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Abstract

Dragonfly algorithm (DA) is one of the most recently developed heuristic optimization algorithms by Mirjalili in 2016. It
is now one of the most widely used algorithms. In some cases, it outperforms the most popular algorithms. However, this
algorithm is not far from obstacles when it comes to complex optimization problems. In this work, along with the strengths
of the algorithm in solving real-world optimization problems, the weakness of the algorithm to optimize complex optimization
problems is addressed. This survey presents a comprehensive investigation of DA in the engineering area. First, an overview of
the algorithm is discussed. Additionally, the different variants of the algorithm are addressed too. The combined versions of the
DA with other techniques and the modifications that have been done to make the algorithm work better are shown. Besides, a
survey on applications in engineering area that used DA is offered. The algorithm is compared with some other metaheuristic
algorithms to demonstrate its ability to optimize problems comparing to the others. The results of the algorithm from the
works that utilized the DA in the literature and the results of the benchmark functions showed that in comparison with some
other algorithms DA has an excellent performance, especially for small to medium problems. Moreover, the bottlenecks of the
algorithm and some future trends are discussed. Authors conduct this research with the hope of offering beneficial information
about the DA to the researchers who want to study the algorithm and utilize it to optimize engineering problems.
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ABSTRACT Dragonfly algorithm (DA) is one of the most recently developed heuristic optimization algorithms by Mirjalili in 

2016. It is now one of the most widely used algorithms. In some cases, it outperforms the most popular algorithms. However, this 

algorithm is not far from obstacles when it comes to complex optimization problems. In this work, along with the strengths of the 

algorithm in solving real-world optimization problems, the weakness of the algorithm to optimize complex optimization problems 

is addressed. This survey presents a comprehensive investigation of DA in the engineering area. First, an overview of the algorithm 

is discussed. Additionally, the different variants of the algorithm are addressed too. The combined versions of the DA with other 

techniques and the modifications that have been done to make the algorithm work better are shown. Besides, a survey on 

applications in engineering area that used DA is offered. The algorithm is compared with some other metaheuristic algorithms to 

demonstrate its ability to optimize problems comparing to the others. The results of the algorithm from the works that utilized the 

DA in the literature and the results of the benchmark functions showed that in comparison with some other algorithms DA has an 

excellent performance, especially for small to medium problems. Moreover, the bottlenecks of the algorithm and some future 

trends are discussed. Authors conduct this research with the hope of offering beneficial information about the DA to the researchers 

who want to study the algorithm and utilize it to optimize engineering problems. 
 
KEYWORDS Metaheuristic Algorithms, Optimization Algorithms, Swarm Intelligence, Single objective Optimization, Multi-

objective Optimization, DA, Dragonfly Algorithm 

 

I. INTRODUCTION 

One of the newest areas of research is Computational Intelligence (CI). CI is a set of methodologies inspired by nature. 

Researchers can use CI to solve complex real-world problems when the traditional techniques are ineffective. Fuzzy logic, 

artificial neural network, and evolutionary computation are part of CI. 

  
Swarm intelligence (SI) is part of the evolutionary computation. The efficiency of natural swarm systems amazed natural scientists 

and biologists to study the behaviours of swarms and creatures. Swarm-based algorithms are part of the nature-inspired population-

based algorithm’s family.  This group of algorithms produce low cost, fast, and robust solutions to complex real-world problems 

[1]. Bonabeau defined SI as “The emergent collective intelligence of groups of simple agents” [2]. SI systems consist of several 

agents that form a population. The agents interact locally with each other and their environment. Nature, primarily biological 

system, was a great inspiration for these algorithms [3]. In SI, agents follow simple rules. No centralized control structure exists 

to say how individuals should behave. In reality, the individual’s behaviours are local and random to an extent. Interaction between 

agents, however, causes the disclosure of intelligent actions, which are not known to the agents [4]. SI recently has attracted 

researchers in different fields.  Several new algorithms in the base of mimicking the swarm and animal behaviours in nature have 

been developed by the researchers. The most popular SI algorithms include particle swarm optimization (PSO) proposed by 

Kennedy and Eberhart [5]. PSO is one of the significant improvements in the field. It mimics the behaviours of a school of bird or 

fish. A particle represents a single solution that has a position in the search space. Additionally, at the beginning of the 1990s, 

Marco Dorigo completed his PhD thesis on optimization and nature-inspired algorithms. In his thesis, he examined a novel idea 

known as ant colony optimization algorithm (ACO) [6]. Chu and Tsai developed Cat Swarm Optimization algorithm (CSO) based 

on the behaviours of cat [7]. Grey wolf optimizer introduced by Mirjalili et al. [8]. It mimics the hunting behaviour of wolfs. Later, 

in reference [9], a dragonfly optimization algorithm proposed by the same author. DA mainly inspired by the hunting and migration 

behaviours of dragonflies. Differential evolution algorithm (DE) developed in[10], is another example. DE is a search population-

based technique, inspired by the evolution of living species. Donkey and Smuggler Optimization algorithm (DSO) proposed in 

[11]. DSO mimics the searching behaviours of donkeys. Searching and selecting routes by donkeys were utilized as an inspiration 

for the algorithm. Other examples of nature-inspired algorithms are Lion Optimization Algorithm (LOA) by Yazdani et al. [12], 

and artificial bee colony (ABC) [13]. The LOA mimics the lion’s cooperation behaviour and their unique lifestyle. Based on a 

social organization, the lions divide into residents and nomads. The residents consist of several lions who live together, and they 

are called pride. Nomads, on the other hand, are mostly seen in pairs and sometimes singularly. Lions may change their lifestyle 

from nomads to residents or vice versa. However, ABC mimics the actions of honeybees. This algorithm provides well-balanced 

exploitation and exploration ability. 

 

Dragonfly algorithm is one of the most recently developed and well-known algorithms. It has been successfully used in many 

different applications and gives satisfactory results. After publishing the algorithm in 2016 until the end of working on this survey 

(March 2019), almost 300 different works cited dragonfly algorithm in different areas. It produced satisfying results in almost all 

applications. Thus, in this paper, we centre our review on dragonfly algorithm as one of the most recently developed algorithms 

in the area. 
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This work first presents an overview of dragonfly algorithm in section II. Next, the variants of the algorithm are described in 

section III. The modifications of the DA are presented in section IV. Afterwards, in section IV, the authors address the hybridization 

versions of the algorithm with other algorithms. In section V, the authors address the applications that used DA in the field of 

engineering. Additionally, in section V, a comparison between the DA and some other metaheuristics is made. The algorithm is 

then evaluated using the traditional benchmark functions and the CEC-2019 “The 100-Digit Challenge” benchmark functions in 

section VII. The results of the evaluations are compared with the PSO and FA. The Wilcoxon rank-sum is used to test the 

significance of the results statistically. Furthermore, a discussion and some problems of DA are presented along with providing 

solutions and future works to make the algorithm work better. Finally, a conclusion is given. 

 

II. OVERVIEW OF DRAGONFLY ALGORITHM 

In the last few decades, the natural behaviour of creatures has widely motivated meta-heuristic optimization algorithms.  Swarm 

intelligence is the main inspiration for the meta-heuristic [5, 14]. DA is a meta-heuristic optimization algorithm. It mimics the 

dragonfly’s swarming behaviours [9]. 

 

Dragonflies are small predators. They hunt other insects in nature. The reason for their swarming is hunting and migration (static 

swarm and dynamic swarm), respectively. In the static swarming phase, dragonflies create sub-swarms and search through different 

small areas. In dynamic swarming, however, dragonflies fly in a much bigger swarm. They fly in one direction towards the most 

promising global optimum location [9]. 

 

In dynamic swarming, dragonflies maintain a reasonable separation and cohesion (intensification or exploitation). In static 

swarming, on the other hand, alignment is too low and cohesion is quite high to attack preys (diversification or exploration). 

Therefore, when exploring the search space, high alignment and low cohesion weights will be assigned to individuals. However, 

they will be assigned to low alignment, and high cohesion weights while exploiting the search space. The radii of the 

neighbourhood enlarged proportionally to the number of iterations for changeover between intensification and diversification. 

Another way for balancing intensification and diversification is tuning the swarming weights adaptively during the optimization. 

The swarming weights are (separation (s), alignment (a), cohesion (c), attraction motion towards food (f), distraction outwards 

predators (e), and inertia weight (w)). Following are the equations for the swarming weights: 

 

Equation (2) is for calculating separation, as mentioned by Reynolds [15]: 

 

 𝑆𝑖 = −∑X 

𝑁

𝑗=1

− X𝑗  

(1) 

In Equation (1), X indicates the position for the current individual. Xj is the position for the jth neighbouring dragonfly. And N is 

the number of individual neighbours of the dragonfly swarm. And S indicates the separation motion for the i
th

 individual. 

 

Equation (2) is for calculating alignment [9]: 

 

  

𝐴𝑖 =
∑ 𝑉𝑗
𝑁
𝑗=1

𝑁
 

 

(2) 

Where Ai is the alignment motion for i
th

 individual, and V is for the velocity of a j
th

 neighbouring dragonfly. 

 

Equation (3) is for calculating cohesion: 

 

 
𝐶𝑖 =

∑ 𝑋𝑗
𝑁
𝑗=1

𝑁
− 𝑋  

(3) 

 

Where Ci is the cohesion for i
th

 individual, N is the neighbourhood size, Xj is the position of a j
th

 neighbouring dragonfly, and X 
is the current dragonfly individual. 
 
Equation (4) is for calculating attraction motion towards food: 

 𝐹𝑖 = 𝑋
+ −  𝑋 (4) 

Where Fi is the attraction of food for i
th

 dragonfly, X
+

 is the position of the source of food, and X is the position of the current 

dragonfly individual. Here, food is the dragonfly that has the best objective function so far. 
 
Equation (5) is for calculating distraction outwards predator: 

 𝐸𝑖 = 𝑋
− +  𝑋 (5) 

Where 𝐸𝑖  is the enemy’s distraction motion for the i
th

 individual, 𝑋− is the enemy’s position, and X is the position of the current 

dragonfly individual. 
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The position of artificial dragonfly individuals in the search space is updated using two vectors: step vector X and position vector 

X. The step vector in dragonfly algorithm is an analogy to the velocity vector in the PSO algorithm. The position updating 

procedure of individuals in DA is based mainly on the PSO algorithm framework. The step vector indicates the movement direction 

of dragonfly individuals, and it is defined in [9] as follows: 

 

 𝛥𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 +  𝑐𝐶𝑖 +  𝑓𝐹𝑖 + 𝑒𝐸𝑖) +  𝑤𝛥𝑋𝑡  (6) 

 

Where: 

s is separation weight.  

Si represents the separation for the ith dragonfly. 

a is alignment weigh. 

Ai is alignment for ith dragonfly. 

c is cohesion weight. 

Ci represents the cohesion for ith dragonfly. 

f is a food attraction weight. 

Fi represents the food source for ith individual. 

e is enemies distraction weight. 

Ei represents the position of the enemy for ith dragonfly. 

w is inertia weight. 

t indicates the iteration counter. 

 

When the calculation of the step vector is finished, the calculation for the position vector starts, as follows: 

 

 𝑋𝑡+1 = 𝑋𝑡 + 𝛥𝑋𝑡+1 (7) 

Where t indicates the current iteration. 
 

To increase the probability of exploring the whole decision space by an optimization technique, we should add a random move to 

the searching technique. When no neighbouring solutions are there, dragonflies are required to use a random walk (Lévy flight) to 

fly throughout the search space. In this case, the dragonfly’s position updated as follows: 

 𝑋𝑡+1 = 𝑋𝑡 +   𝐿é𝑣𝑦(𝑑)  ×  𝑋𝑡  (8) 

Where t is the current iteration and (𝑑) is the dimension of the position vector. 

 

Lévy flight function calculates as follows [16]: 

 𝐿é𝑣𝑦(𝑥) =  0.01 ×  
𝑟1 ×   σ

|𝑟2|
1
𝐵

 
(9) 

Where 𝑟1 and 𝑟2 are random numbers in [0,1],  is a constant. 

σ calculates as follows: 
 

 

σ =

(

 
Γ(1 + 𝛽) ×  sin (

𝜋𝛽
2
)

Γ (
1 + 𝛽
2
) ×  𝛽 ×  2

(
𝛽−1
2
)

)

 

1
𝛽⁄

 

 

(10) 

Where Γ  (X) = (X-1)! 

Reference [17] stated that although using the Lévy flight improves the performance of DA, however, it may cause very long steps. 

In the mentioned reference, to avoid this drawback, Brownian motion was used in place of Lévy flight. Brownian motion is another 

random motion mechanism. The movement of free liquid/gas molecules inspires it. The complexity of the modified DA was O 

(number of iterations * population size). The calculated complexity proved that using Brownian motion did not have an impact on 

the complexity time of the original DA. By using the Brownian motion, the massive jumps caused by the Lévy flight were 

corrected. However, occasionally sudden moves may still be required to avoid trapping into local optima. For objectives with local 

minima, the Brownian motion produced better solutions in a shorter time. 

For the transition from intensification to diversification, dragonflies should adaptively change their weights. As optimization 

process progress, to adjust the flying path, the neighbourhood area should be expanded, hence at the final stage of optimization, 

the swarm become one group to converge to the global optimum. The best and the worst solutions found so far become the food 

source and enemy, respectively, this makes convergence and divergence towards the promising area and outwards non-promising 

area of the search space, respectively. 

 
III. VARIANTS OF DRAGONFLY ALGORITHM 

DA has three different versions: 
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A. DA FOR SINGLE OBJECTIVE PROBLEMS 

Like most SI-based optimization algorithms, DA initially creates a random set of solutions for optimization problem in hand. At 

first, the position and step vectors of artificial dragonflies assigned to random values between the upper and lower bounds of the 

variables. In each iteration, update the position and step vector for each dragonfly. For updating position and step vectors, the 

neighbourhood of each dragonfly is chosen by Euclidean distance calculation between all the dragonflies and selecting N of them. 

Iteratively, the position updating continues until the end criterion is met. Figure 1 shows the pseudo-code for DA for single-

objective problems. The single DA is the most popular variant among the other versions of DA.  

 

 

B. THE DA FOR BINARY PROBLEMS 

Since in binary search space the position vector can only be assigned to 0 or 1, adding step vectors to position vector cannot update 

the position of search agents. The transfer function converts a continuous SI technique to a binary algorithm. The transfer function 

takes velocity (step) values as input and returns a number between 0 and 1 as output, which indicates the probability of changing 

the individual’s position. Similar to continuous optimization, the function simulates sudden changes in particles with significant 

velocity. To use the DA for binary problems (BDA) Equation (11) is used [18]. 

 
𝑇(∆𝑋) =  |

∆𝑋

√∆𝑋2 + 1
| 

(11) 

 

First, the above transfer function calculates the changing probability of position of all artificial dragonflies.  In the next step, 

Equation (12) updates the search agent’s location in binary search spaces. 

 

Initialize the dragonflies population Xi (i = 1, 2, ..., n) 

Initialize step vectors Xi (i = 1, 2, ..., n) 

while the end condition is not satisfied 

Calculate the objective values of all dragonflies 

Update the food source and enemy 

Update w, s, a, c, f, and e 

Calculate S, A, C, F, and E using Eqs. (1) To (5) 

Update neighbouring radius 

if a dragonfly has at least one neighbouring dragonfly 

Update velocity vector using Eq. (6) 

Update position vector using Eq. (7) 

else 
Update position vector using Eq. (8) 

end if 
Check and correct the new positions based on the 

boundaries of variables 

end while 
 

Figure 1: Pseudo-code for DA [9] 
 

 

 
𝑋𝑡+1 = { 

¬𝑋𝑡          𝑟 < 𝑇(∆𝑋𝑡+1)
  𝑋𝑡          𝑟 ≥ 𝑇(∆𝑋𝑡+1)

 
(12) 

 

Where r is a number in [0, 1] 

 

BDA assumes that all of the artificial dragonflies are in one swarm. Hence, it adaptively tunes the swarming factors (s, a, c, f, and 

e) and the inertia weight (w) to simulate the intensification and diversification. Figure 2 shows the pseudo-code for the BDA. 

 

Reference [19] used BDA for feature selection. This work proved the importance of the role of the transfer function (TF) to produce 

a discrete space from a continuous one and providing a better balance between exploration and exploitation phases. The proposed 

work stated that the current version of Equation (11) does not provide a right balance between exploration and exploitation, where 

at the beginning of the optimization the exploration rate should be higher than the exploitation rate. Hence, to improve the 

performance of the BDA and prevent trapping into local optima time-dependent TF was used. Equation (13) designed as a new 

model of TF. 

 
𝑇(𝑣𝑖

𝑘(𝑡), 𝜏) =  
1 

1 + 𝑒
−𝑣𝑖

𝑘(𝑡)

𝜏

 
(13) 

Where 𝜏 refers to a time-varying variable. It initially starts with value and decreases gradually over iterations, as shown in Equation 

(14). 

 𝜏 = (1 −
𝑡

𝑇
) 𝜏𝑚𝑎𝑥 +

𝑡

𝑇
𝜏𝑚𝑖𝑛  

(14) 
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Where Tmax and Tmin refer to the maximum and minimum values of 𝜏, T is the maximum number of iterations. 
 
The value of time-dependent TF linearly gets bigger as the step vector of the search agents gets more significant. Consequently, 

in the early stages of the algorithm, higher exploration is provided (when 𝜏 = 𝜏𝑚𝑎𝑥). However, as time passes the probability of 

exploitation increases and the probability of exploration decreases (when 𝜏 = 𝜏𝑚𝑖𝑛).  
 
As proved in this work, the performance of the BDA improved by using the proposed TF. The main reason for this was providing 

the right balance between exploration and exploitation phases of the BDA.  

 

The computational complexity of the BDA using the time-dependent TF is the same as the original BDA, and it is O(ISD).  

 

Where I is the number of iterations, S is the number of solutions, and D is the number of dimensions. 
 

Initialize the dragonflies population Xi (i = 1, 2, ..., n) 

Initialize step vectors Xi (i = 1, 2, ..., n) 

while the end condition is not satisfied 

Calculate the objective values of all dragonflies 

Update the food source and enemy 

Update w, s, a, c, f, and e 

Calculate S, A, C, F, and E using Eqs. (1) to (5) 

Update step vectors using Eq. (6) 

Calculate the probabilities using Eq  (11) 

Update position vectors using Eq.(12) 

end while 

 
Figure 2: Pseudo-Code For BDA [9] 

 

C. THE DA FOR MULTI-OBJECTIVE PROBLEMS 

For multi-objective problems, there are multiple objectives, and the answer of multi-objective problems is often a set called Pareto 

Optimal Set. The best trade-offs between the objectives are presented in this set [20]. The Pareto optimal dominance compares 

two solutions in multi-objective search space [21]. DA is first provided with an archive to save and retrieve the best Pareto optimal 

solutions during the process of optimization. For updating the position, the food source comes from the archive, and the rest of the 

process is identical to that of the DA.  

 

Likewise, the multi-objective particle swarm optimization (MOPSO) algorithm [22], to find the well-spread Pareto optimal front, 

the food source is chosen from the least populated region of the produced Pareto optimal front. A hyper-sphere is defined to cover 

all the solutions. In each iteration, the hyper-spheres are divided into equal sub-hyper-spheres. When the segments are created, for 

every segment a roulette-wheel mechanism with the following probability is used for the selection process [23]. 

 𝑃𝑖 = 
𝑐

𝑁𝑖
 

(15) 

Where c is a constant number, and it is greater than one. 𝑁𝑖  is the number of Pareto optimal solution obtained in the ith segment. 

Equation (15) provides the MODA with a higher probability to choose the food source from the less populated segments. On the 

other hand, to select predators from the archive, select the worst (most populated) hyper-sphere, so that the artificial dragonflies 

are discouraged from searching around non-promising areas. 

The roulette-wheel mechanism is used for the selection with the following probability for each segment: 

  

𝑃𝑖 = 
𝑁𝑖
𝑐

 

 

(16) 

Where c is a constant number and greater than one. 𝑁𝑖  is the number of Pareto optimal solutions obtained in the ith segment. In 

each iteration, the archive needs to be updated regularly, and it may become full during the optimization process. Hence, there 

should be a mechanism to handle that situation. If at least one of the archive residences dominates the solution, then it should not 

be allowed to enter the archive. If some of the Pareto optimal solutions dominated by the solution, then they all should be removed 

from the archive, and the solution should be added to the archive if it is non-dominated concerning to all the solutions in the 

archive. If the archive is full to accommodate new solution(s), then one or more solutions may be removed from the most populated 

segments [23]. MODA parameters are identical to those of DA parameters except that the MODA has two new parameters: one 

for defining the maximum number of hyper-spheres, and the second one for determining the archive size. Pseudo-code for MODA 

is presented in Figure 3. 

 

In reference [24], the authors modified the multi-objective DA. In this work, the crowded distance selection mechanism from 

NSGA-III was used instead of the roulette wheel mechanism for the multi-objective DA. NSGA-III developed in [25]. Introducing 

a set of reference points makes NSGA-III to produce a set of non-dominated solutions that provides better distribution. The new 

algorithm is named multi-objective dragonfly algorithm based on the reference point (RMODA). The new mechanism gave a 

better distribution of the solutions and a better convergence to the improved multi-objective DA. 
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Initialize the dragonflies population Xi (i = 1, 2, ..., n) 

Initialize step vectors Xi (i = 1, 2, ..., n) 

Define the maximum number of hyperspheres (segments)  

Define the archive size 

while the end condition is not satisfied 

Calculate the objective values of all dragonflies 

Find the non-dominated solutions 

Update the archive with concerning the obtained 

non-dominated solutions 

If the archive is full 

Run the archive maintenance mechanism to omit 

one of the current archive members Add the new solution to  

the archive 

end if 
If any of the new added solutions to the archive is 

located outside the hyper-spheres 

Update and re-position all of the hyper-spheres to 

cover the new solution(s) 

end if 
Select a food source from the archive: = 

SelectFood(archive) 

Select an enemy from the archive: = 

SelectEnemy(archive) 

Update step vectors using Eq. (11) 

Update position vectors using Eq. (12) 

Check and correct the new positions based on the boundaries of variables 

end while 

 
Figure 3: Pseudo-code for MODA [9] 

 

 

IV. MODIFICATIONS OF DA 

In this section, some modifications of the DA are discussed. 

 

A. ELITE OPPOSITION LEARNING AND EXPONENTIAL FUNCTION STEPS-BASED DRAGONFLY ALGORITHM FOR 

GLOBAL OPTIMIZATION  

For enhancing the performance of optimization by DA, reference [26] proposed an improved version of DA. The proposed DA 

based on elite opposition-based learning strategy and exponential function adaptive steps. The elite individual presented to produce 

different solutions using elite opposition-based learning. The scope of the search area was expanded by using the mentioned 

mechanism and was useful to improve the capability of global exploration of the DA. 

 

Furthermore, to replace the original stochastic step, an adaptive step with the exponential phase was designed. The improved 

proposed work was called dragonfly based on elite opposition-based learning and exponential function adaptive steps (EOEDA). 

The reason for this modification on the DA was that this algorithm sometimes had problems with solving complex optimization 

problems, it quickly fell into local optimum, and the speed of its convergence was low. The results of the proposed work compared 

to some other algorithms, it was concluded that the EOEDA had better convergence accuracy, and the speed of convergence was 

faster. 

 

B. CHAOTIC DRAGONFLY ALGORITHM: AN IMPROVED METAHEURISTIC ALGORITHM FOR FEATURE SELECTION  

In reference [27], a new chaotic dragonfly algorithm (CDA) used to select different features. In CDA, searching iterations of DA 

embedded to the chaotic maps. To alter the main parameters for movement in DA using the optimization process, ten chaotic maps 

utilized to increase the convergence rate and efficiency of dragonfly algorithm. The examined technique utilized to pick features 

in the extracted dataset from drug bank database. It had 6712 drugs. In this work, 553 bio-transformed medications were used. The 

examined technique used to assess the toxicity of hepatic medications. The proposed model, in general, consisted of three phases: 

data pre-processing, feature selection, and the classification phase. In step two, CDA was used to select the features. The k-NN 

classifier utilized to measure the goodness of the selected features. From this experiment, it was discovered that using Gauss 

chaotic map to adjust variables could significantly enhance DA in terms of stability quality, classification performance, the speed 

of convergence, and the number of selected features. For evaluation, the chosen features, SVM classifier with various kernel 

methods used. The results showed that CDA outperformed the other techniques in the literature of the work. 
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V. HYBRIDIZING DRAGONFLY ALGORITHM WITH OTHER TECHNIQUES 

In the metaheuristic context, hybridization refers to merge the robust characteristics of two or more algorithms to provide a new 

robust algorithm based on the features of the merged ones [28]. In the following subsections, the hybridization versions of the DA 

are discussed. 

 

A. MEMORY BASED HYBRID DRAGONFLY ALGORITHM FOR NUMERICAL OPTIMIZATION PROBLEMS 

In [28], some features of DA and PSO were combined to produce a new hybrid DA called Memory based Hybrid Dragonfly 

Algorithm (MHDA) for numerical optimization problems. To enhance the performance of dragonfly algorithm, two more features 

added, they are: (1) to keep track of possible solution, internal memory added. This internal memory has an essential role in 

converging to global optima. (2) Iterative level hybridization with PSO, which runs on the set of saved solutions. In the following 

subsections, both of them will be discussed. 

 

1. INTERNAL MEMORY IMPLEMENTATION 

The internal memory made the dragonfly individuals keep track of their correlates in the problem space, which is related to the 

value of fitness. In the PSO algorithm, it calls pbest. In each iteration, the best fitness value compared to the search agent’s fitness 

value of the current population. As a result, the DA-pbest was created from the better-saved solutions. The dragonfly individuals 

were also able to keep track of the best value founded so far by any of the dragonflies in the neighbourhood. The mentioned 

technique is similar to the concept of gbest in the PSO. Here DA-gbest used to store the best value. The concepts above (pbest and 

gbest) enhanced the capability of exploitation in DA. The internal memory feature gave a higher performance compared to the 

conventional algorithm and trapping into local optima was prevented [29]. 

 

2. ITERATION LEVEL HYBRIDIZATION WITH PSO 

In the iteration level, to enhance the performance of optimization, two algorithms were executed iteratively in sequence [30]. Here 

to extend the search space and converge to a more promising area, DA used with internal memory. Then the previously limited 

area was exploited using PSO to find better solutions. Hence, the hybrid algorithm-MHDA provided better performance compared 

to the original DA.  The reason for this was that the MHDA provided excellent stability between exploration and exploitation 

phases corresponding to the original DA and PSO. Then the pbest and gbest of PSO were initialized using DA-pbest and DA-gbest 

matrixes, respectively. The equations for velocity and position of PSO were modified, as shown in Equations (17) and (18). 

 

 𝑉𝑘+1
𝑖 = 𝑤𝑉𝑘

𝑖 + 𝐶1𝑟1(𝐷𝐴 − 𝑝𝑏𝑒𝑠𝑡𝑘
𝑖 − 𝑋𝑘

𝑖 )

+ 𝐶2𝑟2(𝐷𝐴 − 𝑔𝑏𝑒𝑠𝑡𝑘
𝑔
− 𝑋𝑘

𝑖 ) 

(17) 

 

 𝑋𝑘+1
𝑖 = 𝑋𝑘

𝑖 + 𝑉𝑘+1
𝑖

 

 

 (18) 

Where 𝐷𝐴 − 𝑝𝑏𝑒𝑠𝑡𝑘
𝑖  and 𝐷𝐴 − 𝑔𝑏𝑒𝑠𝑡𝑘

𝑔
 are the pbest and gbest in PSO, respectively. k represents the size of the swarm. 

 

Thus, to reach global optimal solutions in MHDA, the DA’s exploration features in the initial stage, and PSO’s exploitation features 

were combined in the final step. Figure 4 shows the pseudo-code of MHDA. Three constrained engineering problems considered 

to evaluate the performance of the MHDA. Penalty functions are utilized to handle the constraints. The idea behind using the 

penalty functions is to transform optimization problems from constrained to unconstrained one through subtracting or adding a 

specific value from/to the objective function depending on the amount of the violated constraint provided in a particular solution 

[31]. Results of the three real optimization problems proved the superiority of the method to find the global or near to global 

optimal solution. MHDA superior performance on unimodal functions showed rapid converge and proper diversification. The 

diversification capability of MHDA was improved by integrating internal memory, and iteration level hybridization with PSO. 

MHDA performed better compared to the other algorithms in the literature of the work, and it proved its ability to optimize hard 

problems. 

 

B. A HYBRID DRAGONFLY ALGORITHM WITH EXTREME LEARNING MACHINE FOR PREDICTION 

In [32], DA was used with extreme learning machine (ELM) to overcome the problems in gradient-based algorithms. Here to 

optimally choose the biases of the hidden layer, DA was used to maximize the ELM’s overall performance. DA-ELM converges 

to the global minimum in a small number of iterations. Moreover, the over-fitting problems in traditional ELM overcame by using 

the DA-ELM model. In the experiment, the DA-ELM outperformed both GA-ELM and PSO-ELM. DA-ELM showed a good 

ability in searching the feature space adaptively. Moreover, the high exploration of the DA provided a good ability to the DA-

ELM to avoid local minima that may cause premature convergence. Furthermore, DA could find an optimal feature combination 

with less prediction error. To some extent, the average computational time of DA-ELM was also compatible with PSO-ELM and 

GA-ELM. The compared and proposed models trained using a thousand iterations. The settings of parameters are shown in Table 

1. 

 
 

 

Table 1: Parameter Settings For Algorithms [32] 
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Algorithms Parameters 

DA 7 dragonflies 

100 iterations  

PSO Inertia factor = 0.1 

Individual-best factor = 0.1 

GA Crossover fraction = 0.8 

Mutation Fraction = 0.2 

ELM 7 input nodes 

100 hidden nodes 

Activation function = Sigmoid 

1 output nodes 

1000 iterations 

 

 

Initializing set of parameters: 

Maximum iteration (Max-iter), 

maximum number of search agents (Nmax) 

number of search agents (N), number of dimensions (d), 

upper bound and lower bound of variables 

Initialize the dragonflies populations (X) – Initialize the step vectors (X) 

while maximum iterations not done 

For each dragonfly Calculate fitness value 

if Fitness Value < DA-pbest 

in this iteration move the current value to DA-pbest matrix 

end if 
if fitness value < DA-gbest 

set current value as DA-gbest 

end if 

end 

For each dragonfly 

Update the food source and enemy 

Update w, s, a, c, f, and e 

Calculate S, A, C, F, and E using Eqs. (2) To (6) 

Update neighbouring radius 

if a dragonfly has at least one neighbouring dragonfly 

Update velocity vector using Eq. (8) Update 

position vector using Eq. (9) 

else 
Update position vector using Eq. (10) 

end if 
Check and correct the new positions based on the boundaries of variables 

end 
------------------End of DA and Start of PSO------------- 

For each particle 

Initialize particle with DA-pbest matrix Set PSO-gbest as DA-gbest 

end 
while maximum iterations or minimum error criteria is not attained 

For each particle 

Calculate fitness value 

if fitness value < PSO-pbest in history 

set current value as the new PSO-pbest 

end if 

end 

Choose the particle with the best fitness value of all the particles as the PSO-gbest 

For each particle 

Calculate particle velocity according to Eq. (17) 

Update particle position according to Eq. (18) 

end 

end while 

------------------------End of PSO-------------------------------  

best-fitness = PSO-gbest 

end while 
 

Figure 4: Pseudo-code for MHDA [28] 
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C. POWER SYSTEM VOLTAGE STABILITY ASSESSMENT USING A HYBRID APPROACH COMBINING DRAGONFLY 

OPTIMIZATION ALGORITHM AND SUPPORT VECTOR REGRESSION 

Reference [33] proposed a hybrid version of dragonfly algorithm with support vector regression (SVR) for online voltage stability 

assessment. The performance of SVR is highly dependent on its parameter selection. The critical parameters for SVR include non-

sensitivity coefficient , penalty parameters C, and the kernel parameters. The DA involved parameter settings of SVR, which 

improved their performance. For training the proposed model (DFO-SVR), as input, the voltage magnitude produced from PMU 

buses used for various operating conditions, and the least values of voltage stability index (VSI) used as output variables. Three 

statistical indices utilized to evaluate the DFO-SVR model. Those statistical indices were correlation coefficient (R), root mean 

square error (RMSE), and the percentage of mean square error (PRMSE). Depending on the produced results in this work, the 

proposed model offered excellent performance for prediction. 

  
D. HYBRID BINARY DRAGONFLY ENHANCED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR SOLVING FEATURE 

SELECTION PROBLEMS 

In reference [34], a hybrid version of the binary dragonfly algorithm with enhanced particle swarm optimization algorithm 

examined for solving the feature selection problem. The examined technique called Hybrid Binary Dragonfly Enhanced Particle 

Swarm Optimization Algorithm (HBDESPO). The proposed hybrid technique avoided excessive exploitation, and dual exploration 

used to obtain the solution. In the HBDESPO algorithm, the velocities of both participated algorithms (PSO and DA) updated 

independently. The velocities to work toward the same goal used different ways, which was worthwhile for the hybrid technique 

because it derived from the diversity of solutions. The examined system used the K-nearest neighbour (KNN) as a classifier for 

ensuring the robustness of the training data and reach better feature combinations. The proposed algorithm tested on 20 standard 

datasets from the UCI repository. A set of assessment indicators utilized to compare and evaluate the various optimizers. The 

datasets divided into three sets: testing, validation, and training. The value of K assigned to 5 based on trial and error.  

The training set used for evaluating the KNN on the validation set. The training set, then, utilized for the final evaluation of the 

best-nominated feature combination.  The minimization problem for this work shown in Equation (19).  

 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼𝐸𝑅(𝐷) +  𝛽

|𝑅|

|𝐶|
 

(19) 

Where 𝐸𝑅(𝐷) is the classifier’s error rate, R represents the selected feature’s length, and C represents the total number of features. 

𝛽 and 𝛼 are constants for controlling the weights of classification accuracy of the minimization feature. 

 

The proposed technique compared to the results of binary DA from [9], and the enhanced PSO from [35]. The reference concluded 

that high classification accuracy provided while the ratio of feature selection kept to the minimum. Moreover, small fitness values 

reached, and across various runs, it kept its stability. Additionally, the value of standard deviation proved the robustness of the 

algorithm as it repeatedly could converge to a similar solution. 

 

E. HYBRID NELDER–MEAD ALGORITHM AND DRAGONFLY ALGORITHM FOR FUNCTION OPTIMIZATION AND THE 

TRAINING OF A MULTILAYER PERCEPTRON 

In DA, having an excessive number of social interactions may reduce the accuracy of the solution, falling easily into local optima, 

and imbalance among exploitation and exploration. To control these deficiencies, in reference [36] DA was hybridized with an 

improved version of the Nelder-Mead algorithm (INMDA) to make the capability of local exploration stronger, and prevent falling 

into local optima. INMDA consists of two stages. First, DA utilized to search the solution space. The required diversity of the 

individuals used to find the global optimum. Second, the improved version of the Nelder-Mead (INM) simplex technique used to 

find the worst and best points, and compute the population centroid. One of the main features of the INM was that the population’s 

centroid used to update the position. Hence, the possibilities of jumping out of the local optima improved. 
 

For single-objective functions, the proposed technique compared to Memory-based Hybrid Dragonfly Algorithm (MHDA), DA, 

PSO, and recently SI-based optimization algorithms, such as ALO, and WOA. For each optimization algorithm, 30 independent 

runs used. The number of agents and the maximum number of iterations were 30 and 1000, respectively. 

 

The results showed high performance of the proposed work for solving high-dimensional problems comparing to DA and MHDA. 

At the same time, they cannot be used to solve high-dimensional problems because they quickly encounter “dimensional curse”. 

The high performance of the proposed work came from the enhanced exploitation and exploration capabilities of reverse learning 

techniques. 

 

F. DESIGN AND ANALYSIS OF TILT INTEGRAL DERIVATIVE CONTROLLER FOR FREQUENCY CONTROL IN AN ISLANDED 

MICROGRID: A NOVEL HYBRID DRAGONFLY AND PATTERN SEARCH ALGORITHM APPROACH 

Reference [37] proposed a technique to control frequency in an islanded AC microgrid (MG). MG formed by integrating various 

sources, such as wind power generation, renewable sources of energy, and solar energy generation. The MG frequency is affected 

by any variations in the sources. Thus, controlling the frequency of MG is a challenge for the researchers. This work considered a 

tilt integral derivative (TID) controller for controlling the secondary frequency on the islanded MGs. For tuning control parameters, 

Hybrid Dragonfly Algorithm and Pattern Search (hDF-PS) utilized. The work concluded that the tilted behaviour of the examined 
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technique based TID controller produced superior results compared to other conventional controllers. And that an adequate balance 

provided between the power generation and load, thus, the MG frequency disturbances were overcome. 

 

G. A COGNITIVELY INSPIRED HYBRIDIZATION OF ARTIFICIAL BEE COLONY AND DRAGONFLY ALGORITHMS FOR 

TRAINING MULTI-LAYER PERCEPTRONS 

In reference [38], the strengths of DA combined with ABC. The aim of hybridizing these two metaheuristics was to eliminate slow 

convergence problem and falling into local optima by providing a better balance between local and global search components of 

the participated algorithms. The idea behind hybrid ABC/DA (HAD) was combining the exploration ability of ABC with 

exploration and exploitation ability of the DA. The examined algorithm consists of three components: the dynamic and static 

swarming behaviour phase in DA and the two phases of global search in ABC. The first component accomplished global search 

(DA phase), the second component accomplished local search (onlooker phase), and the third one accomplished global search 

(modified scout bee phase). The proposed hybrid algorithm adopted all the parameters from the original DA and ABC with one 

more parameter, which is Prob. The added parameter used for balancing the dragonfly bee phase, the onlooker bee phase, and 

balancing between exploitation and exploration. The prob parameter set to 0.1 in the experiments carried out in the proposed work, 

which based on another confirmed research. A population size of N and D dimensional solutions considered. The time complexity 

of the iterative process of HAD algorithm analysed as follows: In the first phase, the main operation was creating the initial 

population, and the complexity time was O (ND). In the second phase, the stopping criteria judged, and the time complexity was 

O (1). In the third phase, the value of the rand parameter judged. If rand is smaller than prob, then perform dragonfly bee phase, 

else perform onlooker bee phase, then perform a modified scout bee phase; the time complexity was O (N). In the fourth phase, 

the solution updated; the time complexity was O (N). In the fifth phase, continue with the iterations and go back to the second 

step. Hence, the time complexity of the proposed algorithm was O (ND). In terms of convergence speed, the performance of the 

proposed hybrid method calculated using 50 iterations. 
  

The results showed that HAD provided better performance or comparative performance in terms of convergence speed in almost 

all the benchmark functions with different dimensions compared to the ABC and DA. In another contribution, this work used the 

examined hybrid algorithm for training multi-layer perceptron (MLP) neural networks. It observed that the proposed hybrid 

algorithm was a better trainer for MLPs comparing to the original version of participated algorithms. The experimental results 

showed that the proposed method showed superior results compared to the standard DA, ABC algorithm, and other well-known 

algorithms. The reason for the superiority of the proposed technique was that it a better balance provided between exploration and 

exploitation. Thus, this improved the performance of the mechanism and reduced the probability of trapping into local optima. 

 

H. OPTIMIZATION OF A FRAME STRUCTURE USING THE COULOMB FORCE SEARCH STRATEGY-BASED DRAGONFLY 

ALGORITHM 

Reference [39] proposed an adaptive DA for the structural optimization of frame structures. In this article, the Coulomb force 

search strategy (CFSS) combined with DA. The exploratory constant parameter (k) is one of the essential parameters in the CFSS. 

This work examined the utilization of an adaptive value during the search process of the dragonfly algorithm. The dragonflies 

encouraged for searching in the search space with giant steps at the beginning of the process, and small steps at the end of the 

process. The above mentioned adaptive strategy improved the convergence of the algorithm. Such that, it provided an optimal 

result in a short time compared to the original algorithm. The comparing results to the DA and BDA from the proposed technique 

proved this. The proposed algorithm used to optimize the front axle of an automobile, which is a classic engineering optimization 

problem. In the examined problem, the front axle beam selected. The results proved the convergence speed of the CFSS-DA 

comparing to the BDA, and DA. The main reason for the better results was that the DA and BDA do not have any search step 

optimization strategy.  

 

VI. APPLICATIONS OF DA IN ENGINEERING 

Due to the power of DA, enormous research applications from different domains have been conducted, such as engineering, 

machine learning, image processing, wireless network applications, and some other areas. In this section, we present applications 

of dragonfly algorithm in Engineering and Physics. 

 

A. MECHANICAL ENGINEERING 

Network configuration is the process of changing the status of open/close switches to make changes in the distribution network’s 

topological structure. In [40], a new reconfiguration schema developed to reduce the net deviation among the nominal voltage 

value, and the node voltages using a dragonfly optimization algorithm. Dragonfly optimization algorithm based reconfiguration 

method (DORM) enhanced the voltage profile (VP) by net voltage deviation minimization (NVD). The proposed technique 

examined without making any thermal violations. It also kept the radial structure. In this study, the results obtained using DORM 

compared to some other nature-inspired algorithms for solving configuration problems, such as PSO [41], GA [42], and BBO [43]. 

According to the study, the obtained results proved that the DORM provided better configuration that minimized NVD and 

provided good VP. To share the loads with the conventional power plant, distribute generation units utilized. The mentioned units 

also used to give the power to the loads individually. Photovoltaic (PV), gas turbine (GT), wind turbine (WT), storage battery 

(SB), and micro turbine (MT) are the most typical distributed generation units in this type of applications. 
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In reference [44], a new optimal design of a new hybrid power generation system (HPGS) generated. The introduced design 

consisted of a combination of PV, WT, GT, and SB. Natural gas distribution network utilized to fuel the GT of the system. To find 

the optimal design of the proposed work, two metaheuristic techniques; DA [9] and GWO [8] examined. The system considered 

different weather conditions. Both metaheuristic algorithms in this work used to minimize the total emission functions of the 

system and the annual cost. It concluded that the DA produced better results in respect of the total yearly cost comparing to GWO. 

In contrast, regarding the system pollution, GWO technique produced better results than the DA technique. 

 

Perforated plates are part of many industrial applications in recent years. Perforated plate cutouts mostly used to decrease the 

structure weight or to build a point of exit and entry. Cutouts in the plates can change the geometry of the plate, which leads to 

severe local stresses (called stress concentration) throughout the cutouts. Stress concentration can cause a reduction in strength 

and premature failure in structures. Therefore, knowing useful parameters to reduce stress concentration in various structures is 

crucial. In reference [45], DA used to optimize the involved parameters in analysing stress of the perforated orthotropic plates. 

The aim was to achieve the minimum stress value around the quasi-triangular cutout located in an infinite orthotropic plate. 

Distribution of stress calculated using the proposed method based on Lekhnitskii’s analytical solution. The variables that designed 

using the proposed technique included load angle, fibre angle, bluntness, material properties and orientation angle of the cut-out. 

The results compared to those of the GA and PSO. The parameters of the mentioned algorithms shown in Table 2. The results 

proved that the average of optimum values of stress produced from the DA was smaller than the other algorithms. It concluded 

that the values of both average and standard deviation for the DA were smaller than the GA and PSO [46]. The comparison of 

these techniques proved that DA showed an excellent performance to solve the problem mentioned above, and also it acted more 

steadily. It was also determined that the high exploration and exploitation rates in the DA were reasons that made the algorithm to 

perform better. Moreover, DA converged much earlier (18th iteration), whereas PSO and GA converged in the iterations 95th and 

146th, respectively. Additionally, depending on the results, it was observed that the most significant levels of stress in all cutout 

bluntness (w) happened at a load angle of 45. 
 

Table 2: Parameter Settings Of The Algorithms [45] 

DA GA PSO 

Population size = 30 

Max. No. Of iterations = 200 

Random values = r1 = r2 = [0, 1] 

Separation weight (s) = 0.1 

Alignment weight (a) = 0.1 

Cohesion weight (c) = 0.7 

Food factor (f) = 1 

Enemy factor (e) = 1 

Inertia factor (+ = 0.9-0.2 

Constant () = 1.5 

Population size = 30 

Max. No. Of Iterations = 200 

Probability of crossover (Pc) = 0.8 

Probability of Mutation (Pm) = 0.03 

ncrossover = 2*round(npop *Pc/2) 

nmut = npop*Pm 

Population size = 30 

Max. No. Of Iterations = 200 

Cognitive component = c1 = 2 

Social component = c2 = 2 

 = 
0.1

|1
𝑐

2
  
√|𝑐2−4𝑐|

2
|

, c = c1 + c2 

 

The strong non-linear relationship between the elements of the array and array factor makes the problem of concentric circular 

antenna array (CCAA) synthesis challenging. High maximum side lobe level (MSL) is a problem of CCAAs. Reference [47] used 

DA to design CCAA in a way that was able to get low side lobes. Sub-structured neural network (SSANN) was used instead of a 

single artificial neural network (ANN), which improved the prediction accuracy of the efficiency of retraining sub-ANNs and the 

engine working process. The proposed work aimed at observing and exploring the effectiveness of the DA technique. Moreover, 

in this work, four different CCAA design cases used to study DA efficiency. Then, the results compared to the existing methods, 

such as BBO [48], SOS [49], SQP [48], CSO [50], OGSA [51], EP [52], and FA [53]. The proposed work utilized two three-ring 

designs, CCAA with 4-, 6-, 8- and 8-, 10-, 12-, and two cases considered for each model: CCAA without, and with centre element. 

For each design experiment, the spacing between neighbouring elements in every ring was fixed to 0.55, 0.606, and 0.75 from the 

centre to the outermost ring. The results of the DA compared with the techniques in the literature of the work using the uniform 

array. The results proved that the DA had better performance for the mentioned problem, and it was competitive with other methods 

for decreasing MSL. 

 

In reference [54], automatic generation control of an interconnected two-area multi-source hydrothermal power system considered. 

Performance of the examined system was analysed and studied with proportional integral derivative (PID), proportional integral 

(PI), and 2 degrees of freedom PID (2DOF PID). The DA was used to optimize the controller gains. It concluded that the DA 

provided superior results compared to classical methods. Furthermore, the 2DOF PID controller optimized by DA produced less 

overshoot (OS), settling time (ST), undershoot (US). Moreover, smaller values of objective function provided comparing to 2DOF 

PID controller optimized by DE. 

 

One of the most used operations in the industries is grinding. Optimization can significantly affect the process of grinding by 

improving the quality of products and reduce operational costs and time of production. Optimizing the grinding process is a 

challenging process in the engineering field because of the complexity and nonlinearity of the process. In reference [55], multi-

objective DA used to get non-dominated Pareto optimal solutions. In this work, an experimental example in [56] was used. Then, 

the results were compared to the results of an experimental model using NSGA-II in [56]. The Pareto optimal solutions produced 

by MODA dominated the obtained solutions by NSGA-II. The results proved that in solving the multi-objective mathematical 
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model of the grinding process, MODA performed better compared to the NSGA-II. The reason for this superiority was due to the 

MODA’s efficient operators compared to the simple operators of NSGA-II (crossover and mutation).  The solutions produced by 

MODA improved surface roughness significantly and reduced the costs and the total grinding time. The results proved that all the 

objectives were optimized by MODA simultaneously using the algorithm’s efficient operators. MODA used 30 individuals and 

1000 iterations to examine the mathematical model of tri-objective of the grinding process. On the other hand, NSGA-II utilized 

100 chromosomes and 1000 iterations, which resulted in 100,000 number of function evaluations. The results proved that the 

MODA’s computational cost was much lower than the NSGA-II’s.  

 

Reference [57] used MODA for optimizing the performance of switched reluctance motor (SRM) powered by autonomous stacked 

proton exchange membrane fuel cells (PEMFC). MODA used to produce the optimal settings of turn-on and turn-off angles of the 

driving circuit. As mentioned the optimal settings generated by DA could improve the savings in energy and improve the 

performance of isolated PEMFC-SRM. The ability of DA in developing the initial stochastic population and the high exploration 

and exploitation of the algorithm were the reasons for the superiority of the algorithm for solving this problem. Furthermore, In 

the case of multi-objective problems, DA offers a set of high uniformly distributed Pareto optimal solutions [61].  

 

B. ELECTRICAL ENGINEERING 

A new method for designing, modelling and optimizing a uniform serpentine meander based on MEMS switch incorporating beam 

perforation effect discovered in [62]. In this paper, for pull-in voltage, a new analytical model was proposed. An optimization 

technique presented to find the optimum configuration of the switch to accomplish minimum pull-in voltage. The analytical model 

considered as an objective function. For this purpose, the author utilized several high-performance evolutionary optimization 

algorithms to get the optimum dimensions with computationally less cost and more simplicity. The conducted algorithms included 

PSO, DE, a hybrid PSO with differential evolution (DEPSO), DA, WOA, and human behaviour based PSO (HBPSO). A 

comparison among the applied algorithms showed that the DA had the best minimum pull-in voltage with the smallest errors. The 

parameter settings for DA in the proposed work were: dimension = 8, search agents = 50, alignment weight, separation weight, 

and cohesion weight were random between -0.2 and 0.2, food attraction weight was a random, and enemy distraction weight was 

a value between -0.1 and 1. The results showed that the DA performance was the best to minimize pull-in voltage with minimum 

errors. 

 

In the power transmission system, the stability of voltage is a significant concern due to inconsistency between demand and power 

generation. Reference [63] utilized the eigenvalue decomposition (EVD) method and DA in partitioned Y-admittance matrix to 

identify weak buses for implementing the compensators of reactive power. In this work, DA used to optimize the cost and size of 

the static VAR compensator. For the objective function, voltage deviation, line flows, and reactive power limit was examined as 

the design constraints. The results proved that the proposed technique maximized the cost of static VAR compensator and the cost 

of installation with the loading condition. Also, the real power loss and the voltage deviation in the DA were much lesser comparing 

to the PSO. Moreover, for the IEEE 30 bus system, the DA could show its superiority in reducing real power loss comparing to 

the other algorithms. Additionally, DA converged earlier. 

 

Atomic generation control (AGC) problem was examined in reference [64] by using DA. In this work, the DA optimized the 

control parameters, such as PID gains and scaling factors of fuzzy logic. The criterion of integral of time multiplied absolute error 

(ITAE) was used to minimize the settling time with a minimized peak overshoot. The ITAE employed for optimizing the scaling 

factor and PID gains controller. The examined control strategy tested with two equal non-reheat thermal interconnected power 

system areas. The work extended to two hydro-thermal power system areas connected via a high voltage direct current (HVDC) 

transmission link and an AC tie line. To deal with non-linearity, the generation rate constraint (GRC) effect counted. Moreover, 

three-area interconnected reheat power system used with an adequate GRC non-linearity in all areas. The results proved that in 

terms of minimum damping oscillations, settling time, peak undershoots and overshoot in the interconnected three-area power 

system with GRC non-linearity, the proposed meta-heuristic algorithm based fuzzy PID controller provided superior results 

compared to other control techniques. The results proved that the DA as an optimization technique produced a better optimal AGC 

solution for frequency regulation of non-linear and linear interconnected power systems. Furthermore, the combined fuzzy PID 

controller proposed in this work proved its superiority over the fuzzy logic and optimized PID controller.  

 

 

C. OPTIMAL PARAMETERS 

Reference [65] optimized the parameters in the analysing stress of perforated orthotropic plates. In this work, the DA utilized to 

reach the smallest stress value around the quasi-triangular cutout in an infinite orthotropic plate. The DA was used to compute the 

distribution of the stress based on Lekhnitskii's analytical solution. Fibre angle, load angle, orientation cutout, bluntness, and 

material properties included in the study design variables. In this study, the results obtained from the dragonfly algorithm compared 

to those of PSO [5] and GA [66]. The results proved that in comparison to the PSO and GA, the DA converged earlier. Besides, 

avoiding local optimum and producing better results showed the superiority of the DA comparing to the other two algorithms. The 

DA also produced smaller average values of optimum stress compared to the other algorithms. Furthermore, by using the DA, a 

standard deviation closer to zero was produced, which was smaller to the ones produced using the PSO and GA.  
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Providing reliable and continuous supply to customers is a critical ambition of utility, and also meets the expectations of power 

balance and the loss of transmission when the generators operate within a specified limit. For achieving this purpose, fuel cost and 

emission value should be as small as possible. The allowed deviation in feasible tolerance and fuel cost is named as emission 

constrained economic dispatch (ECED) problem. Reference [67] used DA to find a solution for ECED problem. ECED is a multi-

objective problem. In this work, fuel cost and emission value together with quadratic function were considered as a multi-objective 

problem. To convert the problem to single-objective, price penalty factor technique used. The consequences of penalty factors, 

such as “Min-Min”, “Min-Max”, “Max-Max”, “Max-Min” emission value of different gas exhalation, and price penalty factors 

mentioned in this work. As the results in this work showed, using “Min-Max” as a price penalty factor produced less fuel cost 

comparing to the other penalty factors. In “Common”, however, increasing ECED fuel cost by 17% could reduce emission by 

almost 23% in comparison with the price penalty factor of “Min-Max”. The author mentioned that nowadays having a small 

amount of ECED fuel cost to operate thermal power plant with “Min-Max” price penalty creates contamination in the environment 

and causes premature death in humans leaving near the thermal power plant. 

 

The trend of automotive in the industry is towards electric vehicles (EV). However, for the next coming years, these industries 

will still use gasoline engines. Reference [68] introduced a new technique to participate in online engine calibration, and to control 

increasing the performance of the engine, and decrease gas emission of the greenhouse. For this purpose, the mentioned reference 

used a robust model based on sub-structural neural network (SSANN), multi-objective dragonfly algorithm, multi-objective 

genetic algorithm (NSGA-II), and fuzzy dependent on inference system. The inputs used for SSANN were injection angle, 

injection time, throttle angle, and engine rpm. The outputs were: CO, NOx, fuel flow (FF), and torque. Initially, the data from GT-

POWER used to train SSANN. Based on various engine speeds, 15 working points were selected randomly to examine the accuracy 

of SSANN. Linear regression was used to assess the linear relationship between the measured and predicted outputs. For this 

problem, MODA converged earlier (at 40th generation), and it had better inverse generation distance (IGD). However, NSGA-II 

converged after the 80th generation. Also, it was discovered that increasing the number of iterations MODA showed better 

convergence. It was because of the use of food/enemy selection technique in the MODA. In MODA, the search agents move 

towards the region of the search space that has Pareto optimal solutions with low distribution and ignores the areas with high 

distribution in the Pareto front.  

 

In reference [69], the dynamic stability of hybrid energy distributed power system (HEDPS) studied. The HEDPS was subject to 

wind power and load variations. A controller with three degrees of freedom (3-DOF) proportional-integral-derivative (PID) 

implemented and designed in the HEDPS to balance power and frequency fluctuations after the perturbation. Unlike the single-

degree-of-freedom (1-DOF) controller, the 3-DOF controllers own the ability of an outstanding set-point tracking, and it produces 

superior regulations for the input disturbance. DA used to optimize the parameters of 3-DOF PID controllers. Also, to optimize 

the 3-DOF controller gains, integral time absolute error (ITAE) used as an objective function. The obtained results compared to 

the results of Zeigler-Nichols (ZN) and other popular meta-heuristic algorithms. To evaluate the performance of the proposed 

controller, interconnected, isolated modes of hybrid energy, and distributed power system used. For qualitative assessment, the 

convergence of DA compared to other algorithms. The results proved that the DA found the global optimum value at a faster rate 

and that smaller minimum value for the fitness function produced compared to the other participated algorithms. For this work, all 

the algorithms produced the optimal global point between 60 to 70 generations, which gave the choice of having 100 iterations. 

Furthermore, the results concluded that the DA outperformed the other mentioned algorithms in terms of faster convergence and 

minimum fitness value.  

 

D. ECONOMIC LOAD DISPATCH 

Wind integrated system with valve-point effect considered in [70]. DA used to overcome the problem of economic load dispatch 

(ELD) along with valve-point effect. The Weibull distribution function used to model the stochastic nature of wind. Furthermore, 

closed integral function was used to analyse overestimation/underestimation cost. In the proposed work, the optimization technique 

started by generating a set of random solutions for the given problem. The dragonfly’s vectors (position and step) randomly 

initialized within upper and lower bounds of generators. The results showed that the DA successfully solved the problem of the 

power system of economic dispatch of wind thermal integrated system. Two cases and IEEE-30 bus system used to calculate the 

performance of the algorithm. The problem of non-convex economic dispatch solved in the first case. The obtained results from 

this case compared to a sequential quadratic programming particle swarm optimization (SQP-PSO) technique. ELD with wind 

power penetration was solved using DA in the second case. Moreover, the performance of the work in case 2 compared to SQP-

PSO [71]. In both cases, 1200MW considered as a load demand. The results showed that the DA found a global optimum solution, 

and it was remarkably free from trapping into local optima. 

 

In reference [72], dragonfly algorithm used to develop a new technique to resolve economic dispatch incorporating solar energy. 

In carrying out the economic dispatch, the mentioned reference considered prohibited operating zone and valve-point loading 

constraints. Beta distribution function used to model the solar energy system, and the objective function. The output forecasted for 

four different seasons. Different loading conditions considered for each. The proposed work addressed that comparing to other 

optimization methods dragonfly algorithm gave a low cost, minimum power loss, and converges in the minimum running time. It 

is concluded that more power could be generated if the availability of sun was abundant in the chosen location. Moreover, in the 

case of using the produced system power correctly, the economy will maximize, and the system loss will minimize.  
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The proposed work considered three different cases. In case 1, the system used for testing consisted of six generators and 1263 

MW.  The results from the first case study compared to the most recent optimization methods. The results proved that the DA was 

the best regarding the convergence time, the minimum value of the objective function, power loss, and evaluations. Similarly, in 

terms of generations, cost, and transmission loss, DA was the best. Concerning case 2, the number of used generators was 15, and 

2630 MW considered. Here, the total cost generation for the DA was minimum. In case 3, the south Indian 86 bus test system 

used. It consisted of 7 generators, 131 lines, and 86 buses. This case considered transmission loss, ramp rate constraint, up the 

reserve, and down reserve constraints. Here, the obtained results proved that the optimal cost of DA was much smaller than the 

compared algorithms. 

 

E. LOSS REDUCTION 

The research work [73] based on the BDA. In this work, a new method proposed for wrapper-selection. The proposed technique 

aimed at minimizing the number of characteristics compared to the original feature set and obtain better accuracy in classification 

at the same time. The K-Nearest Neighbourhood (KNN) classifier was used for evaluating the selected feature subset. Feature 

subset selection is a multi-objective problem. Multi-objective problems examine two different objectives. The proposed work 

aimed at maximizing the classification accuracy, and minimizing the number of features. Equation (20) shows the objective 

function. The proposed approach evaluated using 18 UCI datasets. A comparison made between the proposed technique and the 

similar techniques that used GA, and PSO. The comparison concerned on the accuracy of classification and number of the selected 

attributes. The results proved that BDA had a better ability in searching the feature space and choosing the features with more 

information for the classification task. 

 

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑎𝑦𝑅(𝐷) + 

|𝑅|

|𝐶|
 

 (20) 

Where: 

𝑦𝑅(𝐷) shows the error rate of the classification used. 

|R| represents the selected subset’s cardinality. 

|C| represents the whole number of characteristics in the dataset. 𝑎  And  are parameters representing the classification 

importance and length of the subset, respectively. 𝑎 ∈ [0, 1] and  = (1- 𝑎), the author adopted these from [74]. 

 

Reference [75] solved a nearly-zero-energy-building design problem. A comparison made in terms of performance among seven 

multi-objective algorithms. The comparison included controlled non-dominated sorting genetic algorithm with a passive archive 

(pNSGA-II), a multi-objective particle swarm optimization, a two-phase optimization using genetic algorithm (PR_GA), an elitist 

non-dominated sorting evolution strategy (ENSES), a multi-objective evolutionary algorithm based on the concept of epsilon 

dominance (evMOGA), a multi-objective differential evolution algorithm (spMODE-II), and MODA. The results from other 

algorithms are out of the scope of this paper. In this work, only the results of MODA are discussed. In most of the cases, the 

obtained solutions improved with increasing the number of generations. Each algorithm ran 20 times with moderately raising the 

number of evaluations. The optimization results in most running cases proved that the results of MODA were uncompetitive. In 

terms of contribution, and running time, MODA was not competitive, and it was slow. According to this work, MODA did not 

have any outstanding features.  

 

Power loss, electric distribution system’s maximum loadability, and voltage stability margin (VSM) are greatly affected by 

inadequate reactive power generation. To solve these problems, in reference [76], optimal concurrent as well as multiple separate 

installations of distributed generation (DG), and capacitor were examined. For this work, minimizing the total of reactive power 

loss (QL) counted as the primary objective, and DA used to optimize the problem. Standard 33-bus distribution systems utilized to 

test the methodology proposed in this work. The proposed work handled different capacitor, and DG installation cases. The results 

of the proposed work compared to weight improved particle swarm optimization (WIPSO) algorithm. The results proved that the 

primary behaviour of DA for updating the individual’s position provided an enhance QL reduction comparing to the other methods. 

The results also showed a better convergence speed by producing fitter optimized solutions in 15 to 20 iterations. 

 

VII. A COMPARISON BETWEEN DRAGONFLY ALGORITHM AND OTHER ALGORITHMS 

In reference [77], whale optimization algorithm (WOA), Moth-Flame optimization (MFO), and DA were compared. The proposed 

work implemented the above mentioned algorithms to examine the optimal sizing and location of distributed generation in radial 

distribution systems. The aim of this work was reducing the power loss in the network. Multiple-DG units allocated simultaneously 

and analysed by considering two load power factors, i.e., unity and optimal. Bus systems 69 and 119 were used to test the 

algorithms. Four different cases used to perform the simulation. The results proved that the MFO algorithm is superior comparing 

to WOA and DA. It performed better and converged earlier for the mentioned objective function. 

 

Reference number [78] used DA, MFO, and WOA to optimize a nonlinear and stochastic optimization problem. The markets had 

non-identical designs, and they were interconnected. One of the markets had an energy-only market, while the second one had a 

capacity-plus-energy market. The objective function of this problem was optimally allocating capacity by generation companies 

(GenCo) in a way that this allocation could be able to increase general revenue. Likewise, the independent system operator (ISO) 
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acquires energy and capacity. Thus, it could reduce the cost of the purchase. The authors in this article discovered that the maximum 

value of GenCos’s revenue, the capacity price, and the smallest value of ISO’s purchase cost increased with the cost of recall, 

probability of recall, and the load forecasting error. It concluded that various algorithms required a different number of iterations 

to converge, and none of the examined algorithms proved its superiority. 

 

Reference [79] focused on court case assignment that has a great impact on improving judicial system’s efficiency. The efficacy 

of judicial system highly depends on a timely manner and the efficient operation of the court case. In this work, mixed-integer 

linear programming (MILP) utilized to examine the case assignment issue in the justice court. The objective of the assignment 

problem was assigning N cases to M teams. Each team could do all the cases. Nevertheless, due to the case specification, personal 

capability, and other assigned cases, the teams needed to a spent different time to solve the same case. To find the optimal solution 

of the assignment problem, the proposed work used DA and firefly algorithm (FA) [51]. Two problems were examined to a uniform 

distribution. In the form P1: effectiveness rate (i) = (1,90), Lower bound (Ll) = (1, 30), Upper bound (Ui) = (1, 90), and P2: 

effectiveness rate (i) = (1,90), Lower bound (Ll) = (1, 60), Upper bound (Ui) = (1, 90). The produced results proved that the DA 

required less time to find the optimal solution and an average percentage deviation for maximizing effectiveness comparing to the 

FA. The results showed that for 50 cases and three justice teams for experimental parameters: P1 (50:3,4,5) and P2 (50: 3,4,5) the 

results of DA were superior compared to those of FA.  

 

In reference [80], DA, MFO, and GWO techniques examined to optimize the capacitor’s optimum sitting in different radial 

distribution systems (RDSs). The factor of loss sensitivity considered to determine the candidate buses. The authors considered 

33-, 69-, and 118-bus RDSs to validate the efficiency and effectiveness of the examined optimization techniques. This study aimed 

at minimizing power loss and total cost with voltage profile enhancement. The results of the optimization methods mentioned 

above compared to the PSO to prove the superiority of the techniques. The same initial population was selected for MFO, DA, 

GWO, and PSO for the 33-bus distribution system. The results showed that DA-, GWO-, and MFO-based optimization methods 

were much superior compared to the PSO-based technique in terms of a small number of iterations and convergence time for the 

examined study. 

 

Furthermore, MFA-, DA-, and MFA-based optimization showed higher convergence rate for 69-bus distribution system case. 

However, PSO could be able to determine the optimal sizing and sitting of the capacitors for the 33-bus system, but it could not 

find the optimal solution for 69-bus system accurately.  

 

Additionally, the three algorithms, DA, GWO, and MFO, were evaluated using statistical tests. The parameter settings 

implemented as the original references. For this evaluation, 35 iterations used, population size was 20, and each algorithm ran 30 

times for each case. The results showed that DA, GWO, and MFO had a tolerable root-mean-square error (RMSE).  

 

Reference [81] introduced a novel binary multi verse optimization algorithm. In the article, the authors compared the new algorithm 

to some other binary optimization algorithms, including binary DA. Binary DA ranked as the second-best algorithm, among others, 

this was because of the excellent balance between exploration and exploitation of the algorithm. Furthermore, the sudden changes 

in the variables cause a quick convergence. 

Reference [82] compared DA with Harris hawks optimization algorithm (HHS). The algorithms utilized to optimize the 

performance of multi-layer perceptron (MLP), which was used to analyse the stability of two-layered soil. The work compared the 

accuracy and computational time of the algorithms. Mean square error (MSE), mean absolute error (MAE) and the area under the 

receiving operating characteristic curve (AUC) used to evaluate the performance of the predictive models. In general, both 

algorithms helped to improve the applicability accuracy of the MLP. However, the DA reached the lowest error within 500 

iterations, whereas the HHS needed 1000 iterations for the same task. Hence, the DA provided a better convergence comparing to 

the HHS for the problem mentioned above. 

 

VIII. RESULTS AND EVALUATIONS 

The results of the applications in the literature showed that dragonfly algorithm is suitable to optimize various problems in the 

field of engineering. The provided results proved the superiority of the algorithm. In this section, to demonstrate the ability of the 

algorithm, it is tested on the traditional benchmark functions. Moreover, to further evaluate the algorithm, it was examined on the 

IEEE Congress of Evolutionary Computation Benchmark Test Functions (CEC-2019), also known as “the 100-digit challenge” 

[83]. The Wilcoxon rank-sum test functions are utilized to show the significance of the results statistically.  

 

To examine the performance of the algorithm, three groups of traditional benchmark functions utilized with various characteristics 

in the original work. The groups of the traditional test functions are unimodal (F1-F7), multi-modal (F8-F13), and composite test 

functions (F14-F23). The results of F1-F19 in Tables 3 and 4 are from the original work. However, the authors of this work 

examined both PSO and DA for the results of F20-F23 in both tables. Moreover, the authors tested the FA on all the benchmark 

functions (F1-F23). 

 
Table 3: Classical Benchmark Results of DA, PSO, and FA 
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F Measurements. DA PSO FA 

F1 Mean 2.85E-18 4.2E-18 1.72e-10 

Std. 7.16E-18 1.31E-18 9.43e-10 

F2 Mean 1.49E-05 0.003154 6.01e-07 

Std. 3.76E-05 0.009811 3.29e-06 

F3 Mean 1.29E-06 0.001891 1.58e-10 

Std. 2.1E-06 0.003311 8.66e-10 

F4 Mean 0.000988 0.001748 5.913-03 

Std. 0.002776 0.002515 0.029813 

F5 Mean 7.600558 63.45331 2.383765 

Std. 6.786473 80.12726 1.350716 

F6 Mean 4.17E-16 4.36E-17 1.9e-10 

Std. 1.32E-15 1.38E-16 1.04e-09 

F7 Mean 0.010293 0.005973 1.57e-04 

Std. 0.004691 0.003583 1.01e-04 

F8 Mean -2857.58 -7.1E+11 -3566.452419 

Std. 383.6466 1.2E+12 239.113661 

F9 Mean 16.01883 10.44724 7.462188 

Std. 9.479113 7.879807 4.41686 

F10 Mean 0.23103 0.280137 8.47e-07 

Std. 0.487053 0.601817 4.64e-06 

F11 Mean 0.193354 0.083463 0.053309 

Std. 0.073495 0.035067 0.053615 

F12 Mean 0.031101 8.57E-11 1.92e-12 

Std. 0.098349 2.71E-10 1.05e-11 

F13 Mean 0.002197 0.002197 8.21e-12 

Std. 0.004633 0.004633 4.5e-11 

F14 Mean 103.742 150 0.99800 

Std. 91.24364 135.4006 1.700065e-16 

F15 Mean 193.0171 188.1951 3.77e-04 

Std. 80.6332 157.2834 1.853-04 

F16 Mean 458.2962 263.0948 -1.031628 

Std. 165.3724 187.1352 1.06e-15 

F17 Mean 596.6629 466.5429 3.0 

Std. 171.0631 180.9493 6.05e-15 

F18 Mean 229.9515 136.1759 -3.862782 

Std. 184.6095 160.0187 2.79e-15 

F19 Mean 679.588 741.6341 -3.259273 

Std. 199.4014 206.7296 0.059789 

F20 Mean -3.32199 -3.27047 -9.316829 

Std. -3.38E-06 0.059923 2.21393 

F21 Mean -10.1532 -7.3874 -10.147907 

Std. 6.60E-15 3.11458 1.396876 

F22 Mean -10.4029 -8.5305 -9.398946 

Std. 1.51E-06 3.038572 1.99413 

F23 Mean -10.5364 -9.1328 -10.2809 

Std. 2.97E-07 2.640148 1.39948 

As shown in Table 3, the results of DA on unimodal test functions outperformed the PSO. The results of the unimodal test functions 

are evident that the DA has an excellent exploitation and convergence speed comparing to the PSO. On the other hand, the results 

of the FA for the unimodal test functions were superior compared to the DA and PSO. However, the results from the references 

mentioned above are another evidence for the convergence speed of the DA. Reference [51] utilized the FA and DA to optimize 

the same problem. The results showed that the DA converged earlier. Furthermore, the p-value in Table 4 for this group of test 

functions is less than 0.05, which means that the results are statistically significant. Moreover, in the references above, DA proved 

its high convergence speed.  

The results for the multi-modal test functions proved that the exploration of the DA is high, which assists in discovering the search 

space. The PSO showed better results in general in this group of the test functions. Furthermore, as shown in Table 4, these results 

again are statistically significant because most of the p-values are less than 0.05.  

For the composite test function, the FA outperformed the DA and PSO. Similar to the unimodal test functions, the results of the 

PSO and the DA were competitive. However, in some cases, PSO provided better results, which means that the balance of 

exploration and exploitation in the FA is better than the DA and PSO. The reason for this is that the exploration of the DA algorithm 

is much higher compared to the exploitation. Moreover, the majority of the statistical results for this group of benchmark functions 

are significant and less than 0.05, as shown in Table 4.  

 
Table 4: The Wilcoxon Rank-Sum Test Overall Runs For The Classical Benchmark Functions 
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Furthermore, in the original work, the CEC benchmark functions were not used to evaluate the DA. Hence, in this work, the CEC-

2019 test functions are used to assess the DA further. This group of test functions utilize in annual optimization competition. 

Professor Suganthan and his colleges improved these benchmark functions to optimize single objective problems [83]. All the 

CEC-2019 benchmark functions are scalable.  However, only function number 4 to function number 10 are shifted and rotated. 

Whereas, the functions (1 to 3) are not. The functions (1 to 3) have different dimensions. However, functions (4 to 10) set as 

minimization problems with 10 dimensions. See Table 5 for more details about the functions. 

 
Table 5: CEC-2019 Benchmark Functions “The 100-Digit Challenge” [83] 

No. Functions Dimension Range fmin 

1 STORN’S CHEBYSHEV POLYNOMIAL FITTING PROBLEM 9 [-8192, 8192] 1 

2 INVERSE HILBERT MATRIX PROBLEM 16 [-16384, 16384] 1 
3 LENNARD-JONES MINIMUM ENERGY CLUSTER 18 [-4, 4] 1 

4 RASTRIGIN’S FUNCTION 10 [-100, 100] 1 

5 GRIENWANK’S FUNCTION 10 [-100, 100] 1 
6 WEIERSRASS FUNCTION 10 [-100, 100] 1 

7 MODIFIED SCHWEFEL’S FUNCTION 10 [-100, 100] 1 

8 EXPANDED SCHAFFER’S F6 FUNCTION 10 [-100, 100] 1 
9 HAPPY CAT FUNCTION 10 [-100, 100]  1 

10 ACKLEY FUNCTION 10 [-100, 100] 1 

 

In the original paper, the DA compared to the PSO; hence, for this group of test functions, DA again will be compared to the PSO. 

The default parameter settings were not changed during the optimization. For this evaluation, the authors used 100 iterations and 

30 agents. As shown in Table 6, DA outperformed the PSO in three CEC-2019 benchmark functions (1, 2, and 3), and the results 

were competitive in two functions (3 and 10).  

 

IX. DISCUSSION AND FUTURE WORKS 

DA is simple and easy to implement. To explore the search space, assign low cohesion weight and high alignment to individuals. 

Contrarily, to exploit the search space, assign individuals to low alignment and high cohesion weights. Tuning the swarming 

weights (s, a, c, f, e, and w) adaptively during the process of optimization is another technique to balance exploration and 

exploitation. To switch between exploitation and exploration the radii of neighbourhood enlarged proportionally to the iteration 

numbers can be used. It usually can produce superior results for small to medium-scale problems. However, for large scale 

optimization problems, more affords are required, and it causes an increase in convergence time and a reduction in performance, 

which may cause falling into local optima.  

 

 

 

 

 
Table 6: The IEEE CEC-2019 Benchmark Results For DA, and PSO 

Function No. Measurements DA PSO 

1 Mean 46835.63679 1.47127E+12 

Std. 8992.755502 1.32362E+12 

F DA PSO 

F1 N/A 0.045155 

F2 N/A 0.121225 

F3 N/A 0.003611 

F4 N/A 0.307489 

F5 N/A 0.10411 

F6 0.344704 N/A 

F7 0.021134 N/A 

F8 0.000183 N/A 

F9 0.364166 N/A 

F10 N/A 0.472676 

F11 0.001008 N/A 

F12 0.140465 N/A 

F13 N/A 0.79126 

F14 N/A 0.909654 

F15 0.025748 0.241322 

F16 0.01133 N/A 

F17 0.088973 N/A 

F18 0.273036 0.791337 

F19 N/A 0.472676 

F20 0.938062 0.938062 

F21 N/A N/A 

F22 0.256157 0.256157 

F23 0.59754 0.59754 
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2 Mean 18.31681239 15183.91348 

Std. 0.041929318 3729.553229 

3 Mean 12.70240422 12.70240422 

Std. 1.50E-12 9.03E-15 

4 Mean 103.3295366 16.80077558 

Std. 20.00405422 8.199076134 

5 Mean 1.177303105 1.138264955 

Std. 0.057569859 0.089389848 

6 Mean 5.646572343 9.305312443 

Std. 4.27E-08 1.69E+00 

7 Mean 898.5188217 160.6863065 

Std. 4.023921424 104.2035197 

8 Mean 6.210996106 5.224137165 

Std. 0.001657324 0.786760649 

9 Mean 2.601134198 2.373279266 

Std. 0.233292964 0.018437068 

10 Mean 20.0506995 20.28063455 

Std. 0.070920925 0.128530895 

 

With growing the complexity of optimizing real-world problems, computing demands are hard to be satisfied with the single 

version of optimization algorithms. One of the obstacles that may face the users of the DA is that the position updating in this 

algorithm is not so much correlated with the algorithm’s population centroid in the preceding generations. Consequently, the 

produced solutions have low accuracy, and premature convergence to local optima may occur. Additionally, it may cause it difficult 

to find the global optimal solution. Furthermore, as mentioned earlier, alignment, separation, cohesion, and attraction toward food 

sources and distraction toward enemy sources mainly determine the exploration and exploitation of the DA. This searching 

technique maximizes solution diversity and makes the capability of exploration of the DA stronger to some extent. Nevertheless, 

the performance of the algorithm reduces with a large number of exploration and exploitation operators because they cause an 

increase in the convergence time, which leads to falling into local optima. 

 

Similar to other metaheuristic algorithms, DA has several strong points, as well as some weak points. It owns powerful optimization 

capability. The DA has few parameters for adjusting. Most of the time, it can keep a reasonable convergence rate to the global 

optima. DA is one of the most recently developed algorithms in the area. However, as discussed in the literature, it has been utilized 

for optimizing a vast number of problems. The simplicity of the algorithm is one of the main reasons for contributing the DA in 

various applications. Also, selecting the predators from the archive, the worst (most populated) hyper-sphere prevents the artificial 

dragonflies from searching around non-promising areas. Another advantage is that DA has few parameters for tuning. Similarly, 

the convergence time of the algorithm is reasonable. Over other optimization algorithms, it is firmer, and it easily can be merged 

with different algorithms.  

 

On the other hand, as discussed in [36], for complex optimization problems, one of the limitations of the DA is that it easily falls 

into local optima and the convergence speed is low. It does not have an internal memory that can lead to premature convergence 

to the local optimum. This disadvantage was overcome in reference [30] by proposing a novel memory-based hybrid dragonfly 

algorithm (MHDA). Additionally, as presented earlier, DA uses Levy flight as a search process when the neighbourhood does not 

exist. Nevertheless, the giant steps of the Levy flight mechanism caused an interruption.  The original work used step control 

mechanism to prevent overflowing. However, this distorts the characteristics of the swarm. Also, it is a reason for falling into local 

optima. Hence, utilizing other searching techniques instead of the Levy flight and comparing the results of the various methods is 

highly recommended. Moreover, using an adaptive step instead of the original stochastic step will help in balancing the exploration 

and exploitation phases and improving the performance of the algorithm. Position updating technique is another way to prevent 

trapping into local optima. Using the population’s centroid technique, as discussed in [35] can reduce the probability of locating 

into local optima.  

Furthermore, after evaluating the algorithm in the previous section, it was noted that the DA does not provide a right balance 

between exploration and exploitation phases, this was because the exploration of the algorithm is high. This high rate of the 

exploration in the early steps of the optimization process is good, however, in the final iterations of the algorithm, it should be 

decreased, and the exploitation rate should be increased. For binary dragonfly algorithm, for example, using time-dependent 

transfer function can improve the balance of exploration and exploitation of the algorithm.  Hence, at the beginning of the 

optimization, the exploration rate is high. The exploration rate gradually decreases during the process and the exploitation rate 

increases. The mentioned technique will provide a better performance, and it prevents trapping into local optima. Tuning 

parameters automatically improves the performance of different algorithms. Moreover, it improves the balance between 

exploration and exploitation phases, and the diversity of the population [84]. On the other hand, the results of the traditional 

benchmark function for the unimodal benchmark functions and the results of most of the works in literature proved the superior 

convergence of the algorithm. The superior convergence of the algorithm makes it outperform most of the mentioned algorithms 

in the literature for solving small to medium problems. 
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In general, the results from the previous section and the applications in the literature proved that the DA has a significant level of 

exploration and exploitation. The reason for this is the static swarming behaviour of the algorithm, which increases the exploration 

level of the algorithm and helps in avoiding local optima for simple problems. Furthermore, increasing the number of iterations 

will result in high exploitation degree and improves the accuracy in finding approximate global optimum.  

 

However, hybridizing the algorithm with other techniques will give power to the algorithm to overcome the bottlenecks. As 

discussed, some hybrid versions of DA proposed to overcome the weakness of this algorithm. For example, MHDA was examined 

for overcoming the shortage that may cause premature convergence to local optima. Moreover, reference [27] utilized Gauss 

chaotic map to adjust variables. The results showed that the hybridized algorithm in terms of stability quality, classification 

performance, the speed of convergence, and the number of selected features provided better results. Although the DA and the 

hybridized DAs provided some good results in solving several complex optimization problems, some drawbacks still exist. In 

dragonfly algorithm, attraction towards food and distraction towards enemies provide a high capacity of exploration and 

exploitation during optimization technique. The correlation of position updating rule of DA with the centroid of the population 

from the previous generation is less. Thus, it may result in a solution with low accuracy, premature convergence to local optima, 

and difficulties in finding the global optima. Hence, researchers are encouraged to find new techniques to update the positions of 

dragonflies. Another point that will help in improving the algorithm is balancing the exploration and the exploitation phases of the 

algorithm. A good balance between exploration and exploitation will prevent the algorithm from trapping into the local optima. 

Furthermore, combining new search techniques with the DA and examining new transfer functions with the binary DA are highly 

recommended. Moreover, tuning parameters dynamically during the optimization process will have a significant effect on 

improving the balance of the algorithm’s exploration and exploitation.  

 

X. CONCLUSIONS 

In this paper, one of the most recently developed algorithms was reviewed. The different versions of the algorithm, including the 

hybridization versions with other algorithms, were discussed. And most of the optimization problems in engineering and physics 

that used DA were discussed. From the reviewed works, the authors discovered that DA is one of the useful algorithms in the area. 

The simplicity of the algorithm was one of the reasons that encouraged the researchers to use the algorithm to optimize the 

problems in hand. Moreover, the convergence speed and the accuracy of the algorithm are other reasons. As shown, in general, for 

small to medium problems, the algorithm provided good results. However, similar to other algorithms, for some problems 

(especially complex problems) DA cannot produce reasonable results. The exploration of the algorithm is high, which may cause 

trapping into local optima, mainly for the complex problems. Moreover, the results of the benchmark functions (F20-F23) showed 

that the results of the DA and PSO are competitive.  Additionally, the results of the CEC-2019 benchmark function also showed 

that the DA is comparative with the PSO and FA showed better results than both DA and PSO. Finally, reviewing the DA and its 

applications proved that we could utilize the mentioned algorithm successfully to optimize almost all the problems in the real 

world.   

 

As an extension to this work, the authors are willing to find a technique to improve the balance of exploration and exploitation of 

the algorithm. Likewise, the enactment of the DA can be additionally assessed and compared with other popular algorithms, such 

as WOA-BAT Optimisation Algorithm [85], Donkey and Smuggler Optimisation Algorithm [11], Fitness Dependent Optimiser 

[86], and Modified Grey Wolf Optimiser [87].
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