on the total number of users in coexistence network
at a specific time in the future, which can be predicted by
the proposed SVM algorithm. Under this case, based on the
predictions of total number of users and the associations of
users’ behavior, we can not only allocate appropriate spectrum
resources for the coexistence system but also obtain load
balance between uplink and downlink in the future.

SVM has strong non-linear processing ability in regression,
which is mainly used in system modeling, time series predic-
tion and optimal control [41], [42]. As for time series predic-
tion, SVM can be used for stock prediction, Internet traffic
prediction, electricity prediction and many other applications
[43], [44], [46]–[53].

A. Prediction Problem Definition

In order to predict the total number of users in WiFi and LTE
coexistence network, we describe the prediction as a stochastic
process: N = (nt : t = 0, 1, 2, · · · ). And the prediction
problem can be expressed as: given the current and the past
total number of users Nt = (nt−p+1, . . . , nt−1, nt) to predict
the total number of users in the future nt+q , where p is the
length of past data used for forecasting and q is step value for
forecasting.

B. SVM Regression Model

Via a nonlinear mapping, SVM can reflect the data into
a higher-dimensional feature space. Then, it fulfills linear
regression in the feature space. Assuming wi as the input
vector and vi as the desired value, we can define the training
data set as N = (wi, vi) ∈ Rn ×R with i = 1, 2, · · · . Then,
for the regression problem, if we can determine a function
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f(w), it can accurately approximate the future values. Assum-
ing ω as the weight vector, φ as a non-linear transformation
form, and b as the threshold, we can define the function
f(w) = ω · φ(w) + b. And further introducing the insensitive
loss function ε, the SVM regression can be expressed as
follows:

min
1

2

∥∥ω2
∥∥+ C

l∑
i=1

(ξi + ξ∗i )

s.t. vi − ω · φ(w)− b ≤ ε+ ξi, ξi ≥ 0

ω · φ(w) + b− vi ≤ ε+ ξ∗i , ξ
∗
i ≥ 0,

(38)

where C ≥ 0 is a constant to represent the tradeoff between
the complexity of regression model and training error, ξi and
ξ∗i are the slack variables. By using duality principle and
introducing Lagrange multipliers, (38) can be transferred into
its dual problem:

max − 1

2

l∑
i=1

l∑
j=1

(αi − α∗i )(αj − α∗j )K(wi, wj)

− ε
l∑
i=1

(αi + α∗i ) +

l∑
i=1

vi(αi − α∗i )

s.t.
l∑
i=1

(αi − α∗i ) = 0

C ≥ αi, α∗i ≥ 0,

(39)

where K(wi, wj) = φ(wi) · φ(wj) is defined as the kernel
function. Its advantages lie in calculation of kernel function in
low-dimensional space rather than operation on inner product
in high-dimensional space. Therefore, it avoids the disaster of
dimensionality and the explicit calculation of φ(w). The most
commonly used kernel function of SVM is radial basis func-
tion (RBF): K(wi, wj) = exp(−‖wi − wj‖2 /2σ2), where σ
is the variance to show a degree for spread around a mean in
statistics. According to the relationship between the parameters
γ and σ with γ = 1/2σ2, we can obtain the equivalent RBF
kernel function of SVM K(wi, wj) = exp(−γ ‖wi − wj‖2)
[54], [55]. The parameter γ is the inverse of the influence
radius of samples selected as support vectors in SVM. It is
important to show how far the influence of training sample
can achieve.

In this paper, a set of training samples D = (W,V ) are first
constructed. The input of D is W = (nt−p+1, · · · , nt−1, nt)
and the output of D is V = nt+q , where t = 1, 2, · · · , T and
T is the amount of sample D. Then, on the given training set,
an SVM is training to predict the future number value of users
in the coexistence network.

Besides, in order to evaluate the performance of prediction,
mean square error (MSE) and normalized mean square error
(NMSE) can be taken used in this SVM scheme. With the
increase of prediction accuracy, the MSE will be smaller,
which can be widely used to evaluate the performance of
prediction. Further, the value of NMSE will be 0 for a perfect
predictor; it will be 1 for a trivial predictor, where the mean of

TABLE II: Parameters section for prediction of number of
users.
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Fig. 4: Prediction result.

the actual time series can be statistically forecasted; it may be
greater than 1, where the performance of prediction is worse
than that of the trivial predictor.

C. Experiments on Prediction with SVM

The experiments on prediction with SVM are accomplished
by using a real-life dataset, which is obtained from a small
community network. What kernel function will be selected
in SVM is vital while applying SVM to predict the total
number of users in the coexistence network. In our experiment,
Gaussian RBF is the first selection for the kernel function of
SVM. Then, the parameters (ε, σ and C) in SVM regression
model should be determined, which affect the estimation
accuracy of SVM. As for the parameter ε, it represents the
range of error insensitivity and reflects the noise range in the
observed time series of user’s number. As for the parameter
σ, it is the variance to show the capacity of the learning
machine. When σ is quite small, the capacity is strong. As
for the parameter C, it is the penalty coefficient to tradeoff
the complexity with the training error of the regression model.
In order to train the regression for minimum error with lower
generalization, higher penalties should be assigned with larger
C to errors. Otherwise, fewer penalties will be assigned with
smaller C to errors. In this paper, based on priori knowledge
[45], we can select these parameters which are shown in
Table II.

For SVM-based prediction method, in fact, we apply 144
training samples to predict the next 96 samples. And the
performance of prediction can be seen in details in Fig. 4,
where Time means the variable or x label, and h means the unit
of Time (i. e., hour). Simulation results can prove that SVM
based prediction possesses the advantages of high prediction
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Fig. 5: Random deployment of LTE BS and WiFi APs in a
circle.

accuracy with small approximation error on each single point
of it, as well as its low complexity in calculations.

V. SIMULATION RESULTS

In this section, we will first discuss the simulation results to
investigate the performance of the decoupling mechanism for
WiFi and LTE coexistence system. Firstly, the simulation pa-
rameters are introduced. Then, the performances of decoupling
based on prediction are evaluated. Finally, the improvements
in terms of the sum rate and the fairness between uplink
and downlink will be displayed, by comparing the proposed
decoupling scheme with coupled coexistence scheme with
associations.

A. Parameter Setting

Within a circular area with radius 100 meters, one LTE BS
and multiple WiFi APs are considered to randomly deploy.
The locations of one BS and five WiFi APs are shown in
Fig. 5. In general, we normalize the units for bandwidth,
distance, power and throughput with appropriate dimension.
The transmission ranges of LTE BS and WiFi APs are set to
100 meters and 40 meters, respectively. We also set the CSMA
contention range for WiFi to be 60 meters. The total bandwidth
in the unlicensed spectrum to be used is with B = 100 MHz.
The minimum bandwidth remained for WiFi network is with
BWmin = 10 MHz while coexisting with LTE. The transmission
PSDs for each user under WiFi and LTE are set to 1.0 and
3.0, respectively. The ambient Gaussian PSD is σ2

n = 10−6

W/Hz. The factor of path loss α is 2. The antenna gains are
set to 1 between the user and WiFi AP and 2 between the user
and LTE BS. And the channel efficiency for WiFi is assumed
as 70%.

(0,100)

(100,0)

AP1

AP2

AP3

AP4

AP5

UE1

UE4

UE2

UE3

LTE BS

Fig. 6: Four users’ association status in WiFi and LTE coex-
istence network with DUDe.

B. Rate Comparisons between coupling and decoupling

We assume the total number of users continuously changes
by our prediction. The users will be randomly deployed within
the circular area. Our simulation time is 96 hours. Under
the circumstances of WiFi and LTE coexistence, we push
forward the simulations with and without DUDe, respectively.
We also compare the throughput ratios between uplink and
downlink, respectively, and the total system throughput under
PF objective.

In order to show users’ association status in WiFi and LTE
coexistence network with DUDe, we take the results of the
fourth predicted moment as an example. The predicted total
number of users in the network and users’ associations at this
time are shown in Fig. 6.

Fig. 7 and Fig. 8 show the comparison of ratios of uplink-
downlink throughput in WiFi and LTE coexistence network
with and without DUDe, which are changed by time and users’
number, respectively. We can find that at any time, the ratio
of decoupling status is closer to 1 than that in coupled case,
which means that DUDe achieves load balance between uplink
and downlink. In Fig. 7, there are two moments that the ratio
is 0 when the WiFi and LTE coexistence network is without
DUDe. They indicate that in the coupled case, the throughput
of the uplink and downlink has been seriously unbalanced, and
even the uplink throughput is 0.

Besides, as shown in Fig. 8, while the total number of
users increases, the unfair situation of uplink and downlink
will become serious both in the decoupling and coupled
networks. The reason for this situation is due to the distributed
coordination function (DCF) mechanism of WiFi network,
where the probability of WiFi APs and users accessing chan-
nels is the same. Therefore, while the total number of users
increases, the probability of uplink and downlink accessing the
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Fig. 7: Ratios of uplink-downlink throughput in WiFi and LTE
coexistence network with and without DUDe.
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Fig. 8: Ratios of uplink-downlink throughput in WiFi and LTE
coexistence network with and without DUDe.

channels will be more unequal. However, DUDe can alleviate
the unfairness between uplink and downlink while the total
number of network users increases.

Fig. 9 shows the comparison of downlink throughput with
its unit of Mbps in WiFi and LTE coexistence network with
and without DUDe for 96 hours. We find that the throughput
of the downlink with DUDe is larger than that without DUDe
at any time. This is because the unfairness of uplink and
downlink in WiFi and LTE coexistence network is caused
by the WiFi network. And the DCF mechanism in the WiFi
network determines that the uplink in the network has more
advantages when accessing the channel. Hence, the throughput
of the uplink is larger. In order to implement load balance
between uplink and downlink, the users will strive for greater
downlink throughput after decoupling.

Fig. 10 and Fig. 11 show the comparison of the whole net-
work throughput changing with time and the number of users
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Fig. 9: Downlink throughput in WiFi and LTE coexistence
network with and without DUDe.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

Time [h]

T
ot

al
 th

ro
ug

hp
ut

 [M
bp

s]

Uplink−downlink decoupling
Uplink−downlink coupling

Fig. 10: Total throughput in WiFi and LTE coexistence net-
work with and without DUDe.
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with and without DUDe in WiFi and LTE coexistence network,
respectively. From Fig. 10 and Fig. 11, it can be found that, at
any time, the total network throughput with DUDe is greater
than that without DUDe. And the total network throughput
of DUDe scheme can come up to almost twice more than
that of coupled association scheme. It indicates that DUDe
in WiFi and LTE coexistence network can achieve both load
balancing of uplink and downlink and optimize the throughput
of coexistence network. As shown in Fig. 11, the throughput
of the network increases with the number of users. This is
because we can allocate resources in advance according to
the total number of users in the future by prediction in the
coexistence system. Therefore, the network communication
quality can be guaranteed while the number of users increases.

VI. CONCLUSIONS

In this paper, a novel scheme for the WiFi and LTE
coexistence is proposed in unlicensed spectrum. In order to
achieve load balancing and optimal throughput, we take use
of DUDe and combine it with fairness utility function in
the coexistence system. Also, performance of our proposed
algorithm is compared in the coexistence system with and
without DuDe. We find that DUDe can achieve not only
load balancing of uplink and downlink but also the optimal
throughput of coexistence network. The results shed new light
on coexistence between WiFi and LTE and point out a new
direction of achieving fairness between uplink and downlink.
Considering the more complex and rich service applications
of 5G, our proposed predicted decoupling algorithm would be
further updated to meet the coexistence demand between WiFi
and 5G. In the future, WiFi and 5G may have complementary
substitution relationships in specific scenarios, but will still
coexist for a long time.
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