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Abstract

Group sparse representation (GSR) based method has led to great successes in various image recovery tasks, which can be

converted into a low-rank matrix minimization problem. As a widely used surrogate function of low-rank, the nuclear norm

based convex surrogate usually leads to over-shrinking problem, since the standard soft-thresholding operator shrinks all singular

values equally. To improve traditional sparse representation based image compressive sensing (CS) performance, we propose

a generalized CS framework based on GSR model, leading to a nonconvex nonsmooth low-rank minimization problem. The

popular -norm and M-estimator are employed for standard image CS and robust CS problem to fit the data respectively. For the

better approximation of the rank of group-matrix, a family of nuclear norms are employed to address the over-shrinking problem.

Moreover, we also propose a flexible and effective iteratively-weighting strategy to control the weighting and contribution of

each singular value. Then we develop an iteratively reweighted nuclear norm algorithm for our generalized framework via an

alternating direction method of multipliers framework, namely, GSR-ADMM-IRNN. Experimental results demonstrate that our

proposed CS framework can achieve favorable reconstruction performance compared with current state-of-the-art methods and

the RCS framework can suppress the outliers effectively.
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Abstract: Group sparse representation (GSR) based method has led to great successes in various 

image recovery tasks, which can be converted into a low-rank matrix minimization problem. As a 

widely used surrogate function of low-rank, the nuclear norm based convex surrogate usually leads 

to over-shrinking problem, since the standard soft-thresholding operator shrinks all singular values 

equally. To improve traditional sparse representation based image compressive sensing (CS) 

performance, we propose a generalized CS framework based on GSR model, leading to a nonconvex 

nonsmooth low-rank minimization problem. The popular 𝐿2-norm and M-estimator are employed 

for standard image CS and robust CS problem to fit the data respectively. For the better 

approximation of the rank of group-matrix, a family of nuclear norms are employed to address the 

over-shrinking problem. Moreover, we also propose a flexible and effective iteratively-weighting 

strategy to control the weighting and contribution of each singular value. Then we develop an 

iteratively reweighted nuclear norm algorithm for our generalized framework via an alternating 

direction method of multipliers framework, namely, GSR-ADMM-IRNN. Experimental results 

demonstrate that our proposed CS framework can achieve favorable reconstruction performance 

compared with current state-of-the-art methods and the RCS framework can suppress the outliers 

effectively. 

Keywords: group sparse representation; low-rank; nonconvex nonsmooth; nuclear norm; standard 

CS; robust CS. 

 

I. Introduction 

Image compressive sensing (CS) reconstruction [1] is a classic topic in low-level vision task, 

which has been widely studied in last decade. It aims at reconstructing a high-quality image 𝐗 from 

much fewer random measurements 𝐘. One of the main technical challenges for CS is how to reduce 

the measurements whereas obtain high-quality images. Typical applications of CS include radar 

imaging [2], channel estimation in communications systems [3–6], sparse recovery [7] and signal 

detection [8–12], electrocardiogram signal reconstruction [13], magnetic resonant imaging (MRI) 

[14–16], and especially in image processing [17–19]. 

The reconstruction of high-quality images from a small number of measurements is a typical 

ill-posed inverse problem, it is well-known that the prior knowledge and sparse representation 

model on image structures play a vital role in the CS reconstruction task. Exploiting more prior 

knowledge for minimization is often at the core in image CS reconstruction problem. In the past 
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several years, the sparsity-based regularization methods have achieved great success in various CS 

applications. According to the sparse representation theory, every image can be represented 

accurately by a few dominant elements in a proper dictionary, which can be learned from natural 

images or prespecified. Traditional CS recovery approaches use the sparsity of an entire image in a 

predefined domain and the local structural patterns, such as the famous total-variation (TV) 

regularization [20]. However, these methods can only exploit a small number of structural features 

and some important artifacts will appear, e.g., texture and edge information, and thus these methods 

are not capable of improving reconstruction quality considerably. 

As another classic image prior knowledge, recent work has revealed that the non-local 

similarity of patches can improve the reconstruction quality significantly by exploiting the nonlocal 

similarity features. For example, the well-known non-local mean filter [21], the promising denoiser 

BM3D [22], and the standard way for image recovery [23][24]. Recently, a state-of-the art sparse 

model of non-locally centralized sparse representation (NCSR) [25] is proposed for image 

restoration, which first obtains an accurate sparse coefficient vector, and then centralizes the sparse 

coefficients to enhance the sparsity and improve the performance. Recent advances suggest that the 

group sparse representation (GSR) based approaches often lead to great improvements by removing 

the artifacts and preserving the details. The group-matrix is constructed using similar patches and 

hence owns the low-rank property, then the low-rank is a useful image prior for image restoration 

[26]. 

For dealing with the image CS reconstruction problem, another important issue is how to 

regularize the sparsity. Conventional methods use the 𝐿1-norm as the surrogate of the 𝐿0-norm, 

and the resulting convex optimization problem can be easily solved. However, the achieved solution 

by 𝐿1-norm regularization is usually suboptimal to the 𝐿0-norm based minimization because of 

this loose appropriation. Hence, to appropriate the 𝐿0-norm by nonconvex function will achieve a 

more accurate solution [27][28]. Typical nonconvex surrogate function including 𝐿𝑝-norm [29–31], 

Smoothly Clipped Absolute Deviation (SCAD) [32], Logarithm [33], and Minimax Concave 

Penalty (MCP) [34], etc.. Recently, the low-rank based regularization approaches have shown its 

great potentials in image processing [35][36], especially in CS image recovery [37][38]. It is the 

fact that the adjacent patches in an image have the similar structures, if several similar patches are 

constructed as a group-matrix, then the matrix shows the low-rank property. Hence, the image CS 

problem can convert into a low-rank matrix approximation problem. Since the low-rank 

minimization problem is a NP-hard problem, it is usually relaxed as the nuclear norm minimization 

(NNM) problem [26]. 

Standard CS framework reconstructs image from CS measurements under Gaussian noise, 

however, in real world applications, CS observations are usually corrupted by impulsive noise. It is 

not efficient for standard CS to suppress the outliers because the 𝐿2-norm based fidelity term are 

very sensitive to the outliers. To recovery signal or image from CS measurements under impulsive 

noise, many efficient algorithms have been proposed, such as the 𝐿1-norm YALL1 [39], LA-Lq 

[40], the M-estimator based robust CS recovery [41]. However, these robust CS methods are all 

based on traditional sparse signal recovery framework, and ignore important structure information 

of images. Recently, a novel robust CS method for image is proposed, which has shown promising 

performances than traditional robust sparse recovery methods for image CS problems. It can exploit 

the latent structure and sparse prior for minimization, such the non-local similarity of nature image 

[42]. 



In this paper, inspired by the successes of nonconvex regularization approaches and the 

promising GSR model, we propose a generalized low-rank minimization framework for image CS 

problem based on GSR framework, to enhance the low-rank reconstruction performance, we extend 

a family of typical nonconvex surrogate penalties of 𝐿0-norm on singular values of the group matrix. 

The main contributions of our work can be concluded as follows. We first build the connection 

between GSR and the low-rank minimization problem, and then propose a generalized GSR based 

CS framework, in which, the local sparsity and nonlocal similarity of image can be unified 

simultaneously by this framework. For standard CS problem, we employ the popular 𝐿2-norm as 

the fidelity term, while a M-estimator is utilized to suppress the outliers caused by impulsive noise 

for robust CS problem. To deal with the resulting nonconvex nonsmooth optimization problem, we 

develop an iteratively reweighted nuclear norm algorithm based on alternative direction method of 

multipliers, namely GSR-ADMM-IRNN. More importantly, we also propose an iteratively-

weighting strategy to control the weighting and contribution on each singular value. At last, we 

evaluate our proposed nonconvex framework by using several well-known nonconvex penalty 

functions of ETP, logarithm, 𝐿𝑝 and MCP on the classic image CS reconstruction problem. 

The rest of the paper is organized as follows. In the second section, we will first introduce the 

GSR theory, and then build a connection between GSR model and low-rank minimization 

framework. Then a family of nonconvex and nonsmooth surrogate functions are adopted to enhance 

the low-rank matrix recovery. In the section III, we will detail our proposed GSR-ADMM-IRNN 

algorithm. Section IV provides simulation results compared with current state-of-the-art methods to 

demonstrate the effectiveness and priority of our proposed framework. Finally, a brief summary will 

be concluded in section V. 

  

II. Group Sparse Representation and Low-Rank Minimization 

Traditional patch-based sparse representation modeling is inaccurate, because each patch is 

considered separately and the relationship among patches is ignored. The new GSR model can 

represent the image in the domain of group, which not only enhances intrinsic local sparsity, but 

also enhances the nonlocal similarity simultaneously [26]. 

2.1. Group Sparse Representation 

For every original image 𝐗 ∈ ℝ√𝑁×√𝑁 , which can be divided into 𝑛  overlapped patches 

𝐗𝑘 , 𝑘 = 1, 2,⋯ , 𝑛 with the size of √ℬ𝑠 ×√ℬ𝑠, ℬ𝑠 < 𝑁. Given a searching window with the size 

of 𝐿 × 𝐿 for each patch 𝐗𝑘, its 𝑐 best matched patches will be searched using the well-known 

Euclidean distance as the similarity criterion, and the set of these best similar patches denotes 𝑆𝐱𝑘. 

Next, its 𝑐 best matched patches are stacked into a matrix with the size of ℬ𝑠 × 𝑐, denoted by 

𝐗G𝑘 = [𝐗G𝑘,1, 𝐗G𝑘,2,⋯ , 𝐗G𝑘,𝑐] ∈ ℝ
𝐵𝑠×𝑐, where each patch can be vectorized as 𝐗G𝑘,𝑖 ∈ ℝ

ℬ𝑠×1, 𝑖 =

1,2,⋯ , 𝑐 as the columns. Such matrix 𝐗G𝑘 with 𝑐 patches containing similar structures is named 

as group, we define the construction process of group as 𝐗G𝑘 = 𝐺𝑘(𝐗), where the operator 𝐺𝑘(∙) 

denotes the group construction operator from 𝐗 . A simple illustration of the group matrix 

construction process is presented is the Fig. 1. Different from the traditional patch-based sparse 

representation model, the GSR model can exploit the nonlocal self-similarity and enhance the local 

sparsity by using the group as basic unit for sparse representation [26]. 

 



 

Fig. 1. A simple illustration of the group matrix construction process. 

 

According to the sparse representation theory, the reconstructed group can be represented 

sparsely by 

𝐗G𝑘 = 𝐃G𝑘𝛂G𝑘 = ∑ αG𝑘,𝑖𝒅G𝑘,𝑖
𝑚
𝑖=1                      (1) 

where 𝐃G𝑘 = [𝒅G𝑘,1, 𝒅G𝑘,2,⋯ , 𝒅G𝑘,𝑚] ∈ ℝ
(𝐵𝑠×𝑐)×𝑚  denotes the 3D dictionary, and each atom 

𝒅G𝑘,𝑖 ∈ ℝ
𝐵𝑠×𝑐 , 𝑖 = 1,2,⋯ ,𝑚  is a matrix with the same size of each group 𝐗G𝑘 , 𝛂G𝑘 =

[𝛼G𝑘,1, 𝛼G𝑘,2,⋯ , 𝛼G𝑘,𝑚] ∈ ℝ
𝑚×1 is a vector. When all the dictionary {𝐃G𝑘}, 𝑘 = 1,2,⋯ , 𝑛 and the 

sparse codes {𝛂G𝑘}, 𝑘 = 1,2,⋯ , 𝑛 are known, the image 𝐗 can be represented by 

𝐗 = 𝐃𝐺 ∘ 𝛂𝐺                            (2) 

where the ℛ𝑘
𝑇(⋅) denotes the transpose grouping operator, the dictionary 𝐃G and sparse code 𝛂G 

denote the concatenation of all 𝐃G𝑘 and 𝛂G𝑘 respectively.  

2.2. Adaptive dictionary learning 

To obtain an adaptive dictionary 𝐃G𝑘  for each group 𝐗G𝑘  , in this paper, we adopt a self-

adaptive dictionary learning scheme for each group, we can learn the adaptive dictionary 𝐃G𝑘 from 

𝐗G𝑘 directly. We first employ the singular value decomposition (SVD) of 𝐗G𝑘 by 

𝐗G𝑘 = 𝐔𝐗G𝑘
𝚺𝐗G𝑘

𝐕𝐗G𝑘
T = ∑ 𝜎𝐗G𝑘 ,𝑖

𝒖𝐗G𝑘 ,𝑖
𝒗𝐗G𝑘 ,𝑖
T𝑚

𝑖=1                (3) 

where 𝑚 = 𝑚𝑖𝑛(𝐵𝑠, 𝑐) , 𝐔G𝑘 = [𝒖𝐗G𝑘 ,1
, 𝒖𝐗G𝑘 ,2

,⋯ , 𝒖𝐗G𝑘 ,𝑚
] , 𝐕𝐗G𝑘

= [𝒗𝐗G𝑘 ,1
, 𝒗𝐗G𝑘 ,2

,⋯ , 𝒗𝐗G𝑘 ,𝑚
] 

and 𝚺𝐗G𝑘
= 𝑑𝑖𝑎𝑔 ([𝜎𝐗G𝑘 ,1

; 𝜎𝐗G𝑘 ,2
;⋯ ; 𝜎𝐗G𝑘 ,𝑚

]). Then, the atom 𝐝G𝑘 of the dictionary 𝐃G𝑘 can be 

obtained by 

𝐝G𝑘,𝑖 = 𝒖𝐗G𝑘 ,𝑖
𝒗𝐗G𝑘 ,𝑖
T , 𝑖 = 1,2,⋯ ,𝑚                     (4) 

Finally, we can achieve the self-adaptive dictionary for each group by 

𝐃G𝑘 = [𝐝G𝑘,1, 𝐝G𝑘,2,⋯ , 𝐝G𝑘,𝑚].                      (5) 

2.3. GSR based denoising model 

After achieving the adaptive dictionary 𝐃G𝑘  for each group, then the group sparse 

representation based denoising model from the degraded observation 𝐘G𝑘 ∈ ℝ
𝐵𝑠×𝑐 can be written 

by 

�̂�G𝑘 = argmin𝛂G𝑘

1

2
‖𝐘G𝑘 −𝐃G𝑘𝛂G𝑘‖𝐹

2
+ 𝜆‖𝛂G𝑘‖0

             (6) 

where 𝛂G𝑘  denotes the sparse coefficient vector over the dictionary 𝐃G𝑘 , and 𝜆  denotes the 

regularization parameter.  



Benefiting from the fact that the degraded group 𝐘G𝑘 and original group 𝐗G𝑘  share the same 

coding dictionary 𝐃G𝑘, according to the definition (4) and (5), the number of nonzero of 𝛂G𝑘 is 

equal to the number of nonzero of singular values of 𝐗G𝑘, and due to 𝐗G𝑘 = 𝐃G𝑘𝛂G𝑘, then we 

obtain the following equivalent relationship 

‖𝛂G𝑘‖0
= rank (∑ 𝜎𝐗G𝑘 ,𝑖

𝐝G𝑘,𝑖
𝑚
𝑖=1 ) = rank(𝐃G𝑘𝛂G𝑘) = rank(𝐗G𝑘)       (7) 

where rank(𝐗G𝑘)  denotes the singular value numbers of matrix 𝐗G𝑘  . By substituting 𝐗G𝑘 =

𝐃G𝑘𝛂G𝑘  in (6), the denoising problem (6) has the following equivalent low-rank minimization 

problem 

�̂�G𝑘 = argmin𝐗G𝑘

1

2
‖𝐘G𝑘 − 𝐗G𝑘‖𝐹

2
+ 𝜆𝑅𝑎𝑛𝑘(𝐗G𝑘).                (8) 

where 𝐗G𝑘  denotes the constructed image group with low-rank property. Then we can convert the 

sparsity-inducing optimization problem (6) into the low-rank minimization problem (8). 

 

III. GSR based Image Compressed Sensing via ADMM 

In general, the image CS observation model can be expressed as 

𝐘 = 𝐇𝐗 + 𝐧                             (9) 

where 𝐇 ∈ ℝ𝑀×𝑁, (𝑀 < 𝑁)  denotes the random measurement matrix, 𝐗 ∈ ℝ𝑁  (also 𝐗 ∈

ℝ√𝑁×√𝑁) denotes the desired image, and 𝐧 ∈ ℝ𝑀 is the noise with which the measurements 𝐘 ∈

ℝ𝑀  will be corrupted. When the original image 𝐗  can be sparsely represented by a given 

dictionary 𝐃 , denotes as 𝐗 = 𝐃𝛂 , then the CS reconstruction problem can be resolved by the 

following regularization method 

�̂� = argmin
𝛂
𝑓(𝐘 − 𝐇𝐃𝛂) + 𝜆‖𝛂‖0                  (10) 

where 𝑓(𝐘 − 𝐇𝐃𝛂) denotes the data fidelity term, e.g., the 𝐿2-norm for Gaussian noise, and the 

M-estimator [43] to fit the data under impulsive noise, the 𝐿0-norm denotes regularization term, 

which measures the sparsity degree of image, and can provide the necessary prior knowledge for 

minimization, the regularization parameter 𝜆 controls the tradeoff between the fidelity term and 

the regularization term. With the achieved �̂�, we can reconstruct the latent image by 

�̂� = 𝐃�̂�                              (11) 

Accordingly, after stacking the related similar patches to generate the group 𝐗G𝑘 ∈ ℝ
𝐵𝑠×𝑐 , 𝑘 =

1,2,⋯ , 𝑛, then the group based measurement model is formulated as 

𝐘 = 𝐇𝐃𝐺 ∘ 𝛂𝐺 + 𝐧                         (12) 

Then, the GSR model based image CS problem can be written as, 

�̂�𝐺 = argmin
𝛂𝐺

𝑓(𝐘 − 𝐇𝐃𝐺 ∘ 𝛂𝐺) + 𝜆‖𝛂𝐺‖0              (13) 

where ‖𝛂𝐺‖0 = ∑ ‖𝛂G𝑘‖0
𝑛
𝑘=1  . According to the relationship in (7), let 𝐗 = 𝐃𝐺 ∘ 𝛂𝐺 , then the 

optimization problem (13) can be turned into the following low-rank minimization problem  

�̂� = argmin
𝐗
𝑓(𝐘 − 𝐇𝐗) + 𝜆∑ 𝑅𝑎𝑛𝑘(𝐗G𝑘)

𝑛
𝑘=1              (14) 

where ∑ 𝑅𝑎𝑛𝑘(𝐗G𝑘)
𝑛
𝑘=1  denotes the sum of all low-rank matrixes for each 𝐗. 

3.1. Nonconvex Nonsmooth Low-rank Minimization framework for image CS 



It is often a challenge problem to solve the above low rank optimization problem (14) and the 

rank function is usually relaxed as the convex nuclear norm, after replacing by the popular convex 

nuclear norm, the NNM based optimization problem can be expressed as 

�̂� = argmin
𝐗
𝑓(𝐘 − 𝐇𝐗) + 𝜆∑ ‖𝐗G𝑘‖∗

𝑛
𝑘=1                 (15) 

where ‖𝐗G𝑘‖∗
= ∑ |𝜎𝑖(𝐗G𝑘)|𝑖   denotes the nuclear norm, and 𝜎𝑖(𝐗G𝑘), 𝑖 = 1,2,⋯𝑑, 𝑑 =

𝑚𝑖𝑛(𝐵𝑠, 𝑐) are the singular values of matrix 𝐗G𝑘. Although the above model (15) can incorporate 

the low rank prior knowledge, the NNM usually treats different rank components (singular values) 

equally and simultaneously, hence it cannot achieve the approximation of the low-rank accurately. 

Recently, the nonconvex penalized regularization methods have shown great potential to improve 

the sparse recovery performance, typical nonconvex surrogate functions include the 𝐿𝑝 function 

[30], Smoothly Clipped Absolute Deviation (SCAD) [32], Logarithm function [33], and Minimax 

Concave Penalty (MCP) [34], etc.. Although the nonconvex strategy can improve the NNM 

effectively, such as a recent proposed work based on nonconvex 𝐿𝑝 nuclear norm for CS problem 

[44], it still has some problems. According to the theory of low rank minimization, the rank of a 

certain matrix only corresponds to the larger nonzero singular values, what’s more, larger singular 

values often contain more information of matrix. To approximate the rank of the group-matrix more 

accurately, hence, the larger singular values should be shrunk less, and the smaller ones should be 

shrunk more. In this paper, we extend a class of nonconvex nonsmooth functions to regularize the 

sparsity of singular values, then our proposed nonconvex nonsmooth weighted framework can be 

expressed as 

�̂� = argmin
𝐗
𝑓(𝐘 − 𝐇𝐗) + 𝜆∑ ℜ(𝐗G𝑘)

𝑛
𝑘=1               (16) 

where ℜ(𝐗G𝑘) = ∑ 𝜌 (𝜎𝑖(𝐗G𝑘))
𝑟
𝑖=1  , 𝜌(∙):ℝ+ → ℝ+  denotes the nonconvex nonsmooth penalty 

functions, and 𝜎𝑖(𝐗G𝑘), 𝑖 = 1,2,⋯ , 𝑟 = 𝑚𝑖𝑛(𝐵𝑠, 𝑐)  denote singular values with 𝜎1(𝐗G𝑘) ≥

𝜎2(𝐗G𝑘) ≥ ⋯ ≥ 𝜎𝑟(𝐗G𝑘) . For our proposed framework, some classic nonconvex surrogate 

functions of ‖𝛉‖0 are detailed as the Definition 1 and Fig. 2. It should be noted that our work is 

not a simple extend version compared with existing work [44][45]. Compared with [44], we not 

only extend the nonconvex 𝐿𝑝-norm into a family of nonconvex surrogate functions to regularize 

the singular values, such as ETP, Logarithm, MCP, SCAD, etc., more importantly, we employ a 

more generalized loss term for CS recovery problem under Gaussian and non-Gaussian 

circumstances. In [45], a nonconvex weighted 𝐿𝑝 -norm is employed based on group sparse 

representation for CS problem, the main contribution of our proposed work is based on the low-

rank minimization model, as well as the proposed generalized fidelity for non-Gaussian noise 

environment.  

 

Definition 1 Popular and typical nonconvex surrogate functions 𝜌(𝜃) and their super-gradients 

𝜌(𝜃) 

Penalty Formula 𝜌(𝜃) Super-gradient 𝜕𝜌(𝜃) 

𝐿𝑝 [30] 𝐿𝑝(𝜃) = 𝜆𝜃
𝑝 

{
∞, 𝑖𝑓 𝜃 = 0

𝜆𝑝𝜃𝑝−1, 𝑖𝑓 𝜃 > 0
 



 

SCAD [32] 

{
 
 

 
 
    𝜆𝜃,                  𝑖𝑓 𝜃 ≤ 𝜆 

−𝜃2 + 2𝛾𝜆𝜃 − 𝜆2

2(𝛾 − 1)
, 𝑖𝑓𝜆 < 𝜃 ≤ 𝛾𝜆

𝜆2(𝛾 + 1)

2
, 𝑖𝑓 𝜃 > 𝛾𝜆 

 
{
 

 
 𝜆,       𝑖𝑓 𝜃 = 0    
𝛾𝜆 − 𝜃

𝛾 − 1
, 𝑖𝑓 𝜆 < 𝜃 ≤ 𝛾𝜆

0,      𝑖𝑓 𝜃 > 𝛾𝜆

 

Logarithm [33] 𝜆

log(𝛾 + 1)
log(𝛾𝜃 + 1) 

𝛾𝜆

(𝛾𝜃 + 1) log(𝛾 + 1)
 

 

MCP [34] 

{
 
 

 
 𝜆𝜃 −

𝜃2

2𝛾
, 𝑖𝑓 𝜃 < 𝛾𝜆

    
𝛾𝜆2

2
,    𝑖𝑓 𝜃 > 𝛾𝜆
 

 {
𝜆 −

𝜃

𝛾
, 𝑖𝑓 𝜃 < 𝛾𝜆

      0,    𝑖𝑓 𝜃 ≥ 𝛾𝜆
 

 

ETP [46] 𝜆

1 − 𝑒−𝛾
(1 − 𝑒−𝛾𝜃) 

𝜆𝛾

1 − 𝑒−𝛾
𝑒−𝛾𝜃 

Capped 𝐿1 [47] 
{
𝜆𝜃,    𝑖𝑓 𝜃 < 𝛾 
𝜆𝛾,    𝑖𝑓 𝜃 ≥ 𝛾𝜆

 {

𝜆,        𝑖𝑓 𝜃 < 𝛾
[0, 𝜆],      𝑖𝑓 𝜃 = 𝛾 
 0,        𝑖𝑓 𝜃 ≥ 𝛾𝜆

 

Geman [48] 𝜆𝜃

𝜃 + 𝛾
 

𝜆𝛾

(𝜃 + 𝛾)2
 

Laplace [49] 
𝜆 (1 − 𝑒

−
𝜃
𝛾) 

𝜆

𝛾
𝑒
−
𝜃
𝛾 

 

 

(a)                            (b) 

Fig. 2. Illustrations of five typical nonconvex penalties 𝜑(𝑥) , and their corresponding super-

gradients ∂[𝜑(𝑥)]. All these penalties, 𝜆 = 1 and 𝛾 = 1.5. (a) Five typical nonconvex penalties 

𝜑(𝑥); (b) Corresponding super-gradients ∂[𝜑(𝑥)]. 

 

3.2. GSR-ADMM-IRNN Algorithm for CS Image Restoration 

The alternative direction method of multipliers (ADMM) framework is an efficient and 

effective approach for large-scale optimization problem, which can split the constrained 

minimization problem into several constrained sub-problems [50]. To solve the nonconvex 

nonsmooth optimization problem (16), we introduce a GSR-ADMM-IRNN algorithm which 

consists of three stages: Firstly, the alternative direction method of multipliers (ADMM) framework 

is applied to our non-convex minimization problem (16) to split it into three subproblems which is 

more effective and efficient than solving it directedly. Secondly, we rmploy an iteratively-

reweighted nuclear norm (IRNN) algorithm for the 𝐗G𝑘-subproblem by observing that all gradients 



of nonconvex surrogate function are nonnegative and monotonically increasing in [0,∞). Finally, 

we propose a flexible and effective weighting strategy to address the over-shrinking problem. 

 In the first stage, we first consider the optimization model (16), by introducing the auxiliary 

variable 𝐙 with the constraint 𝐗 = 𝐙, i.g., 

�̂� = argmin
𝐗
𝑓(𝐘 − 𝐇𝐗) + 𝜆∑ ℜ(𝐙G𝑘)

𝑛
𝑘=1 ,       s. t.   𝐗 = 𝐙            (17) 

then we have the following three iterative steps 

𝐗(𝑡+1) = argmin
𝐗
𝑓(𝐘 − 𝐇𝐗) +

𝜇

2
‖𝐗 − 𝐙(𝑡) −𝐖(𝑡)‖

2

2
,               (18) 

𝐙(𝑡+1) = argmin
𝐙

𝜇

2
‖𝐗(𝑡+1) − 𝐙 −𝐖(𝑡)‖

2

2
+ 𝜆∑ ℜ(𝐙G𝑘)

𝑛
𝑘=1 ,          (19) 

𝐖(𝑡+1) = 𝐖(𝑡) − (𝐗(𝑡+1) − 𝐙(𝑡+1)).                             (20) 

Then the optimization problem (16) can be split into three sub-problems (18) to (20). 

(A). 𝐗-subproblem 

The solution of optimization problem (18) is not definite because the formulation of 𝑓(𝐘 −

𝐇𝐗)  is not decided. This paper addresses the standard image CS problem under gaussian 

environment and the robust image CS problem impulsive noise environment. For noiseless and 

gaussian noise environment, we employ 𝑓(𝐘 − 𝐇𝐗) =
1

2
‖𝐘 − 𝐇𝐗‖2

2 as the fidelity term to fit the 

data, thus the problem (18) is written as 

𝐗(𝑡+1) = argmin
𝐗

1

2
‖𝐘 − 𝐇𝐗‖2

2 +
𝜇

2
‖𝐗 − 𝐙(𝑡) −𝐖(𝑡)‖

2

2
          (21) 

The 𝐗 -subproblem of (21) is a strictly convex minimization problem, which has a closed-form 

solution expressed as 

𝐗 = (𝐇𝑇𝐇+ 𝜇𝐈)−𝟏(𝐇𝑇𝒀+ 𝜇(𝐗 +𝐖))                  (22) 

where 𝐈 denotes the identity matrix. It is often inefficient to achieve the solution by (22) directly 

for CS reconstruction problem, since without specific structure of observation matrix 𝐇. To avoid 

the computing of matrix inverse, here, we employ the gradient descent method to solve the sub-

problem of (21) by [26] 

�̃� = 𝐗 − 𝜂𝒅                           (23) 

where the parameter 𝜂 is the optimal step, 𝒅 denotes the gradient direction of 
1

2
‖𝐘 − 𝐇𝐗‖2

2 +

𝜇

2
‖𝐗 − 𝐙 −𝐖‖2

2, then we have 

𝒅 = 𝐇𝑇𝐇𝐗− 𝐇𝑇𝒀+ 𝜇(𝐗 − 𝐙 −𝐖).                (24) 

When the measurement is corrupted by impulsive noise, e.g., gaussian mixture noise [41], we utilize 

the M-estimator [43] to fit the data, thus 

𝐗(𝑡+1) = argmin
𝐗

1

2
𝜓(𝐘 − 𝐇𝐗) +

𝜇

2
‖𝐗 − 𝐙(𝑡) −𝐖(𝑡)‖

2

2
         (25) 

where 𝜓(𝐘 − 𝐇𝐗) = ∑ 𝜑((𝐘 − 𝐇𝐗)𝑖)
𝑀
𝑖=1   with 𝜑(∙) = 1 − 𝑒𝑥𝑝 (−

(∙)2

𝜎2
) , the operator (∙)𝑖 

denotes the 𝑖-th element of vector. 

 

Theorem 1 [51]. Considering the following optimization problem 



min
𝐗
𝜑(𝐗) + ℛ(𝐗)                           (26) 

where 𝜑(𝐗) = ∑ 𝜑(𝐗𝑖)𝑖  denotes the potential loss function in half-quadratic, ℛ(𝐗) is a convex 

penalty term, the optimization problem can be reformulated as for a fixed 

min
𝐗
{𝑄(𝐗, 𝐪) + ∑ ∅(𝐪𝑖)𝑖 } + ℛ(𝐗)                   (27) 

where ∅(∙) denotes the conjugate function of 𝜑(∙). 

 

According to the Theorem 1, the subproblem can be reformulated as 

(𝐗(𝑡+1), 𝐪(𝑡+1)) = argmin
𝐗,𝐪

{𝑄(𝐘 −𝐇𝐗(𝑡), 𝐪(𝑡)) + ∑ ∅(𝐪𝑖
(𝑡)
)𝑀

𝑖=1 + 𝜇‖𝐗 − 𝐙(𝑡) −𝐖(𝑡)‖
2

2
}  (28) 

the above joint optimization problem can be resolved by optimizing the following two problems 

iteratively, as 

𝐪(𝑡+1) = argmin
𝐪
𝑄(𝐘 − 𝐇𝐗(𝑡), 𝐪) + ∑ ∅(𝐪𝑖)

𝑀
𝑖=1              (29) 

and 

𝐗(𝑡+1) = argmin
𝐗
𝑄(𝐘 − 𝐇𝐗(𝑡), 𝐪(𝑡)) + 𝜇‖𝐗 − 𝐙(𝑡) −𝐖(𝑡)‖

2

2
.        (30) 

For the sub-problem of 𝐪, we have 

𝐪(𝑡+1) = exp(−
(𝐘−𝐇𝐗(𝑡))

𝑖

2

𝜎2
)                      (31) 

For the sub-problem of 𝐗, 

𝐗(𝑡+1) = argmin
𝐗

1

2
𝑄(𝐘 − 𝐇𝐗, 𝐪(𝑡+1)) +

𝜇

2
‖𝐗 − 𝐙(𝑡) −𝐖(𝑡)‖

2

2
       (32) 

After replacing 𝑄(𝐘 − 𝐇𝐗, 𝐪(𝑡+1))  with ∑ 𝐪𝑖
(𝑡+1)(𝐘 − 𝐇𝐗)𝑖

2𝑚
𝑖=1  , the following optimization 

problem is obtained, 

𝐗(𝑡+1) = argmin
𝐗

1

2
‖√𝐐(𝑡+1)(𝐘 − 𝐇𝐗)‖

2

2
+
𝜇

2
‖𝐗 − 𝐙(𝑡) −𝐖(𝑡)‖

2

2
        (33) 

where 𝐐 is a diagonal matrix with its diagonal elements 𝐐𝑖𝑖 = 𝐪𝑖. To solve the above optimization 

problem more efficiently, we also implement it using the gradient descent method, that is 

�̃� = 𝐗 − 𝜂𝒅                           (34) 

with  

𝒅 = 𝐇𝑇𝐐(𝑡+1)𝐇𝐗− 𝐇𝑇𝐐(𝑡+1)𝐘 + 𝜇(𝐗 − 𝐙 −𝐖).           (35) 

(B). 𝐙-subproblem 

In the second stage, we will solve the 𝐙-subproblem by the famous IRNN algorithm [52]. After 

achieving 𝐗, the 𝐙-subproblem can be expressed as 

𝐙(𝑡+1) = argmin
𝐙

𝜇

2
‖𝐑(𝑡+1) − 𝐙‖

2

2
+ 𝜆∑ ℜ(𝐙G𝑘)

𝑛
𝑘=1             (36) 

where 𝐑(𝑡+1) = 𝐗(𝑡+1) −𝐖(𝑡) . The problem of (36) is a typical denoising problem, where 𝐑 

denotes the noisy observation of 𝐗  [38]. However, it is difficult to solve it because of the 

complicated structure of regularizer. By grouping the similar patches of 𝐑 to generate the 𝐑𝐺𝑘 ∈



ℝℬ𝑠×𝑐, according to the relationship between ∑ ‖𝐑𝐺𝑘 − 𝐙𝐺𝑘‖𝐹
2𝑛

𝑘=1  and ‖𝐑 − 𝐙‖2
2, then we have 

[53] 

‖𝐑 − 𝐙‖2
2 =

𝑁

𝐾
∑ ‖𝐑𝐺𝑘 − 𝐙𝐺𝑘‖𝐹

2𝑛
𝑘=1                    (37) 

where 𝐾 = 𝑛 × 𝑐 × 𝐵𝑠 . Then the problem of (36) can be transformed into the following 𝑛 

subproblems 

𝐙𝐺𝑘
(𝑡+1)

= argmin
𝐙𝐺𝑘

1

2
∑ {‖𝐑𝐺𝑘 − 𝐙𝐺𝑘‖𝐹

2
+ 𝜏∑ ℜ(𝐙G𝑘)

𝑛
𝑘=1 }𝑛

𝑘=1          (38) 

where 𝜏 =
𝜆𝐾

𝜇𝑁
. For each group 𝐙𝐺𝑘 , 𝑘 = 1,2,⋯ , 𝑛. Therefore, we have the following GSR model 

based denoising problem for each group 

𝐙𝐺𝑘
(𝑡+1)

= argmin
𝐙𝐺𝑘

1

2
‖𝐑𝐺𝑘 − 𝐙𝐺𝑘‖𝐹

2
+ 𝜏ℜ(𝐙G𝑘).              (39) 

3.2 Iterative reweighted algorithm for nuclear norm minimization 

This subsection will develop an iterative reweighted algorithm for NNM problem (39). 

According to the Definition 1, we can observe that all the nonconvex function contains common 

properties: concave and monotonically increasing on [0,∞). We first give the definition of super-

gradient for all the nonconvex functions defined in Definition 1. We can easily observe that their 

super-gradients are nonnegative and monotonically decreasing, thus we can propose a general solver 

for the problem (39). 

 

Theorem 2. [54] Let 𝑔:ℝ𝑛 → ℝ be concave, if for every 𝐲 ∈ ℝ𝑛, a vector 𝐯 is a super-gradient 

of 𝑔(𝐱) at the point 𝐱 ∈ ℝ𝑛, then 

𝑔(𝐲) ≤ 𝑔(𝐱) + 〈𝐯, 𝐲 − 𝐱〉.                       (40) 

 

In this paper, since the function of 𝑔(∙) is concave on [0,∞), according to the Definition 2 of the 

super-gradient, and the Theorem 2, we can have 

𝜌 (𝜎𝑖(𝐗G𝑘)) ≤ 𝜌 (𝜎𝑖(𝑿G𝑘
𝑡 )) + �̃�𝑘,𝑖

𝑡 (𝜎𝑖(𝐗G𝑘) − 𝜎𝑖(𝐗G𝑘
𝑡 ))            (41) 

where �̃�𝑘,𝑖
𝑡 ∈ 𝜕 [𝜌 (𝜎𝑖(𝐗G𝑘

𝑡 ))] , termed as the reweight here. Since 𝜎1(𝐗G𝑘
𝑡 ) ≥ 𝜎2(𝐗G𝑘

𝑡 ) ≥ ⋯ ≥

𝜎𝑚(𝐗G𝑘
𝑡 ) ≥ 0, then according to the antimonotone property of super-gradient defined in Table 1, 

we have 

0 ≤ �̃�𝑘,1
𝑡 ≤ �̃�𝑘,2

𝑡 ≤ ⋯ ≤ �̃�𝑘,𝑚
𝑡                     (42) 

where 𝐗G𝑘
𝑡  denote the 𝑡-th iteration solution. Motivated by the property, the minimization problem 

(39) can be converted into the following relaxed problem by 

 𝐙𝐺𝑘
𝑡+1 = argmin

𝐗𝐺𝑘

1

2
‖𝐑𝐺𝑘 − 𝐙G𝑘‖2

2
+ 𝜏ℜ(𝐙G𝑘)  

= argmin
𝐗𝐺𝑘

1

2
‖𝐑𝐺𝑘 − 𝐙G𝑘‖2

2
+ 𝜏∑ 𝜌 (𝜎𝑖(𝐙G𝑘))

𝑟
𝑖=1   

        = argmin
𝐗𝐺𝑘

1

2
‖𝐑𝐺𝑘 − 𝐙G𝑘‖2

2
+ 𝜏∑ [𝜌 (𝜎𝑖(𝐙G𝑘

𝑡 )) + �̃�𝑘,𝑖
𝑡 (𝜎𝑖(𝐙G𝑘) − 𝜎𝑖(𝐙G𝑘

𝑡 ))]𝑟
𝑖=1  



    = argmin
𝐗𝐺𝑘

1

2
‖𝐑𝐺𝑘 − 𝐙G𝑘‖2

2
+ 𝜏∑ (�̃�𝑘,𝑖

𝑡 𝜎𝑖(𝐙G𝑘))
𝑟
𝑖=1                           (43) 

where �̃�𝑘,𝑖
𝑡 ∈ 𝜕 [𝜌 (𝜎𝑖(𝑿G𝑘

𝑡 ))] denotes the 𝑖-th reweighting for each singular value.  

3.3 Iteratively-weighting strategy 

Although the proposed nonconvex model (16) can improve the NNM effectively, it still has 

some problems. According to the theory of low rank minimization, the rank of a certain matrix only 

corresponds to the larger nonzero singular values, what’s more, larger singular values often contain 

more information of matrix. For better approximation of the rank of group matrix, hence, the larger 

singular values should be shrunk less, and the smaller ones should be shrunk more. In this paper, 

we propose a more flexible and effective iteratively-weighted strategy for corresponding singular 

value 𝜎𝑖(𝐗G𝑘) to avoid over-shrinking. Our motivation is to shrink the larger singular values less 

and shrink the smaller ones more. intuitively, each weighting should be inversely proportional to 

|𝜎𝑖(𝐗G𝑘
𝑡 )|, it can be expressed as 

𝜔𝑘,𝑖
𝑡 =

1

|𝜎𝑖(𝐗G𝑘
𝑡 )|+𝜀

                           (44) 

where 𝜎𝑖(𝐗G𝑘
𝑡 ), 𝑖 = 1,2,⋯ ,𝑚𝑖𝑛(𝐵𝑠, 𝑐) denotes the 𝑖-th singular value of 𝑡-th iteration solution 

𝐗G𝑘
𝑡 , and the small constant parameter 휀 can prevent the denominator from zero, e.g., 2.2204𝑒−16. 

Accordingly, the optimization of (43) can be converted the following weighting model, e.g., 

𝐗𝐺𝑘
𝑡+1 = argmin

𝐗𝐺𝑘

1

2
‖𝐑𝐺𝑘 − 𝐗𝐺𝑘‖2

2
+ 𝜆∑ (𝑤𝑘,𝑖

𝑡 𝜎𝑖(𝐗G𝑘))
𝑟
𝑖=1            (45) 

where 𝑤𝑘,𝑖
𝑡 = 𝜔𝑘,𝑖

𝑡 �̃�𝑘,𝑖
𝑡 = 𝜕𝜌(𝜎𝑖(𝐗G𝑘

𝑡 )) (|𝜎𝑖(𝐗G𝑘
𝑡 )| + 휀)⁄ . 

 

Lemma 3. [54][55] For any 𝜆 > 0, 𝐘 ∈ ℝ𝑀×𝑁, and the weighting vector �̃� = [�̃�1, �̃�2,⋯ , �̃�𝑠]  

with 0 ≤ �̃�1 ≤ �̃�2 ≤ ⋯ ≤ �̃�𝑠, (𝑠 = 𝑚𝑖𝑛 (𝑀,𝑁)), then the globally optimal solution of following 

optimization problem 

min
1

2
‖𝐘 − 𝐗‖𝐹

2 + 𝜆∑ 𝑤𝑖𝜎𝑖(𝐗)
𝑠
𝑖=1                     (46) 

is given by the weighted singular value thresholding (WSVT) 

𝐗∗ = 𝐔𝑺𝜆�̃�(𝚺)𝐕
T                          (47) 

where 𝐘 = 𝐔𝚺𝐕T denotes the SVD of 𝐘, and for each diagonal element 𝚺𝑖𝑖 of 𝚺, there is 

𝑺𝜆�̃�(𝚺) = Diag{(𝚺𝑖𝑖 − 𝜆𝑤𝑖)+}.                    (48) 

 

According to the nonnegativity and the monotonicity of 𝜕𝜌(𝜃) and 𝜔𝑘,𝑖, we can easily obtain the 

following relationship between 𝑤𝑘,𝑖 , 𝑖 = 1,2,⋯𝑟 , that is 0 ≤ 𝑤𝑘,1 ≤ 𝑤𝑘,2 ≤ ⋯ ≤ 𝑤𝑘,𝑟 . Hence, 

according to the Lemma 3, the globally optimal solution of (45) can be given by the following 

WSVT operator 

𝐗𝐺𝑘
𝑡+1 = 𝐔𝐺𝑘𝑺𝜏𝑤𝑘,𝑖

𝑡 (𝚺𝐺𝑘)𝐕𝐺𝑘
T                         (49) 



where 𝑺𝜏𝑤𝑘,𝑖
𝑡 (𝚺𝐺𝑘) = Diag {((𝚺𝐺𝑘)𝑖𝑖

− 𝜏𝑤𝑘,𝑖
𝑡 )

+
} , in which (𝑥)+ = max{𝑥, 0} ,  𝐔𝐺𝑘 , 𝚺𝐺𝑘 =

𝑑𝑖𝑎𝑔(𝜍𝑘,1, 𝜍𝑘,2,⋯ , 𝜍𝑘,𝑟) and 𝐕𝐺𝑘
T  are achieved by the singular value decomposition (SVD) of 

𝐑𝐺𝑘 , e.g., 𝐑𝐺𝑘 = 𝐔𝐺𝑘𝚺𝐺𝑘𝐕𝐺𝑘
𝑇  , (𝚺𝐺𝑘)𝑖𝑖

  denotes the 𝑖 -th singular value 𝜍𝑘,𝑖 . By iteratively 

updating the reweighting �̃�𝑘,𝑖
𝑡 ∈ 𝜕 [𝑔 (𝜎𝑖(𝐗G𝑘

𝑡 ))] and 𝜔𝑘,𝑖
𝑡 = 1 (|𝜎𝑖(𝐗G𝑘

𝑡 )| + 휀)⁄ , the problem 

(45) can be resolved effectively. 

After achieving all �̂�G𝑘 , 𝑘 = 1,2,⋯ , 𝑛, then we can obtain the desired image by 

�̂� = ∑ 𝐺𝑘
𝑇(�̂�G𝑘)

𝑛
𝑘=1 . ∑ 𝐺𝑘

𝑇(𝟏ℬ𝑐)
𝑛
𝑘=1⁄                   (50) 

where the 𝐺𝑘
𝑇(⋅) denotes the transpose grouping operator, which can reconstruct the original image 

from the group.  

3.4 Summary of the GSR-ADMM-IRNN Algorithm 

The whole procedure of our proposed algorithm of GSR-ADMM-IRNN can be shown in the 

Algorithm 1 and Algorithm 2 for standard CS and robust CS respectively. 

 

Algorithm 1. Proposed GSR-ADMM-IRNN Algorithm for Standard image CS 

Input: The Observation 𝐘, the compressed sampling matrix 𝐇; 

Initialization: 𝑐, ℬ𝑠, 𝑡 = 0, 𝛿, 휀, 𝜇, γ, 𝜆(0), 𝐖(0) = 𝟎, 𝐙(0) = 𝟎; 

Repeat 

Updating 𝐗(𝑡+1) using the Eq. (22) (23); 

Computing 𝐑(𝑡+1) = 𝐗(𝑡+1) −𝐖(𝑡); 

Constructing groups {𝑹𝐺𝑘
(𝑡+1)

} from 𝑹(𝑡+1); 

Computing parameter 𝜏 =
𝜆𝐾

𝜇𝑁
; 

for each group 𝑹𝐺𝑘
(𝑡+1)

 

Singular value decomposition by 𝑹𝐺𝑘
(𝑡+1)

= 𝐔𝐺𝑘𝚺𝐺𝑘𝐕𝐺𝑘
𝑇 ; 

Updating weightings 𝜔𝑖
(𝑡+1)

 and �̃�𝑘,𝑖
(𝑡+1)

; 

Reconstruct 𝐗𝐺𝑘
(𝑡+1)

 using the Eq. (49); 

end 

Computing 𝐗(𝑡+1) by concatenating all the dictionaries {𝐗G𝑘}; 

Computing 𝐖(𝑡+1) using Eq. (20); 

𝑡 = 𝑡 + 1; 

Until the maximum iteration number is reached. 

Output: The reconstructed image 𝐗(𝑡+1). 

 

Algorithm 2. Proposed GSR-ADMM-IRNN Algorithm for Robust image CS 

Input: The Observation 𝐘, the compressed sampling matrix 𝐇; 



Initialization: 𝑐, ℬ𝑠, 𝑡 = 0, 𝛿, 휀, 𝜇, γ, 𝜆(0), 𝐖(0) = 𝟎, 𝐙(0) = 𝟎; 

Repeat 

Updating 𝐗(𝑡+1) using the Eq. (34) (35); 

Computing 𝐑(𝑡+1) = 𝐗(𝑡+1) −𝐖(𝑡); 

Constructing groups {𝑹𝐺𝑘
(𝑡+1)

} from 𝑹(𝑡+1); 

Computing parameter 𝜏 =
𝜆𝐾

𝜇𝑁
; 

for each group 𝑹𝐺𝑘
(𝑡+1)

 

Singular value decomposition by 𝑹𝐺𝑘
(𝑡+1)

= 𝐔𝐺𝑘𝚺𝐺𝑘𝐕𝐺𝑘
𝑇 ; 

Updating weightings 𝜔𝑖
(𝑡+1)

 and �̃�𝑘,𝑖
(𝑡+1)

; 

Reconstruct 𝐗𝐺𝑘
(𝑡+1)

 using the Eq. (49); 

end 

Computing 𝐗(𝑡+1) by concatenating all the dictionaries {𝐗G𝑘}; 

Computing 𝐖(𝑡+1) using Eq. (20); 

𝑡 = 𝑡 + 1; 

Until the maximum iteration number is reached. 

Output: The reconstructed image 𝐗(𝑡+1). 

 

IV. Experimental Results 

In this section, we employ several classical nonconvex functions as surrogates to evaluate the 

performance of our proposed nonconvex framework for CS reconstruction tasks, including the Lp, 

MCP, ETP and logarithm function. Because the original image 𝐗 is unknown, this paper employs 

the result of a state-of-the art algorithm MH [56] as initialization for our proposed standard CS 

framework, and employs the result of DCT [37] as initialization for our robust CS framework. For 

MH initialization-based framework, we generate CS measurements by randomly sampling the 

image block, while for DCT initialization-based framework, the CS measurements are generated by 

randomly sampling the Fourier transform coefficients of the original images. To better illustrate the 

performance, we compare the performance of proposed algorithm with several state-of-the-art 

convex CS reconstruction algorithms. We also analyze the convergence behavior of our proposed 

GSR-ADMM-IRNN algorithm for nonconvex optimization problem. We introduce two metrics to 

evaluate the reconstruction performance of all algorithms, namely, the peak signal-to-noise ratio 

(PSNR) and the metric feature similarity (FSIM) [57]. All the natural images for experiments are 

listed in the Fig. 3. 

 

        



Fig. 3. Eight typical 256 × 256 natural images for experiments: Barbara, Boats, Elaine, Foreman, 

House, Leaves, Monarch and Starfish. 

 

4.1 Standard Image CS 

4.1.1 Parameters setting 

From the Algorithm 1, we can find that there are some important parameters, the regularization 

parameter 𝜆, the penalty factor 𝜇, and the optimal number of similar patch 𝑐, and other parameters, 

such as the patch size of √ℬ𝑠 ×√ℬ𝑠. Empirically, in this paper, we will set the block size √ℬ𝑠 ×

√ℬ𝑠 as 32 × 32, and the patch size is set to be 6 × 6, and the searching window 𝐿 × 𝐿 is set to 

be 20 × 20  for all the experiments. To evaluate the effects of other two parameters for the 

reconstructed quality and choose optimal parameters, in this subsection, we plot the PSNRs curve 

and FSIMs curve for our proposed algorithm versus 𝜇 and 𝑐 respectively. For the penalty factor 

parameter, we empirically choose 𝜇 ∈ [10−6, 1], where we fix other parameters and then evaluate 

the PSNRs and FSIMs. We choose the typical image ‘House’ to carry out the experiments under 

three different sampling rates of 0.2, 0.3 and 0.4. Fig. 4 (a) and (b) present the PSNRs curve and 

FSIMs curve respectively, from the results we can observe that our proposed algorithm can obtain 

the best reconstruction quality when 𝜇 ∈ (10−3~10−1) for all the measurements. 

 

  

(a)                                  (b) 

Fig. 4. Performance of CS reconstruction for 0.1, 0.2 and 0.3 measurements of ‘House’. (a) PSNR 

versus the parameter 𝜇; (b) FSIM versus the parameter 𝜇. 

 

For the best match parameter 𝑐, we conduct experiment employ the surrogate functions of 

Logarithm and SCAD employ several typical images for experiments, and we fix the sampling rate 

to be 0.2, 0.3 and 0.4 for Logarithm function and SCAD function. Fig. 5 (a) and (b) plot the PSNRs 

curve and the FSIMs curve versus 𝑐 , from the results we can also observe that the proposed 

algorithm is not sensitive to the parameter 𝑐, and can achieve the favorable PSNRs and FSIMs 

when the 𝑐 ∈ [60,100] , however, we empirically find that a larger 𝑐  will bring higher 

computational time cost. Hence, in this paper, we set 𝑐 = 60 for all of our following experiments. 

The selections of all parameters are detailed in the table I for different sub-sampling rates and 

surrogate functions. 

 



 
(a)                                      (b) 

Fig. 5. Performance of CS reconstruction for three different images of ‘House’, ‘Barbara’ and 

‘Boats’. (a) PSNR versus the number of similar patch 𝑐; (b) FSIM versus the number of similar 

patch 𝑐. 

 

Table I  The selections of parameters for different sub-rates and functions for noisy measurements 

Different penalties 0.1 0.2 0.3 0.4 0.5 

ETP (𝜇, 𝜆, 𝛾) (0.01,0.01, 10−2) (0.01,0.005, 10−2) (0.025,0.005, 10−2) (0.025,0.005, 10−2) (0.075,0.005, 10−2) 

Logarithm (𝜇, 𝜆, 𝛾) (0.01,0.005, 10−2) (0.01,0.005, 10−2) (0.02,0.005, 10−2) (0.025,0.005, 10−2) (0.075,0.005, 10−2) 

𝑳𝒑 (𝜇, 𝜆, 𝑝) (0.01,0.01, 0.6) (0.01,0.01, 0.6) (0.02,0.01, 0.6) (0.025,0.01, 0.6) (0.065, 0.01,0.6) 

MCP (𝜇, 𝜆, 𝛾) (0.03,0.0075, 106) (0.025,0.005, 106) (0.019,0.004, 106) (0.05,0.005, 106) (0.065,0.004, 106) 

 

4.1.2 Effect comparison with the nonconvex weighting strategy 

(I) Effect comparison with the nonconvex strategy 

To evaluate the effect of our proposed nonconvex strategy, this subsection will conduct 

comparative experiments between the convex weighted model (Weighted NNM) and our proposed 

nonconvex weighted model, we employ the popular functions of ETP, Logarithm, Lp and MCP as 

the case and reconstructing four images from under-sampled data with different sub-rates. Fig. 6 

presents the PSNR curves comparisons of our proposed method using Logarithm and weighted 

NNM versus the iteration number for the image ‘Barbara’ case, and all the comparable results are 

list in the Table II, we can find that our proposed nonconvex strategy can improve the corresponding 

weighted NNM based model significantly, particularly for lower under-sampling rate, e,g., 0.1. It 

should be noted that all parameters for the competing convex NNM algorithm are setting so that it 

can achieve best performance for a for a fair comparison, e.g., 𝜇 = 0.0001, λ = 0.01 for 10% 

under-sampled data, 𝜇 = 0.0005, λ = 0.01 for 20% under-sampled data, and 𝜇 = 0.0001, λ =

0.01 for 30% under-sampled data. 

 



  
Fig. 6. PSNR curves comparisons versus the iteration number between the weighted NNM and our 

proposed nonconvex weighted NNM model (Logarithm). 

 

Table II  PSNR (dB)/FSIM comparisons of proposed nonconvex method with the traditional 

weighted convex NNM 

Rate Method Barbara Boats Foreman House 

 

 

𝟏𝟎% 

Weighted NNM 28.41/0.9079 28.24/0.8977 35.45/0.9465 33.29/0.9270 

Proposed (ETP) 29.82/0.9244 29.03/0.9076 35.96/0.9492 34.16/0.9300 

Proposed (logarithm) 29.91/0.9264 29.22/0.9098 36.16/0.9510 34.24/0.9310 

Proposed (Lp) 29.95/0.9270 29.24/0.9102 36.20/0.9513 34.26/0.9315 

Proposed (MCP) 29.90/0.9264 29.31/0.9105 36.21/0.9510 34.29/0.9316 

 

 

𝟐𝟎% 

Weighted NNM 34.16/0.9647 33.59/0.9562 38.63/0.9701 36.92/0.9616 

Proposed (ETP) 34.67/0.9675 33.96/0.9586 38.75/0.9703 37.08/0.9623 

Proposed (logarithm) 34.36/0.9656 33.73/0.9567 38.69/0.9701 36.97/0.9615 

Proposed (Lp) 34.38/0.9658 33.77/0.9572 38.71/0.9702 37.00/0.9618 

Proposed (MCP) 34.46/0.9665 33.91/0.9584 38.78/0.9702 37.13/0.9626 

 

 

𝟑𝟎% 

 

 

Weighted NNM 36.90/0.9799 36.72/0.9760 40.87/0.9810 38.99/0.9763 

Proposed (ETP) 37.29/0.9814 37.22/0.9777 41.13/0.9816 39.36/0.9780 

Proposed (logarithm) 37.16/0.9808 37.03/0.9770 41.02/0.9812 39.15/0.9768 

Proposed (Lp) 37.18/0.9809 37.09/0.9773 41.05/0.9813 39.23/0.9773 

Proposed (MCP) 36.87/0.9797 36.68/0.9757 40.89/0.9808 38.97/0.9758 

 

(II) Effect comparison with the weighting strategy 

To evaluate the effect of our proposed weighting strategy, this subsection will conduct 

comparative experiments between the corresponding nonconvex NNM model without weighting 

strategy and our proposed nonconvex weighted model, we reconstruct four different images from 

under-sampled data using four surrogate functions of ETP, Logarithm, Lp and MCP. It should be 

noted that the non-weighted Lp based GSR method is a recent proposed method for CS problem 

[44]. Fig. 7 presents the PSNR curves comparisons versus the iteration number for the image ‘House’ 

case, and Table IV present all comparable results. From them we can find that our proposed 

weighting strategy can outperform the corresponding nonconvex NNM based model without 

weighting strategy significantly. It should be noted that all parameters for the competing convex 



NNM algorithm are setting for the best performance for a for a fair comparison, which are list in 

the table III. 

 

Table III  The selections of parameters for different nonconvex penalties without weighting 

strategy  

Different Penalties 0.1 0.2 0.3 

ETP (𝜇, 𝜆, 𝛾) (0.01,0.01, 10−2) (0.02,0.0005, 10−2) (0.03,0.0007, 10−2) 

Logarithm (𝜇, 𝜆, 𝛾) (0.015,0.001, 10−2) (0.01,0.00025, 10−2) (0.02,0.0005, 10−2) 

Lp (𝜇, 𝜆, 𝑝) (0.012,0.0015, 0.6) (0.01,0.0005, 0.6) (0.01,0.001, 0.6) 

MCP (𝜇, 𝜆, 𝛾) (0.012,0.0004, 106) (0.003,0.00005, 106) (0.0012,0.00002, 106) 

 

 

Fig. 7. PSNR curves comparisons versus the iteration number between the nonconvex NNM and 

our proposed nonconvex weighted NNM model (Logarithm). 

 

Table IV  PSNR/FSIM comparisons of proposed nonconvex weighted method with the nonconvex 

method without weighting 

Rate Method Elaine Leaves Monarch Starfish 

 

 

 

𝟏𝟎% 

Nonconvex NNM (ETP) 32.04/0.9277 25.86/0.9139 27.39/0.9068 25.62/0.9277 

Proposed 1 (ETP) 32.25/0.9300 25.71/0.9141 27.29/0.9066 25.43/0.8775 

Nonconvex NNM (Logarithm) 31.45/0.9234 25.54/0.9098 26.93/0.9028 25.22/0.8694 

Proposed 1 (Logarithm) 32.36/0.9319 25.84/0.9150 27.42/0.9088 25.51/0.8792 

Nonconvex NNM (Lp) 31.29/0.9230 25.17/0.9063 26.62/0.9004 24.97/0.8651 

Proposed 1 (Lp) 32.38/0.9324 25.87/0.9151 27.45/0.9092 25.52/0.8795 

Nonconvex NNM (MCP) 30.42/0.9150 23.88/0.8887 25.54/0.8861 24.14/0.8466 

Proposed 1 (MCP) 32.36/0.9324 25.89/0.9144 27.47/0.9095 25.52/0.8788 

 

 

 

𝟐𝟎% 

Nonconvex NNM (ETP) 36.19/0.9650 31.48/0.9620 31.81/0.9505 29.92/0.9404 

Proposed 1 (ETP) 36.15/0.9644 31.48/0.9618 31.84/0.9508 30.01/0.9406 

Nonconvex NNM (Logarithm) 35.76/0.9627 30.95/0.9691 31.39/0.9481 29.38/0.9342 

Proposed 1 (Logarithm) 35.95/0.9632 31.45/0.9611 31.74/0.9503 29.87/0.9385 

Nonconvex NNM (Lp) 35.72/0.9628 30.57/0.9577 31.18/0.9467 29.20/0.9329 

Proposed 1 (Lp) 35.98/0.9635 31.43/0.9612 31.74/0.9503 29.86/0.9386 



 

4.1.3 Convergence analysis 

Although the nonconvex penalized regularization model can obtain better performance than 

the convex surrogate, it is intractable to demonstrate the convergence of our proposed algorithm. In 

this subsection, we will present the convergence property of our proposed algorithm visually by the 

PSNR curve versus the iteration number. Fig. 8 (a), (b) and (c) present the PSNRs curves for 

Logarithm function, MCP function and SCAD function under different sub-sampling rates, from the 

results we can observe that our proposed algorithm for the nonconvex framework contains good 

convergence property. 

 

 

 (a)                             (b) 

 

 (c)                               (d) 

 

Nonconvex NNM (MCP) 34.54/0.9554 27.78/0.9375 29.30/0.9317 27.40/0.9095 

Proposed 1 (MCP) 36.08/0.9644 31.42/0.9616 31.76/0.9502 29.83/0.9392 

 

 

 

𝟑𝟎% 

 

 

Nonconvex NNM (ETP) 38.19/0.9765 35.11/0.9795 34.80/0.9677 33.17/0.9640 

Proposed 1 (ETP) 38.33/0.9773 35.24/0.9803 34.85/0.9671 33.43/0.9660 

Nonconvex NNM (Logarithm) 37.85/0.9751 34.25/0.9767 34.18/0.9654 32.39/0.9594 

Proposed 1 (Logarithm) 38.25/0.9768 35.20/0.9799 34.89/0.9678 33.31/0.9649 

Nonconvex NNM (Lp) 37.42/0.9733 33.17/0.9725 33.39/0.9619 31.59/0.9539 

Proposed 1 (Lp) 38.27/0.9769 35.23/0.9801 34.90/0.9678 33.33/0.9653 

Nonconvex NNM (MCP) 36.72/0.9705 31.02/0.9619 31.96/0.9533 30.09/0.9424 

Proposed 1 (MCP) 38.09/0.9760 34.87/0.9788 34.63/0.9671 32.95/0.9627 



Fig. 8. The convergence of the proposed algorithm for Logarithm function, MCP function and 

SCAD function with different rates of 0.2 and 0.4. 

 

4.1.4 Comparisons with state-of-the art approaches 

To demonstrate the effectiveness of our proposed algorithm, we employ four representative 

convex CS recovery algorithms for comparisons, including the algorithms of BCS [58], SGSR [59], 

ALSB [60], JASR [61], GSR-Lp [44], GSR-NCR [45]. It should be noted that all these competing 

methods employ the results of MH as initializations. Table V and VI list the PSNR and FSIM of 

four convex state-of-the art algorithms and our proposed nonconvex algorithm under five different 

sampling rates of 0.1, 0.2, 0.3, 0.4 and 0.5. We can observe that our proposed nonconvex group-

prior model can obtain higher PSNR values and FSIM values. 

 

Table V  The PSNR comparisons of proposed algorithm and other state-of-the art algorithms 

Rate Method Barbara Boats Elaine Foreman House Leaves Monarch Starfish Average 

 

 

 

 

𝟏𝟎% 

MH based recovery 26.74 26.09 29.36 33.14 30.32 20.90 23.20 22.53 26.54 

SGSR 28.70 27.71 31.32 34.88 32.77 22.22 24.27 22.91 28.10 

ALSB 27.01 27.75 30.99 33.49 32.18 21.37 24.27 23.63 27.59 

JASR 29.58 28.59 32.01 35.61 33.49 23.62 25.83 24.39 29.14 

GSR-Lp 28.38 28.37 31.27 35.57 33.46 25.17 26.61 24.96 29.22 

GSR-NCR 28.28 27.62 31.35 35.59 32.35 21.74 23.86 22.92 27.96 

Proposed 1 (ETP) 29.82 29.03 32.25 35.96 34.16 25.71 27.29 25.43 29.96 

Proposed 1 (logarithm) 29.91 29.22 32.36 36.16 34.24 25.84 27.42 25.51 30.08 

Proposed 1 (Lp) 29.95 29.24 32.38 36.20 34.26 25.87 27.45 25.52 30.11 

Proposed 1 (MCP) 29.90 29.31 32.36 36.21 34.29 25.89 27.47 25.52 30.12 

 

 

 

 

𝟐𝟎% 

MH based recovery 30.81 29.92 33.47 35.92 33.85 25.16 27.11 25.92 30.27 

SGSR 33.45 32.41 34.86 36.98 35.81 28.74 28.76 27.19 32.28 

ALSB 31.77 33.04 35.11 35.33 35.93 27.14 28.39 27.20 31.74 

JASR 34.16 33.21 35.66 37.87 36.10 30.24 30.60 29.10 33.37 

GSR-Lp 33.74 33.34 35.72 38.65 37.02 30.33 31.04 29.01 33.61 

GSR-NCR 33.91 33.30 35.61 37.74 36.57 28.89 29.41 27.88 32.91 

Proposed 1 (ETP) 34.67 33.96 36.15 38.75 37.08 31.48 31.84 30.01 34.24 

Proposed 1 (logarithm) 34.36 33.73 35.95 38.69 36.97 31.45 31.74 29.87 34.10 

Proposed 1 (Lp) 34.38 33.77 35.98 38.71 37.00 31.43 31.74 29.86 34.11 

Proposed 1 (MCP) 34.46 33.91 36.08 38.78 37.13 31.42 31.76 29.83 34.17 

 

 

 

 

𝟑𝟎% 

MH based recovery 32.99 32.26 35.40 37.69 35.69 27.65 29.21 27.88 32.35 

SGSR 35.91 35.22 36.87 38.47 37.37 32.98 31.99 30.79 34.95 

ALSB 34.70 36.45 37.49 36.50 38.36 31.30 31.37 30.43 34.58 

JASR 36.59 36.08 36.83 38.54 38.04 33.70 33.63 32.33 35.72 

GSR-Lp 35.67 35.30 37.39 40.34 38.32 33.17 33.39 31.59 35.65 

GSR-NCR 37.16 37.26 38.25 41.18 39.37 34.92 34.64 33.17 36.99 

Proposed 1 (ETP) 37.29 37.22 38.33 41.13 39.36 35.24 34.85 33.43 37.11 

Proposed 1 (logarithm) 37.16 37.03 38.25 41.02 39.15 35.20 34.89 33.31 37.01 

Proposed 1 (Lp) 37.18 37.09 38.27 41.05 39.23 35.23 34.90 33.33 37.04 



Proposed 1 (MCP) 36.87 36.68 38.09 40.89 38.97 34.87 34.63 32.95 36.74 

 

 

 

 

𝟒𝟎% 

MH based recovery 35.13 34.22 37.07 39.15 36.64 29.68 31.14 29.60 34.08 

SGSR 37.70 37.41 38.63 39.84 38.99 35.83 34.66 33.66 37.09 

ALSB 37.23 38.88 39.48 42.62 40.06 34.47 34.52 33.24 37.56 

JASR 37.39 37.19 38.28 41.19 38.79 36.56 36.15 34.30 37.48 

GSR-Lp 38.33 38.43 39.59 42.42 40.56 36.86 36.47 34.73 38.42 

GSR-NCR 39.22 39.63 40.08 42.95 41.11 38.51 37.58 36.21 39.41 

Proposed 1 (ETP) 39.21 39.53 40.11 42.94 41.04 38.62 37.68 36.22 39.42 

Proposed 1 (logarithm) 39.13 39.43 40.06 42.86 40.97 38.49 37.60 36.08 39.33 

Proposed 1 (Lp) 39.16 39.49 40.10 42.93 41.03 38.57 37.64 36.13 39.38 

Proposed 1 (MCP) 39.15 39.49 40.10 42.97 41.08 38.54 37.58 36.08 39.37 

 

 

 

 

𝟓𝟎% 

MH based recovery 36.80 35.86 38.54 40.39 38.53 31.93 32.94 31.10 35.76 

SGSR 39.38 39.30 40.08 41.15 40.56 38.19 36.99 35.88 38.94 

ALSB 39.44 40.93 41.19 44.40 41.80 37.67 36.99 36.09 39.81 

JASR 40.31 40.30 39.47 42.69 41.44 39.06 38.36 37.14 39.85 

GSR-Lp 40.28 40.42 41.20 44.07 42.03 39.55 38.72 37.03 40.41 

GSR-NCR 41.04 41.51 41.67 44.54 42.58 41.33 40.19 38.49 41.42 

Proposed 1 (ETP) 41.08 41.54 41.72 44.93 42.74 41.73 40.24 38.57 41.57 

Proposed 1 (logarithm) 41.09 41.56 41.73 44.91 42.73 41.72 40.25 38.58 41.57 

Proposed 1 (Lp) 41.08 41.55 41.71 44.92 42.73 41.73 40.24 38.57 41.57 

Proposed 1 (MCP) 41.08 41.55 41.75 44.84 42.69 41.58 40.17 38.50 41.52 

 

Table VI  The FSIM comparisons of proposed algorithm and other state-of-the art algorithms 

Rate Method Barbara Boats Elaine Foreman House Leaves Monarch Starfish Average 

 

 

 

 

𝟏𝟎% 

MH based recovery 0.8911 0.8481 0.9018 0.9267 0.8936 0.7634 0.7912 0.8078 0.8530 

SGSR 0.9147 0.8915 0.9220 0.9393 0.9187 0.8356 0.8371 0.8177 0.8846 

ALSB 0.8903 0.8830 0.9184 0.9254 0.9069 0.7934 0.8218 0.8343 0.8717 

JASR 0.9223 0.9035 0.9282 0.9437 0.9167 0.8799 0.8822 0.8516 0.9035 

GSR-Lp 0.9062 0.8983 0.9229 0.9473 0.9269 0.9064 0.9003 0.8649 0.9092 

GSR-NCR 0.9217 0.8977 0.9318 0.9449 0.9128 0.8367 0.8289 0.8227 0.8872 

Proposed 1 (ETP) 0.9244 0.9076 0.9300 0.9492 0.9300 0.9141 0.9066 0.8775 0.9174 

Proposed 1 (logarithm) 0.9264 0.9098 0.9319 0.9510 0.9310 0.9150 0.9088 0.8792 0.9191 

Proposed 1 (Lp) 0.9270 0.9102 0.9324 0.9513 0.9315 0.9151 0.9092 0.8795 0.9195 

Proposed 1 (MCP) 0.9264 0.9105 0.9324 0.9510 0.9316 0.9144 0.9095 0.8788 0.9193 

 

 

 

 

𝟐𝟎% 

MH based recovery 0.9393 0.9159 0.9452 0.9558 0.9389 0.8576 0.8751 0.8729 0.9126 

SGSR 0.9615 0.9465 0.9551 0.9598 0.9502 0.9373 0.9132 0.8993 0.9403 

ALSB 0.9501 0.9512 0.9597 0.9460 0.9541 0.9094 0.8965 0.8973 0.9330 

JASR 0.9651 0.9521 0.9603 0.9636 0.9425 0.9516 0.9409 0.9295 0.9507 

GSR-Lp 0.9627 0.9550 0.9628 0.9702 0.9630 0.9569 0.9453 0.9312 0.9559 

GSR-NCR 0.9642 0.9526 0.9600 0.9578 0.9508 0.9415 0.9201 0.9158 0.9454 

Proposed 1 (ETP) 0.9675 0.9586 0.9644 0.9703 0.9623 0.9618 0.9508 0.9406 0.9595 

Proposed 1 (logarithm) 0.9656 0.9567 0.9632 0.9701 0.9615 0.9611 0.9503 0.9385 0.9584 



Proposed 1 (Lp) 0.9658 0.9572 0.9635 0.9702 0.9618 0.9612 0.9503 0.9386 0.9586 

Proposed 1 (MCP) 0.9665 0.9584 0.9644 0.9702 0.9626 0.9616 0.9502 0.9392 0.9591 

 

 

 

 

𝟑𝟎% 

MH based recovery 0.9588 0.9438 0.9614 0.9686 0.9569 0.8960 0.8990 0.9055 0.9362 

SGSR 0.9762 0.9684 0.9695 0.9711 0.9648 0.9676 0.9469 0.9447 0.9637 

ALSB 0.9716 0.9744 0.9742 0.9575 0.9730 0.9537 0.9296 0.9412 0.9594 

JASR 0.9785 0.9723 0.9661 0.9649 0.9649 0.9719 0.9610 0.9580 0.9672 

GSR-Lp 0.9749 0.9699 0.9731 0.9791 0.9729 0.9725 0.9619 0.9540 0.9698 

GSR-NCR 0.9815 0.9783 0.9774 0.9829 0.9795 0.9799 0.9666 0.9654 0.9764 

Proposed 1 (ETP) 0.9814 0.9777 0.9773 0.9816 0.9780 0.9803 0.9671 0.9660 0.9762 

Proposed 1 (logarithm) 0.9808 0.9770 0.9768 0.9812 0.9768 0.9799 0.9678 0.9649 0.9757 

Proposed 1 (Lp) 0.9809 0.9773 0.9769 0.9813 0.9773 0.9801 0.9678 0.9653 0.9759 

Proposed 1 (MCP) 0.9797 0.9757 0.9760 0.9808 0.9758 0.9788 0.9671 0.9627 0.9746 

 

 

 

 

𝟒𝟎% 

MH based recovery 0.9722 0.9606 0.9721 0.9771 0.9644 0.9237 0.9245 0.9268 0.9527 

SGSR 0.9835 0.9793 0.9784 0.9788 0.9759 0.9799 0.9648 0.9661 0.9758 

ALSB 0.9830 0.9838 0.9830 0.9871 0.9820 0.9730 0.9581 0.9642 0.9768 

JASR 0.9803 0.9764 0.9742 0.9808 0.9676 0.9831 0.9739 0.9677 0.9755 

GSR-Lp 0.9854 0.9832 0.9828 0.9866 0.9834 0.9860 0.9767 0.9735 0.9822 

GSR-NCR 0.9879 0.9867 0.9848 0.9886 0.9862 0.9894 0.9794 0.9794 0.9853 

Proposed 1 (ETP) 0.9875 0.9860 0.9844 0.9876 0.9848 0.9893 0.9796 0.9791 0.9848 

Proposed 1 (logarithm) 0.9873 0.9857 0.9842 0.9874 0.9845 0.9890 0.9795 0.9785 0.9845 

Proposed 1 (Lp) 0.9874 0.9859 0.9843 0.9876 0.9849 0.9892 0.9796 0.9788 0.9847 

Proposed 1 (MCP) 0.9874 0.9859 0.9844 0.9877 0.9851 0.9893 0.9795 0.9787 0.9848 

 

 

 

𝟓𝟎% 

 

MH based recovery 0.9805 0.9714 0.9795 0.9824 0.9763 0.9465 0.9437 0.9429 0.9654 

SGSR 0.9885 0.9855 0.9844 0.9844 0.9832 0.9872 0.9762 0.9772 0.9833 

ALSB 0.9891 0.9896 0.9883 0.9912 0.9882 0.9854 0.9740 0.9786 0.9856 

JASR 0.9902 0.9881 0.9798 0.9865 0.9848 0.9895 0.9818 0.9823 0.9854 

GSR-Lp 0.9904 0.9887 0.9879 0.9908 0.9884 0.9916 0.9839 0.9826 0.9880 

GSR-NCR 0.9919 0.9909 0.9893 0.9921 0.9905 0.9938 0.9871 0.9866 0.9903 

Proposed 1 (ETP) 0.9918 0.9907 0.9892 0.9921 0.9903 0.9941 0.9867 0.9865 0.9902 

Proposed 1 (logarithm) 0.9918 0.9908 0.9893 0.9921 0.9903 0.9941 0.9867 0.9866 0.9902 

Proposed 1 (Lp) 0.9918 0.9907 0.9892 0.9921 0.9903 0.9941 0.9867 0.9865 0.9902 

Proposed 1 (MCP) 0.9918 0.9907 0.9893 0.9919 0.9901 0.9940 0.9867 0.9864 0.9901 

 

To make a visual comparison, we choose three typical images of boats, leaves and monarch for 

0.1 measurements, and choose fingerprint and leaves for 0.2 measurements, the reconstructed 

images are present in the Fig. 9 to Fig. 11. It can be seen that our proposed algorithm can reconstruct 

image with higher quality. 

 



          

(a)           (b)           (c)           (d)          (e)            (f) 

   

(g)           (h)           (i)           (j)           (k) 

Fig. 9. Visual comparison of the original image and seven reconstructed images by BCS, ALSB, 

ALSB, GSR, JASR and our proposed algorithms for 0.1 measurements of boats. (a) Original image; 

(b) MH based recovery, 0.8481; (c) SGSR, 26.09 dB; (d) ALSB, 27.71 dB, 0.8915; (e) JASR, 28.59 

dB, 0.8830; (f) GSR-Lp, 28.37 dB, 0.9035; (g) GSR-NCR, 27.62 dB; (h) Proposed (ETP), 29.03 

dB; (i) Proposed (Logarithm), 29.22 dB; (j) Proposed (Lp), 29.24 dB; (k) Proposed (MCP), 29.31 

dB. 

 

      

(a)           (b)           (c)           (d)          (e)            (f) 

     

(g)           (h)          (i)           (j)           (k) 

Fig. 10. Visual comparison of the original image and seven reconstructed images by BCS, ALSB, 

ALSB, SGSR, JASR and our proposed algorithms for 0.1 measurements of leaves. (a) Original 

Image; (b) MH based recovery, 20.90 dB; (c) SGSR, 22.22; (d) ALSB, 21.37 dB (e) JASR, 23.62 

dB; (f) GSR-Lp, 25.17 dB (g) GSR-NCR, 21.74 dB; (h) Proposed (ETP) 25.71 dB; (i) Proposed 

(Logarithm) 25.84 dB; (j) Proposed (Lp), 25.87 dB; (k) Proposed (MCP), 25.89 dB. 

 

       

(a)           (b)           (c)          (d)            (e)          (f) 



     

(g)          (h)           (i)           (j)           (k) 

Fig. 11. Visual comparison of the original image and five reconstructed images by BCS, ALSB, 

ALSB, GSR, JASR and our proposed algorithms for 0.1 measurements of monarch. (a) Original 

Image; (b) MH based recovery, 23.20 dB; (c) SGSR, 24.27 dB; (d) ALSB, 24.27 dB; (e) JASR, 

25.83 dB; (f) GSR-Lp, 26.61 dB; (g) GSR-NCR, 23.86 dB; (h) Proposed (ETP), 27.29 dB; (i) 

Proposed (Logarithm), 27.42 dB; (j) Proposed (Lp), 27.45 dB; (k) Proposed (MCP), 27.47 dB. 

 

4.1.5 Robustness to Signal-to-Nosie Ratios 

In this subsection, to evaluate the robustness of our proposed framework to the Gaussian noise 

levels, we conduct reconstruction experiments from CS measurements with three different levels of 

𝜎𝑒 = 10, 20 and 30. We compare the results to four competing methods of MH, SGSR, JASR and 

GSR-Lp, and examine the performances of our proposed framework for standard CS problems using 

two nonconvex cases of Logarithm and 𝐿𝑝. For a fair comparison, we have carefully adjusted all 

the parameters for all competing methods. All results are listed in the table VII. From the results we 

can find that our proposed nonconvex method is more robust to Gaussian noise than these convex 

methods of SGSR and JSAR. For the comparison of GSR-𝐿𝑝 and our proposed method (𝐿𝑝), we 

can find that our proposed weighting strategy in (39) can avoid the over-shrinking problems 

effectively, and thus can achieve better performances. 

  

Table VII  The PSNR/FSIM comparisons of our proposed framework and two competing methods 

from noisy CS measurements under different levels of Gaussian noise with sampling ratio is 0.2 

 Method Barbara Boats Elaine Foreman House Leaves Monarch Starfish Average 

 

 

𝜎𝑒 = 10 

MH based recovery 27.76/0.8886 27.07/0.8610 28.90/0.8892 30.33/0.8756 29.25/0.8760 23.76/0.8139 25.23/0.8208 24.36/0.8329 27.08/0.8573 

SGSR 28.95/0.9164 28.42/0.8997 29.90/0.9099 31.80/0.9114 30.97/0.9141 26.02/0.8862 26.66/0.8721 25.27/0.8608 28.50/0.8963 

JASR 29.61/0.9191 28.76/0.9033 30.38/0.9118 33.02/0.9231 31.83/0.8984 26.72/0.9102 27.26/0.8884 25.81/0.8740 29.17/0.9035 

GSR-Lp 29.35/0.9179 29.28/0.9095 30.75/0.9164 33.38/0.9260 32.56/0.9152 27.21/0.9127 28.04/0.9057 26.53/0.8902 29.63/0.9117 

Proposed 1 (logarithm) 29.71/0.9158 29.62/0.9092 30.96/0.9155 33.50/0.9251 32.81/0.9138 27.79/0.9259 28.31/0.9112 27.02/0.8951 29.97/0.9140 

Proposed 1 (Lp) 29.82/0.9189 29.68/0.9122 31.04/0.9167 33.55/0.9219 32.65/0.9101 27.64/0.9246 28.41/0.9152 27.11/0.8901 29.99/0.9137 

 

 

𝜎𝑒 = 20 

MH based recovery 23.84/0.8001 23.48/0.7653 24.67/0.7928 25.49/0.7368 24.68/0.7588 21.48/0.7457 22.69/0.7433 22.42/0.7841 23.59/0.7659 

SGSR 25.11/0.8521 24.91/0.8273 25.81/0.8385 27.15/0.8090 26.67/0.8327 22.90/0.8132 23.87/0.8024 22.98/0.8097 24.93/0.8231 

JASR 25.71/0.8601 25.86/0.8473 26.76/0.8407 28.43/0.8564 28.95/0.8587 24.12/0.8465 24.84/0.8201 23.78/0.8150 26.05/0.8431 

GSR-Lp 26.05/0.8643 26.31/0.8601 27.50/0.8733 29.93/0.8829 29.40/0.8833 24.30/0.8780 25.34/0.8636 24.13/0.8440 26.62/0.8687 

Proposed 1 (logarithm) 26.31/0.8689 26.18/0.8521 27.22/0.8591 29.58/0.8736 28.88/0.8652 23.93/0.8630 24.69/0.8333 24.02/0.8371 26.35/0.8565 

Proposed 1 (Lp) 26.55/0.8712 26.48/0.8575 27.56/0.8658 30.09/0.8780 29.26/0.8636 24.17/0.8676 24.91/0.8406 24.19/0.8429 26.65/0.8609 

 

 

𝜎𝑒 = 30 

MH based recovery 21.29/0.7338 21.00/0.6937 21.70/0.7046 22.02/0.6237 21.70/0.6650 19.51/0.6881 20.57/0.6800 20.45/0.7279 21.03/0.6896 

SGSR 22.33/0.7871 22.37/0.7621 23.01/0.7678 24.09/0.7143 23.62/0.7499 20.50/0.7456 21.55/0.7316 21.04/0.7593 22.31/0.7532 

JASR 24.06/0.7987 24.37/0.7917 25.08/0.8011 27.59/0.8343 27.11/0.8254 22.23/0.8256 23.21/0.7912 22.04/0.7593 24.46/0.8034 

GSR-Lp 24.31/0.8248 24.78/0.8257 25.66/0.8412 28.29/0.8568 27.65/0.8487 22.61/0.8499 23.72/0.8322 22.77/0.8107 24.97/0.8363 



Proposed 1 (logarithm) 24.85/0.8107 25.08/0.8039 26.09/0.8297 29.34/0.8605 28.82/0.8439 22.70/0.8461 23.76/0.8187 22.77/0.7917 25.43/0.8257 

Proposed 1 (Lp) 24.83/0.8120 25.24/0.8185 26.13/0.8320 29.07/0.8600 28.63/0.8461 23.03/0.8540 23.96/0.8251 22.99/0.8064 25.49/0.8318 

 

4.2 Robust Image CS under Impulsive noise Environment 

4.2.1 Effectiveness of the proposed robust framework 

To evaluate our M-estimator based robust CS method, we first generate the noisy 

measurements by sampling the Fourier transform coefficients randomly [37]. As a typical impulsive 

noise model, the probability density function (PDF) of Gaussian mixture noise [41] can be given by 

(1 − 𝜉)𝑁(0, 𝜎2) + 𝜉(0, 𝜅𝜎2) 

where 0 ≤ 𝜉 < 1 can control the ratio of the outliers, and 𝜅 > 1 indicates the impulsive strength, 

e.g., 𝜅 = 100 . In this paper, we set 𝜉 = 0.1  and 𝜅 = 100  to generate the impulsive noise. 

Because the original image 𝐗 is unknown, here we employ the result of DCT recovery [37] as the 

initialization for our proposed robust framework. We conduct experiments under five different SNR 

of 15 dB, 20 dB, 25 dB, 30 dB and 35 dB, which is defined by 𝑆𝑁𝑅 =

20 log10(‖𝐀𝐱 − 𝔼(𝐀𝐱)‖2 ‖𝐧‖2⁄ ), where 𝐀 and 𝐱 denote the measurement matrix and the true 

sparse signal respectively, and 𝐧  denotes the Gaussian mixture noise. To demonstrate the 

effectiveness of our proposed robust framework, we employ four algorithms as competing methods. 

The algorithm of DCT is utilized as initialization, L2-based NNM and L2-based GSR-𝐿𝑝 [44] are 

two GSR based CS method which employ the L2-norm as the fidelity term, the ME-based NNM is 

a robust CS method which employs the M-estimator to suppress the outliers and utilizes convex 

nuclear norm as regularizer. 

Empirically, we set the block size √ℬ𝑠 ×√ℬ𝑠 as 32 × 32, the patch size is 6 × 6, and the 

searching window 𝐿 × 𝐿  is 20 × 20  for all robust experiments. Table VIII details all the 

parameters of 𝜇 , 𝜆  and 𝜂  used in our experiments, and 𝑝 = 0.5  for 𝐿𝑝 -norm. Table IX and 

Table I summarize the achieved PSNR results and FSIM results, from these results we can see that 

our proposed robust method can reconstruct image from noisy measurements effectively and can 

achieve better performances compared with four competing methods. 

 

Table VIII  The selections of parameters for different sub-rate and functions 

Different penalties 15 dB 20 dB 25 dB 30 dB 35 dB 

Logarithm (𝜇, 𝜆, 𝜂) (0.01,0.005,0.025) (0.01,0.005,0.05) (0.01,0.005,0.2) (0.01,0.003,0.2) (0.01,0.001,0.4) 

𝑳𝒑 (𝜇, 𝜆, 𝜂) (0.008,0.009, 0.035) (0.01,0.015, 0.11) (0.023,0.02, 0.3) (0.03,0.015, 0.25) (0.06,0.02, 0.5) 

MCP (𝜇, 𝜆, 𝜂) (0.001,0.0005,0.05) (0.003,0.001,0.05) (0.003,0.0005,0.15) (0.004,0.0005, 0.2) (0.004,0.0007, 0.3) 

 

Table IX  The PSNR results of proposed algorithm and competing algorithms (dB) 

SNR Method Barbara Boats Elaine Foreman House Leaves Monarch Starfish Average 

 

 

15 dB 

DCT based Recovery 17.74 17.60 17.49 16.47 17.45 14.31 18.39 17.60 17.13 

L2-based NNM 19.74 19.50 19.28 18.22 19.31 16.16 20.47 19.51 19.02 

L2-based GSR-Lp 24.77 24.68 25.35 26.76 26.82 20.76 24.14 23.32 24.58 

ME-based NNM 28.02 27.81 27.88 27.20 28.16 24.84 28.35 27.23 27.43 

Proposed 2 (logarithm) 28.38 28.09 28.73 28.36 29.26 24.75 28.58 27.09 27.84 

Proposed 2 (Lp) 28.32 28.01 28.40 27.79 28.78 24.81 28.75 27.31 27.77 

Proposed 2 (MCP) 28.42 28.28 28.32 27.60 28.64 25.23 28.84 27.59 27.87 

 DCT based Recovery 22.08 22.18 22.17 21.30 22.18 18.39 22.62 21.92 21.61 



20 dB L2-based NNM 24.81 24.55 24.53 23.67 24.69 21.18 25.31 24.30 24.13 

L2-based GSR-Lp 25.49 25.19 25.33 24.76 25.56 21.91 25.38 24.75 24.80 

ME-based NNM 31.76 31.51 31.97 31.62 32.38 28.42 31.46 29.79 31.11 

Proposed 2 (logarithm) 32.21 31.80 32.71 32.71 33.36 29.16 31.84 29.89 31.71 

Proposed 2 (Lp) 32.50 32.05 32.46 31.82 32.88 29.25 32.68 31.08 31.84 

Proposed 2 (MCP) 32.21 31.89 32.53 32.37 33.08 29.19 32.07 30.10 31.68 

 

 

 

25 dB 

DCT based Recovery 25.96 26.36 26.62 26.02 26.88 21.82 26.44 25.70 25.73 

L2-based NNM 30.03 29.74 29.85 29.15 30.25 26.30 30.43 28.99 29.34 

L2-based GSR-Lp 32.94 32.69 33.36 33.88 34.63 28.71 32.62 30.97 32.48 

ME-based NNM 33.92 33.67 34.27 34.27 34.73 30.66 33.58 31.95 33.38 

Proposed 2 (logarithm) 35.94 35.86 36.10 36.11 36.58 32.84 35.89 33.68 35.38 

Proposed 2 (Lp) 35.71 35.48 35.89 35.83 36.39 32.14 35.83 33.81 35.14 

Proposed 2 (MCP) 35.25 35.37 35.60 35.66 36.27 32.02 35.33 33.27 34.85 

 

 

 

30 dB 

DCT based Recovery 29.15 29.93 30.43 30.50 31.04 24.37 29.39 28.59 29.18 

L2-based NNM 34.64 34.32 35.15 35.79 36.00 31.32 34.16 32.48 34.23 

L2-based GSR-Lp 35.10 34.82 35.63 36.88 36.32 33.30 34.52 32.90 34.93 

ME-based NNM 35.75 35.65 36.69 37.38 37.37 32.76 34.90 33.01 35.44 

Proposed 2 (logarithm) 37.74 37.92 38.44 39.73 39.37 35.27 37.24 34.05 37.47 

Proposed 2 (Lp) 37.73 38.16 38.57 39.85 39.57 34.76 37.57 34.55 37.60 

Proposed 2 (MCP) 37.28 37.69 38.08 39.21 39.30 34.09 37.09 34.27 37.13 

 

 

 

35 dB 

DCT based Recovery 31.30 32.55 33.50 34.38 34.73 26.04 31.31 30.30 31.76 

L2-based NNM 36.65 36.42 37.35 38.83 38.35 34.44 35.96 34.15 36.52 

L2-based GSR-Lp 38.10 38.05 38.33 39.13 39.23 35.72 38.13 36.03 37.84 

ME-based NNM 36.88 36.86 37.87 39.18 38.74 33.94 36.25 34.26 36.75 

Proposed 2 (logarithm) 38.06 38.81 39.37 41.46 40.97 35.28 38.27 35.63 38.48 

Proposed 2 (Lp) 38.82 39.43 39.86 42.49 41.48 36.41 38.85 35.70 39.13 

Proposed 2 (MCP) 38.21 38.65 39.39 41.86 40.70 36.44 37.86 34.83 38.49 

 

Table X  The FSIM results of proposed algorithm and competing algorithms 

SNR Method Barbara Boats Elaine Foreman House Leaves Monarch Starfish Average 

 

 

 

15 dB 

DCT based Recovery 0.6500 0.6222 0.5692 0.4418 0.5686 0.5746 0.6201 0.6549 0.5877 

L2-based NNM 0.7093 0.6781 0.6299 0.4996 0.6233 0.6210 0.6842 0.7113 0.6446 

L2-based GSR-Lp 0.8352 0.8256 0.8465 0.8264 0.8435 0.7877 0.8510 0.8292 0.8306 

ME-based NNM 0.8999 0.8861 0.8737 0.8015 0.8652 0.8331 0.8881 0.8950 0.8678 

Proposed 2 (Logarithm) 0.9113 0.8965 0.8890 0.8407 0.8864 0.8513 0.8988 0.8951 0.8836 

Proposed 2 (Lp) 0.9096 0.8951 0.8828 0.8226 0.8757 0.8465 0.8973 0.8979 0.8784 

Proposed 2 (MCP) 0.9076 0.8978 0.8816 0.8153 0.8753 0.8465 0.8990 0.9010 0.8780 

 

 

 

20 dB 

DCT based Recovery 0.7719 0.7515 0.7243 0.6064 0.7058 0.6745 0.7448 0.7741 0.7192 

L2-based NNM 0.8403 0.8148 0.7951 0.6908 0.7804 0.7455 0.8225 0.8364 0.7907 

L2-based GSR-Lp 0.8542 0.8334 0.8203 0.7314 0.8051 0.7660 0.8375 0.8490 0.8121 

ME-based NNM 0.9471 0.9401 0.9348 0.9015 0.9338 0.9015 0.9376 0.9314 0.9285 

Proposed 2 (logarithm) 0.9525 0.9450 0.9407 0.9210 0.9428 0.9210 0.9431 0.9310 0.9371 



Proposed 2 (Lp) 0.9547 0.9474 0.9396 0.9089 0.9399 0.9144 0.9483 0.9435 0.9371 

Proposed 2 (MCP) 0.9523 0.9450 0.9397 0.9157 0.9412 0.9187 0.9451 0.9341 0.9365 

 

 

 

25 dB 

DCT based Recovery 0.8625 0.8517 0.8449 0.7623 0.8306 0.7613 0.8422 0.8614 0.8271 

L2-based NNM 0.9298 0.9159 0.9068 0.8512 0.9031 0.8627 0.9221 0.9204 0.9015 

L2-based GSR-Lp 0.9538 0.9467 0.9429 0.9365 0.9419 0.9200 0.9524 0.9393 0.9417 

ME-based NNM 0.9642 0.9594 0.9565 0.9393 0.9571 0.9310 0.9572 0.9521 0.9521 

Proposed 2 (logarithm) 0.9757 0.9729 0.9677 0.9571 0.9703 0.9551 0.9710 0.9645 0.9668 

Proposed 2 (Lp) 0.9748 0.9723 0.9665 0.9552 0.9692 0.9485 0.9704 0.9658 0.9653 

Proposed 2 (MCP) 0.9725 0.9701 0.9648 0.9535 0.9680 0.9474 0.9671 0.9623 0.9632 

 

 

 

30 dB 

DCT based Recovery 0.9180 0.9161 0.9135 0.8766 0.9116 0.8213 0.8988 0.9113 0.8959 

L2-based NNM 0.9676 0.9633 0.9601 0.9552 0.9612 0.9480 0.9658 0.9563 0.9597 

L2-based GSR-Lp 0.9665 0.9596 0.9572 0.9511 0.9424 0.9653 0.9645 0.9520 0.9573 

ME-based NNM 0.9748 0.9727 0.9721 0.9671 0.9743 0.9542 0.9676 0.9605 0.9679 

Proposed 2 (logarithm) 0.9823 0.9815 0.9782 0.9788 0.9821 0.9738 0.9778 0.9664 0.9776 

Proposed 2 (Lp) 0.9828 0.9826 0.9790 0.9791 0.9829 0.9710 0.9786 0.9695 0.9782 

Proposed 2 (MCP) 0.9815 0.9808 0.9774 0.9767 0.9819 0.9663 0.9769 0.9684 0.9762 

 

 

35 dB 

DCT based Recovery 0.9450 0.9485 0.9489 0.9398 0.9542 0.8576 0.9290 0.9343 0.9322 

L2-based NNM 0.9765 0.9735 0.9710 0.9698 0.9688 0.9741 0.9748 0.9662 0.9718 

L2-based GSR-Lp 0.9826 0.9807 0.9766 0.9743 0.9775 0.9770 0.9810 0.9760 0.9782 

ME-based NNM 0.9799 0.9785 0.9775 0.9773 0.9803 0.9642 0.9746 0.9681 0.9751 

Proposed 2 (logarithm) 0.9842 0.9848 0.9824 0.9851 0.9872 0.9730 0.9810 0.9755 0.9817 

Proposed 2 (Lp) 0.9859 0.9861 0.9835 0.9872 0.9877 0.9791 0.9828 0.9754 0.9835 

Proposed 2 (MCP) 0.9843 0.9839 0.9820 0.9859 0.9856 0.9795 0.9803 0.9709 0.9816 

 

To make a visual comparison, we present the reconstructed images of ‘boats’, ‘elaine’ and 

‘foreman’ from noisy measurements corrupted by 15 dB, 20 dB and 25 dB Gaussian mixture noise, 

respectively. As shown in Fig. 12, 13 and 14, we can see that our proposed robust framework can 

suppress the outliers effectively than other four competing methods. 

 

    

(a)          (b)           (c)           (d) 

    

                  (e)          (f)           (g)           (h) 

Fig. 12. Visual comparisons (boats) of the original image and seven reconstructed images from 

noisy measurement with 15 dB Gaussian mixture noise. (a) Original image. (b) DCT, 17.60 dB, 



0.6222; (c) L2-based NNM, 19.50 dB, 0.6781; (d) L2-based GSR-Lp, 24.68 dB, 0.8256; (e) ME-

based NNM, 27.81 dB, 0.8861; (f), proposed 2 (Logarithm), 28.09 dB, 0.8965; (g) proposed 2 (Lp), 

28.01, 0.8951; (h) proposed 2 (MCP), 28.28dB, 0.8978. 

 

    

(a)           (b)           (c)           (d) 

    

(e)           (f)           (g)           (h) 

 

Fig. 13. Visual comparisons (Elaine) of the original image and seven reconstructed images from 

noisy measurement with 20 dB Gaussian mixture noise. (a) Original image. (b) DCT, 22.17 dB, 

0.7243; (c) L2-based NNM, 24.53 dB, 0.7951; (d) L2-based GSR-Lp, 25.33 dB, 0.8203; (e) ME-

based NNM, 31.97 dB, 0.9348; (f), proposed 2 (Logarithm), 32.71 dB, 0.9407; (g) proposed 2 (Lp), 

32.46 dB, 0.9396; (h) proposed 2 (MCP), 32.53 dB, 0.9397. 

 

   

(a)          (b)           (c)            (d) 

    

(e)           (f)           (g)           (h) 

Fig. 14. Visual comparisons (Foreman) of the original image and seven reconstructed images from 

noisy measurement with 25 dB Gaussian mixture noise. (a) Original image. (b) DCT, 26.02 dB, 

0.7623; (c) L2-based NNM, 29.15 dB, 0.8512; (d) L2-based GSR-Lp, 33.88 dB, 0.9365; (e) ME-

based NNM, 34.27 dB, 0.9393; (f), proposed 2 (Logarithm), 36.11 dB, 0.9571; (g) proposed 2 (Lp), 

35.83 dB, 0.9552; (h) proposed 2 (MCP), 35.66 dB, 0.9535. 

 

4.2.2 Convergence analysis 

Similar to our proposed standard CS algorithm, it is also intractable to demonstrate the 

convergence of our proposed robust CS algorithm because of the nonconvexity property of 



regularizer. In this subsection, we will present the convergence property visually by PSNR curves 

versus the iteration number. Fig. 15 (a), (b) and (c) present the PSNRs curves for Logarithm function, 

Lp function and SCAD function under different sub-sampling rates, from the results we can observe 

that our proposed algorithm contains good convergence property. 

 

 

(a)                       (b)                       (c) 

Fig. 15. The convergence of the proposed algorithm for ETP function, Logarithm function, MCP 

function and SCAD function with different SNR of 15 dB, 20 dB, 25 dB, 30 dB and 35dB. 

 

V. Conclusion 

This paper targeted at improving the image CS reconstruction performance by applying the 

nonconvex surrogate of 𝐿0-norm on the singular values to approximate the GSR based low-rank 

minimization problem. For a better approximation of the rank of group-matrix, an iteratively-

weighting strategy 𝜔𝑘,𝑖
𝑡 =

1

|𝜎𝑖(𝐗G𝑘
𝑡 )|+𝜀

 is adopted to control the weighting for each singular value. 

We utilized the popular 𝐿2-norm and M-estimator for standard CS and robust CS problems to fit 

the data, respectively. To solve the resulting optimization problem, we propose a GSR-ADMM-

IRNN algorithm. Some conclusions can be achieved from our experimental results: 

(1), Compared with the convex NNM, these nonconvex surrogates can improve the reconstruction 

performance significantly. 

(2), The proposed iteratively-weighting strategy 𝜔𝑘,𝑖
𝑡 =

1

|𝜎𝑖(𝐗G𝑘
𝑡 )|+𝜀

 is more flexible and effective 

to control the weighting for each singular value, and hence can achieve good performance.  

(3), Compared with the standard CS optimization model, the M-estimator is more effective to 

suppress the outliers than 𝐿2-norm. 
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