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Abstract

Dragonfly algorithm developed in 2016. It is one of the algorithms used by the researchers to optimize an extensive series of

uses and applications in various areas. At times, it offers superior performance compared to the most well-known optimization

techniques. However, this algorithm faces several difficulties when it is utilized to enhance complex optimization problems.

This work addressed the robustness of the method to solve real-world optimization issues, and its deficiency to improve complex

optimization problems. This review paper shows a comprehensive investigation of the dragonfly algorithm in the engineering

area. First, an overview of the algorithm is discussed. Besides, we also examine the modifications of the algorithm. The

merged forms of this algorithm with different techniques and the modifications that have been done to make the algorithm

perform better are addressed. Additionally, a survey on applications in the engineering area that used the dragonfly algorithm is

offered. A comparison is made between the algorithm and other metaheuristic techniques to show its ability to enhance various

problems. The outcomes of the algorithm from the works that utilized the dragonfly algorithm previously and the outcomes

of the benchmark test functions proved that in comparison with some techniques, the dragonfly algorithm owns an excellent

performance, especially for small to intermediate applications. Moreover, the congestion facts of the technique and some future

works are presented. The authors conducted this research to help other researchers who want to study the algorithm and utilize

it to optimize engineering problems.
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ABSTRACT Dragonfly algorithm developed in 2016. It is one of the algorithms used by the researchers to optimize an extensive 

series of uses and applications in various areas. At times, it offers superior performance compared to the most well-known 

optimization techniques. However, this algorithm faces several difficulties when it is utilized to enhance complex optimization 

problems. This work addressed the robustness of the method to solve real-world optimization issues, and its deficiency to improve 

complex optimization problems. This review paper shows a comprehensive investigation of the dragonfly algorithm in the 

engineering area. First, an overview of the algorithm is discussed. Besides, we also examine the modifications of the algorithm. 

The merged forms of this algorithm with different techniques and the modifications that have been done to make the algorithm 

perform better are addressed. Additionally, a survey on applications in the engineering area that used the dragonfly algorithm is 

offered. A comparison is made between the algorithm and other metaheuristic techniques to show its ability to enhance various 

problems. The outcomes of the algorithm from the works that utilized the dragonfly algorithm previously and the outcomes of the 

benchmark test functions proved that in comparison with some techniques, the dragonfly algorithm owns an excellent performance, 

especially for small to intermediate applications. Moreover, the congestion facts of the technique and some future works are 

presented. The authors conducted this research to help other researchers who want to study the algorithm and utilize it to optimize 

engineering problems. 
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I. INTRODUCTION 

Many researchers in various areas use swarm intelligence (SI). The ability of natural swarm systems amazed natural scientists and 

biologists to study the behaviors of swarms and creatures. Swarm-based algorithms are part of the nature-inspired population-

based algorithm’s family.  Regarding complex real-world problems, this group of algorithms produces a good result in terms of 

cost, speed, and robustness [1]. Bonabeau mentioned SI as the evolving of the combined intellect of sets of modest representatives 

[2]. Swarm intelligence systems consist of several agents that form a population. Swarm intelligence consists of a collection of 

intellectual performance of systems that are self-organized and decentralized. Collective clustering and sorting, building nests, and 

foraging groups of social insects are examples of SI [3]. As discussed in [2], labor division and self-organization are two basic 

concepts of SI. Self-organization here means the capability of having procedures for developing its innards otherwise agents into 

fitters procedure with no support from external sources. On the other hand, the labor division indicates the implementation of 

numerous feasible with meek jobs by people, simultaneously. In SI, agents follow simple rules. No centralized control structure 

exists to control the behaviors of individuals. In reality, the individual’s behaviors are local and random to an extent. Agents, 

however, interact with each other, which produces intelligent and new actions [4]. SI recently has been applied to different 

problems in continuous and combinatorial optimization, robotics, telecommunications, etc.; often-magnificent results were 

produced [5]. Lately, the researchers have proposed some new techniques. Particle swarm optimization or (PSO) that was 

suggested by Kennedy and Eberhart [6]. PSO is one of the first-born algorithms in the swarm intelligence field. PSO emulates the 

purposes of a collection of fish or birds. Each particle is a particular agent with a location in the exploration space. S. He et al. 

proposed Group Search Optimizer (GSO) [7]. GSO mimics the searching behavior of animals. Cuckoo Search (CS) algorithm 

imitates the process of reproduction in the cuckoo family [8]. Later in 2014, Mirjalili et al. developed Grey Wolf Optimizer [9]. It 

imitates the hunting behavior of wolfs. Later, in reference [10], Mirjalili proposed a dragonfly optimization algorithm (DA). DA 

mainly mimics the behaviors of hunting and migration of dragonflies. Harmony Search (HA) algorithm proposed in [11]. It mimics 

the process of improving music by the musician. The musician tries to provide better harmony depending on his/her experiences 

and searching for better harmonies. Donkey and Smuggler Optimization algorithm or so-called (DSO) suggested in [12]. DSO 

imitates the attitudes of donkeys to select and search routes. Yazdani et al. developed another example of nature-inspired 

algorithms, which is called the Lion Optimization Algorithm (LOA) [13]. The LOA mimics the lion’s cooperation behavior and 

their unique lifestyle. Based on a social organization, the lions divide into residents and nomads. The residents consist of several 

lions that live together, and they are called pride. Nomads, on the other hand, are mostly seen in pairs and sometimes singularly. 

Lions may change their lifestyle from nomads to residents or vice versa.  

 

Different researchers have used DA in numerous diverse applications and it gave satisfactory results. Until the end of working on 

this review paper (March 2019), almost 300 different works cited the dragonfly algorithm in different areas. It produced satisfying 

results in almost all applications. Additionally, the authors of this review paper published another review paper on the DA and its 

applications in applied science [14]. In that review paper, the authors cantered their review on the applied science area (such as 

image processing, machine learning, wireless, and networking). Dragonfly algorithm used for optimizing a huge number of 

problems in various disciplines. One review paper cannot cover all the articles that used the DA. Thus, in this paper, DA and its 

engineering applications are focused and reviewed. 

 



 

 

This work first shows a short overview of the dragonfly algorithm in section two. Next, we discuss the variants of the algorithm 

in section three. Afterward, in section four, the authors address some of the hybridization versions related to the DA algorithm 

with other algorithms. In section five, the applications that were solved by the DA in the field of engineering are presented. 

Additionally, in section six, the DA is compared with other metaheuristics. The algorithm is then evaluated using the traditional 

benchmark functions and the CEC-2019 (The 100-Digit Challenge) benchmark functions in section seven. The evaluations are 

then compared with the FA and PSO. The Wilcoxon rank-sum is utilized for testing the meaning of the outcomes statistically. 

Furthermore, in section eight, a discussion and some problems that encounter the DA’s operators are dealt with in conjunction 

with giving explanations and prospect works for enhancing the capability of DA. Lastly, the key points of this research work are 

established in section nine. 

 

II. DRAGONFLY ALGORITHM 

In the last few decades, the natural behavior of creatures has widely motivated metaheuristic optimization algorithms. Swarm 

intelligence is the main inspiration for the metaheuristics [6, 15]. DA is a metaheuristic optimization method. It imitates the 

swarming attitudes of dragonflies [10]. 

 

Dragonflies are little predators. They hunt insects in nature. The main reason for the dragonflies swarming is hunting and migration; 

in other words, these are two phases; static and dynamic swarms, respectively. In the first phase, which is the static swarming, a 

set of dragonfly generate sub-swarms and search through different small areas. On the other hand, the second phase, which is 

dynamic swarming, a set of dragonflies can fly in a much bigger swarm. They fly in one direction towards the most promising 

global optimum location [10]. 

 

In dynamic swarming, dragonflies maintain a reasonable separation and cohesion (intensification or exploitation). In static 

swarming, conversely, alignment can be too minor besides; cohesion is big for attacking prey (diversification or exploration). 

Therefore, little cohesion and great alignment weights will be assigned to individuals once exploring the search space. However, 

they will be assigned to high cohesion and low alignment weights while exploiting the search space. The neighborhood radii 

proportionally enflamed to the iteration number for changeover between intensification and diversification. Another way for 

balancing intensification and diversification is tuning the swarming weights adaptively during the process of optimization. The 

swarming weights are; attraction motion towards food (f), separation (s), inertia weight (w), cohesion (c), alignment (a), and 

distraction outwards predators (e). The Following are the equations for the swarming weights: 

 

Reynolds in [16] mentioned that Equation (1) can be used for computing separation: 

 

 𝑆𝑖 = − ∑ X 

𝑁

𝑗=1

− X𝑗  

(1) 

 
X signifies the current individual’s position.  

Xj specifies the jth dragonfly’s position in the neighborhood.  

N designates the dragonflies’ number in the neighboring. 

S signifies the i
th

 dragonfly’s separation motion. 

 

The alignment can be calculated by Equation (2) [10]. 

 

 
𝐴𝑖 =

∑ 𝑉𝑗
𝑁
𝑗=1

𝑁
 

(2) 

 

Ai specifies the motion of alignment for i
th

 dragonfly. 

V specifies a j
th

 dragonfly’s velocity in the neighborhood. 

 

Equation (3) is for calculating cohesion: 

 

 
𝐶𝑖 =

∑ 𝑋𝑗
𝑁
𝑗=1

𝑁
− 𝑋  

(3) 

 

Ci specifies the i
th

 dragonfly’s cohesion. 
N specifies the neighborhood size. 

Xj specifies the j
th

 dragonfly’s position in the neighborhood. 
X specifies the present individual. 
 
Equation (4) is for calculating attraction motion towards food: 

 𝐹𝑖 =  𝑋+ −  𝑋 (4) 

 



 

 

Fi specifies the attraction of food of the i
th

 individual. 

X
+

 specifies the food source’s position. 

X specifies the current individual’s position.  
 
Equation (5) is for calculating distraction outwards predator: 

 𝐸𝑖 =  𝑋− +  𝑋 (5) 

 

𝐸𝑖  specifies the distraction motion of the enemy for the i
th

 dragonfly. 

𝑋− specifies the position of the enemy. 

X specifies the dragonfly’s current position. 
 

Individuals’ positions of the artificial dragonfly are updated in the exploration space utilizing vectors, namely; X, which is called 

step vector and X, which is called position vector. X in the dragonfly algorithm is equivalent to the velocity in particle swarm 

optimization. Updating the position of individuals in DA mainly depends on the PSO algorithm. Whereas X specifies the movement 

direction in dragonfly individuals. X can be computed as follows [10]: 

 

 𝛥𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 +  𝑐𝐶𝑖 +  𝑓𝐹𝑖 + 𝑒𝐸𝑖) +  𝑤𝛥𝑋𝑡  (6) 

 

s specifies the weight of separation.  

Si specifies the ith individual separation. 

specifies the weight of alignment. 

Ai specifies ith dragonfly’s alignment. 

c specifies the weight of cohesion. 

Ci specifies ith dragonfly’s cohesion. 

f specifies the weight of food attraction. 

Fi specifies the ith individual food source. 

e specifies the weight of enemies' distraction. 

Ei specifies the ith dragonfly’s enemy position. 

w specifies the weight of inertia. 

t indicates the counter of iteration. 

 

Once calculating the X, the calculation for the X starts in this manner: 

 

 𝑋𝑡+1 =  𝑋𝑡 + 𝛥𝑋𝑡+1 (7) 

 

t specifies the existing iteration. 
 

We should add a random move to the searching technique to upsurge the exploration likelihood of the entire choice space through 

an optimization technique. When neighboring solutions do not exist to flyover throughout the exploration space, the dragonflies 

would use a method of random walk or so-called Lévy flight. Here, the dragonfly’s position  is modified as follows: 

 

 𝑋𝑡+1 =  𝑋𝑡 +   𝐿é𝑣𝑦(𝑑)  ×  𝑋𝑡  (8) 

   

As mentioned t indicates the present iteration and (𝑑) specifies the position vector’s dimension. 

Reference [17] stated that although using the Lévy flight improves the performance of DA, however, it might cause very long 

steps. In the mentioned reference, to avoid this drawback, Brownian motion was used in place of Lévy flight. The motion of 

Brownian is another mechanism of random motion. The free liquid or gas molecules movement has inspired this. The modified 

DA complexity was O; the size of the population multiplied by the iteration number. The calculated complexity proved that using 

Brownian motion did not have an impact on the complexity time of the original DA. By using the Brownian motion, the massive 

jumps caused by the Lévy flight were corrected. However, occasionally sudden moves may still be required to avoid trapping into 

local optima. For objectives with local minima, the Brownian motion produced better solutions in a shorter time. 

For the changeover between exploitation and exploration, dragonfly individuals change their weights adaptively. To adjust the 

flying path during the process of optimization, the neighborhood area should be enlarged, hence before the optimization process 

ends; the whole swarm becomes one group for converging to the global optimum.  

 
III. VARIANTS OF DRAGONFLY ALGORITHM 

 

Dragonfly algorithm has three different versions: 

 

A. SINGLE OBJECTIVE PROBLEMS WITH DA 



 

 

Like most Si-based optimization algorithms, DA initially creates a solution set randomly for the optimization problem in hand. At 

first, the position and step vectors of individuals assigned to arbitrary values between both upper and lower variables’ bounds. 

Positions and step vectors are updated for all dragonflies per iteration. For updating the vectors; position and step, the dragonfly’s 

region is selected through the Euclidean distance calculation between all the individuals. Iteratively, the individual’s position 

updating continues until the end criterion is met.  

 

B. BINARY DRAGONFLY ALGORITHM 

Since in binary search space only 0 or 1 can be assigned to the position vector, adding step vectors to position vector cannot update 

the position of search agents. The transfer function produces a binary technique from a continuous SI technique. The velocity 

(step) values work as an input to the transfer function, and then the transfer function yields a number between (0 and 1) as result, 

which states the likelihood of moving the individuals and updating their position. Alike to continuous optimization, transfer 

function reproduces unexpected variations in particles by significant velocity. Equation (9) is for computing the probability of 

changing the positions of all dragonflies [18]. 

 
𝑇(∆𝑋) =  |

∆𝑋

√∆𝑋2 + 1
| 

(9) 

 

In binary search spaces and after utilizing Equation (9), Equation (10) updates the location of the search agent. 
 

 

 

 
𝑋𝑡+1 = { 

¬𝑋𝑡          𝑟 < 𝑇(∆𝑋𝑡+1)
  𝑋𝑡          𝑟 ≥ 𝑇(∆𝑋𝑡+1)

 
(10) 

 

 r ranges between 0 and 1. 

 

BDA assumes that all of the individuals are in one swarm. Hence, it adaptively tunes the swarming factors such s, f, c, a, e and w 

to simulate intensification and diversification. 

 

Reference [19] used BDA for feature selection. This work proved the importance of the role of the transfer function for producing 

the discrete space from the continuous one and an enhanced balance concerning the phases of exploitation and exploration. The 

proposed work stated that Equation (9) does not provide the right balance concerning the phases of exploitation and exploration, 

wherein the start of the optimization, the exploration rate should be higher than exploitation. Hence, on the way to rise the BDA’s 

performance and circumvent falling into local optima, time-dependent transfer function (TF) was used. 
 
The value of time-dependent TF linearly gets bigger as the step vector of the search agents gets more significant. Consequently, 

in the early steps of the algorithm, higher exploration is provided. However, as time passes the probability of exploitation increases, 

and the probability of exploration decreases.  
 
As proved in this work, the examined TF enhanced the performance of the BDA. The main reason for this was providing the 

correct balance concerning the phases of exploitation and exploration of the BDA.  

 

The computational complexity of the BDA using the time-dependent TF is the same as the original BDA, and it is O(ISD).  

 

Where I specifies the iteration number, S specifies the solution number, and D specifies the dimension number. 
 

C. MULTI-OBJECTIVE PROBLEMS WITH DA 

These problems contain more than one objective. The answer to this type of difficulties can be often known as a set of Pareto 

Optimal. The finest compromise among the existing objectives present in this set [20]. The Pareto optimal dominance compares 

two solutions in multi-objective search space [21]. DA is first provided with an archive or record for saving and getting superior 

solutions of Pareto optimal throughout the process. The food source would come from the archive update the position, and the rest 

of the procedure is similar to that of the DA.  

 

Likewise, the multi-objective particle swarm optimization or MOPSO algorithm [22], for finding the best Pareto optimal front, the 

food source can be chosen from the minimum populous zone of the present Pareto optimal front. For including the entire solutions 

usually, a hypersphere can be defined. In each iteration, equal sub-hyper-spheres are produced by dividing the hyper-spheres. 

Whenever the segments are produced, for each segment a roulette-wheel technique with a specific probability is utilized for the 

process of selection [23]. 

 

Multi-objective problems with DA or MODA has a better likelihood of selecting the food source from a smaller amount of 

populous segments. Contrarily, to choose hunters from the record or archive, the equation chooses the worst or most populous 

hyper-sphere, so that the dragonfly individuals are discouraged to hunt about unpromising zones. 

In each iteration, the archive updates regularly, and it may become full during the process of optimization. Hence, to prevent that 

situation there should be a technique. If as a minimum one of the habitations govern the solution, then it should not go into the 



 

 

records. On the other hand, if the solution controls some of the solutions of Pareto optimal, then the solution will be added to the 

record, and all the Pareto optimal solutions will be deleted. If the archive or record becomes full, some solutions from the most 

populated segments will be deleted [23]. MODA has two extra parameters, which do not exist in the DA: one of the parameters is 

for describing the max number of hyper-spheres, and the second one is for defining the size of the archive.  

 

In reference [24], the authors modified the multi-objective DA. In this work, the crowded distance selection mechanism from 

NSGA-III was used instead of the roulette wheel mechanism for the multi-objective DA. NSGA-III developed in [25].  
 

IV. HYBRIDIZED VERSIONS OF DRAGONFLY ALGORITHM 

One of the most popular techniques to enhance the ability of metaheuristic algorithms is merging the strong properties of different 

algorithms. As a result, a novel algorithm will be produced based on the features of the amalgamated algorithms [26]. Some of the 

hybridized DA versions in other areas are discussed in [14]. The rest of the hybridized versions of the DA can be discussed in this 

section. 

 

A huge number of social interactions in DA causes trapping into local optima, solving problems with less accuracy, and with an 

improper balance of exploitation and exploration. In reference [27], to overcome these deficiencies, DA combined by a better type 

of the Nelder-Mead algorithm or so-called  INMDA for making the ability of local exploration more powerful, and avoid falling 

into local optima, the INMDA can be divided into two steps, the first step, DA utilized to explore the solution space. It provided 

the necessary variety to the artificial dragonflies to find the global optimum. The second step is the enhanced type of the Nelder-

Mead (INM) simplex technique used for finding the worst point and the best point and calculating the population centroid. The 

key feature of the INM was that the centroid of the population utilized for updating the position. Hence, the chance of trapping 

into local optima reduced. 

 

For high-dimensional problems, the produced results proved that the examined work performed better comparing to DA and 

MHDA and that they are not a good choice for solving problems of high dimensional as they rapidly run into a dimensional curse. 

The high performance of the proposed work came from the improved ability of both exploitation and exploration of reverse 

learning techniques. 

 

In reference [28], the DA’s strength combined with ABC. The aim of hybridizing these two metaheuristics was to eliminate the 

convergence speed problem and falling into local optima by providing a better steadiness concerning local and global search 

constituents of the contributed techniques.  

 

Reference [29] proposed an adaptive DA to optimize frame structures. In this article, Coulomb force search strategy or CFSS  

combined with DA. The exploratory constant parameter (k) is one of the essential parameters in the Coulomb force search strategy. 

This work examined the utilization of adapted value in the course of the searching procedure of the dragonfly algorithm. The 

dragonflies encouraged for searching in the search space with giant steps at the beginning of the process and small steps at the end 

of the process. The above-mentioned adaptive strategy improved the convergence of the algorithm. Hence, it produced an optimal 

result in a short time evaluated against the standard algorithm, then the compared results to the DA and BDA from the proposed 

technique proved this. The proposed algorithm used to optimize the front axle of an automobile. In the examined problem, the 

front axle beam selected. The outcomes substantiated that the convergence speed of the CFSS-DA compared with the BDA and 

DA.  

 

V. APPLICATIONS OF DA IN ENGINEERING 

The ability of DA encourages numerous academics to apply it to optimize different applications in various areas. In the following 

subsections, we discuss applications of the dragonfly algorithm in Engineering and Physics. 

 

A. MECHANICAL ENGINEERING 

Network configuration is the practice of altering the position of open or close switches to make changes in the distribution 

network’s topological structure. In [30], a new reconfiguration schema developed to reduce the net deviation among the nominal 

voltage value, and the node voltages using a dragonfly optimization algorithm. Dragonfly optimization algorithm based 

reconfiguration method or DORM enhanced the voltage profile or VP by the net voltage deviation minimization or NVD. The 

proposed technique examined without making any thermal violations. It also kept the radial structure. In this study, the results 

obtained using DORM compared to some other nature-inspired algorithms for solving configuration problems, such as PSO [31], 

GA [32], and BBO [33]. According to the study, the obtained results proved that the DORM provided better configuration that 

minimized NVD and provided good VP. To share the loads with the conventional power plant, distribute generation units utilized. 

The mentioned units also used to give the power to the loads individually. Wind turbine (WT), Photovoltaic (PV), gas turbine 

(GT), and micro-turbine (MT) and storage battery (SB) are the most typical distributed generation units in this type of application. 

 

In reference [34], a novel optimal scheme of a different hybrid power generation system generated, which is called (HPGS). The 

introduced design consisted of a combination of PV, WT, GT, and SB. Natural gas distribution networks utilized to fuel the GT 

of the system. To find the optimal design of the proposed work, two metaheuristic techniques; DA [10] and GWO [9] examined. 

The system considered different weather conditions. Both metaheuristic algorithms in this work used for minimizing the annual 



 

 

cost and entire emission functions for the system. It concluded that the DA produced better results in respect of the total yearly 

cost comparing to GWO. In contrast, regarding the system pollution, GWO technique produced better results than the DA 

technique. 

 

Perforated plates are part of many industrial applications in recent years. Perforated plate cutouts mostly used to decrease the 

structure weight or to build a point of exit and entry. Cutouts in the plates can change the geometry of the plate, which leads to 

severe local stresses or called stress concentration throughout the cutouts. This can cause a reduction in strength and premature 

failure in structures. Therefore, knowing useful parameters to reduce stress concentration in various structures is crucial. In 

reference [35], DA used to optimize the involved parameters in analyzing the stress of the perforated orthotropic plates. The aim 

was to achieve the minimum stress value nearby the quasi-triangular cutout positioned in a boundless orthotropic license plate. 

Dissemination of stress computed employing the suggested technique established on the analytical solution of Lekhnitskii. The 

variables that designed using the proposed technique included load angle, and the material properties, bluntness, fiber angle, and 

cut-out orientation angle, the outcomes evaluated against PSO and GA. The factors of the stated algorithms shown in Table 1. The 

outcomes evidenced that the regular of best values of stress produced via the DA was smaller compared to other algorithms. It 

concluded that the values of both average and standard deviation for the DA were smaller than the GA and PSO [36]. The 

comparison of these techniques proved that DA showed excellent performance to solve the problem mentioned above, and it 

operated more steadily. It was also determined that the high exploration and exploitation rates in the DA were reasons that made 

the algorithm to perform better. Moreover, DA converged much earlier (18th iteration), whereas PSO and GA converged in the 

iterations 95th and 146th, respectively. Additionally, depending on the results, it was observed that the most significant levels of 

stress in all cutout bluntness or w happened on 45-load angle. 

 

The robust non-linear link concerning the array factor and the array’s elements and marks the concentric circular antenna array 

problem or so-called CCAA synthesis challenging. A high maximum sidelobe level or (MSL) is a problem of CCAAs. Reference 

[37] used DA to design CCAA in a way that was able to get low side lobes. A sub-structured neural network (SSANN) was used 

instead of a single artificial neural network or ANN, which improved the forecast accuracy of the effectiveness of requalification 

sub-ANNs and the engine working process. The proposed work aimed at observing and exploring the effectiveness of the DA 

technique. Moreover, in this work, four different CCAA design cases used to study DA efficiency. Then, the results evaluated 

against the current approaches like BBO [38], SOS [39], SQP [38], CSO [40], OGSA [41], EP [42], and FA [43]. The proposed 

work utilized two three-ring designs; CCAA with 4-, 6-, 8- plus 8-, 10-, 12-, besides two cases well-thought-out for each model: 

CCAA without, and with the center component. For each scheme test, the space between neighboring elements in every ring was 

fixed to 0.55, 0.606, and 0.75 from the center to the outermost ring. The outcomes of the DA evaluated against the techniques in 

the literature of the work using the uniform array. The outcomes showed that the DA had better performance for the mentioned 

problem, and it was competitive with other methods for decreasing MSL. 
 

Table 1: Parameter Settings of The Algorithms [35] 

DA GA PSO 

Population size = 30 

Max. No. Of iterations = 200 

Random values = r1 = r2 = [0, 1] 

Separation weight (s) = 0.1 

Alignment weight (a) = 0.1 

Cohesion weight (c) = 0.7 

Food factor (f) = 1 

Enemy factor (e) = 1 

Inertia factor (+ = 0.9-0.2 

Constant () = 1.5 

Population size = 30 

Max. No. Of Iterations = 200 

Probability of crossover (Pc) = 0.8 

Probability of Mutation (Pm) = 0.03 

ncrossover = 2*round(npop *Pc/2) 

nmut = npop*Pm 

Population size = 30 

Max. No. Of Iterations = 200 

Cognitive component = c1 = 2 

Social component = c2 = 2 

 = 
0.1

|1
𝑐

2
  

√|𝑐2−4𝑐|

2
|

, c = c1 + c2 

 

In reference [44], automatic generation control of an interconnected two-area multi-source hydrothermal power system considered. 

The performance of the scrutinized system was evaluated and planned with proportional-integral (PI), proportional integral 

derivative (PID), and 2 degrees of freedom PID or so-called 2DOF PID. The DA was used to optimize the controller gains. It 

concluded that the DA provided superior results compared to classical methods. Furthermore, the 2DOF PID controller optimized 

by DA produced less overshoot (OS), settling time (ST), undershoot (US). Moreover, smaller values of the objective function 

provided compared to the 2DOF PID controller optimized by DE. 

 

Optimization can significantly affect the process of grinding by improving the quality of products and reduce operational costs 

and time of production. Optimizing the grinding process is a challenging process in the engineering field because of the complexity 

and nonlinearity of the process. In reference [45], multi-objective DA used for obtaining solutions of non-dominated Pareto 

optimal. In this work, an experimental example in [46] was used. Then, the outcomes were evaluated against the outcomes of an 

experimental model using NSGA-II in [46]. The solutions of Pareto optimal produced via MODA conquered the attained solutions 

via the NSGA-II. The outcomes showed that MODA accomplished better compared to the NSGA-II in resolving the multi-

objective mathematical model of the grinding process, the reason for this superiority was due to the MODA’s efficient operators 

evaluated against the simple operators of NSGA-II (crossover and mutation).  The solutions produced by MODA improved surface 

roughness significantly and reduced the costs and the total grinding time. The results proved that all the objectives were optimized 



 

 

by MODA simultaneously using the algorithm’s efficient operators. MODA used 30 individuals and 1000 iterations to examine 

the mathematical model of tri-objective of the grinding process. On the other hand, NSGA-II utilized 100 chromosomes and 1000 

iterations that caused a 100,000 number of function evaluations. The results proved that the MODA’s computational cost was 

much lower than the NSGA-II’s.  

 

Reference [47] used MODA for optimizing the performance of switched reluctance motor or so-called SRM powered by 

autonomous stacked proton exchange membrane fuel cells (PEMFC). MODA used to produce the best sets of driving circuit’s 

turn-on/off angles. As mentioned, the best sets produced via DA could improve the savings in energy and increase the performing 

of isolated PEMFC-SRM. Dragonfly’s ability in developing the initial stochastic population and the good exploitation and 

exploration of DA were the reasons aimed at the superiority of the algorithm for solving this problem. Furthermore, DA provides 

a high uniformly disseminated Pareto optimal set of solutions in problems of multi-objective [48].  

 

B. ELECTRICAL ENGINEERING 

A new technique for designing, modeling, and optimizing a uniform serpentine meander based on MEMS switch incorporating 

beam puncture effect discovered in [49]. A new analytical model was suggested, which aimed at pull-in voltage in this research 

work. An optimization technique was introduced for finding the best configuration of the switch to accomplish the least possible 

pull-in voltage. Here, the analytical model was used as an objective function. For this purpose, the author utilized several great 

evolutionary optimization methods for achieving the best measurements with less cost computationally and more simplicity. The 

conducted techniques included PSO, DE, a hybrid PSO with differential evolution (DEPSO), DA, WOA, and human behavior 

based PSO (HBPSO). A comparison among the applied algorithms showed that the DA had the best minimum pull-in voltage with 

the smallest errors. The parameter settings for DA in the proposed work were: dimension = 8, search agents = 50, alignment 

weight, separation weight, and cohesion weight were random between -0.2 and 0.2, food attraction weight was a random, and 

enemy distraction weight was a value between -0.1 and 1. The results showed that the DA performance was the best to minimize 

pull-in voltage with minimum errors. 

 

In the power transmission system, the stability of voltage is a significant concern due to inconsistency between demand and power 

generation. Reference [50] utilized the eigenvalue decomposition (EVD) method and DA in partitioned Y-admittance matrix to 

identify weak buses for implementing the compensators of reactive power. In this work, DA used to enhance the static VAR 

compensator’ size and cost. Regarding the objective function, line flows, voltage deviation, and reactive power limit was examined 

as the design constraints. The results proved that the proposed technique maximized the cost of static VAR compensator and the 

cost of installation with the loading condition. Besides, the voltage deviation and the actual power loss in the DA were much lesser 

compared to the PSO. Moreover, the DA could show its superiority in reducing real power loss for the IEEE 30 bus system 

compared to the other algorithms, additionally, DA converged earlier. 

 

Atomic generation control (AGC) problem was examined in reference [51] by using DA. In this work, the DA optimized the 

control parameters, for example, scaling factors of fuzzy logic and PID gains. The criterion of integral of time multiplied absolute 

error (ITAE) was used to minimize the settling time with a minimized peak overshoot. The ITAE employed for optimizing the 

scaling factor and PID gains controller. The addressed control strategy examined through two equal non-reheat thermal interrelated 

power system areas. The work stretched to two hydrothermal power system areas joined via a high voltage direct current or so-

called HVDC transmission link and an AC tie line. To deal with non-linearity, the generation rate constraint (GRC) effect counted. 

The results proved that in terms of lowest damping oscillations, settling time, peak undershoots, and overshoot in the interrelated 

three-area power system through GRC non-linearity, the proposed metaheuristic algorithm based fuzzy PID controller provided 

superior results evaluated against further control methods. The results proved that the DA as an optimization technique produced 

a better optimum solution of AGC for non-linear and linear interconnected power systems’ frequency regulation. Furthermore, the 

combined fuzzy PID controller proposed in this work proved its superiority over the fuzzy logic and optimized PID controller.  

 

C. OPTIMAL PARAMETERS 

Reference [52] optimized the factors in the examining stress of perforated orthotropic plates. In this work, the DA utilized to 

compute the stress distribution based on the analytical solution of Lekhnitskii. Fiber angle, load angle, orientation cutout, bluntness, 

and material properties. The results obtained from the dragonfly algorithm in this work evaluated against the results of GA [53] 

and PSO [6]. The results proved that in comparison to the PSO and GA, the DA converged earlier. Besides, avoiding local optimum 

and producing better results proved the DA’s supremacy compared with the other two algorithms. The DA also produced smaller 

average values of optimum stress compared to the other algorithms. Furthermore, by using the DA, a standard deviation closer to 

zero was produced, which was smaller to the ones produced using the PSO and GA.  

 

Providing reliable and continuous supply to customers is a critical ambition of utility and meets the expectations of power balance 

and the loss of transmission when the generators operate within a specified limit. For achieving this purpose, the value of emission 

and the fuel cost ought to be as insignificant as conceivable. The allowed deviation in feasible tolerance and fuel cost is named as 

emission constrained economic dispatch or so-called ECED problem. Reference [54] used DA for finding an explanation for the 

problem of ECED. ECED problem of a multi-objective. In this work, the value of emission and the fuel cost alongside quadratic 

function was treated as a problem of multi-objective. To convert the problem to a single-objective, the price penalty factor 



 

 

technique used. The consequences of penalty factors, such as Min-Min, Min-Max, Max-Max, Max-Min emission value of different 

gas exhalations, and price penalty factors mentioned in this work. As the results in this work showed that using “Min-Max” as the 

price penalty factor produced less fuel cost compared to the other penalty factors. In “Common”, however, increasing ECED fuel 

cost by 17% could reduce emission by almost 23% in comparison with the price penalty factor of “Min-Max”. The author 

mentioned that nowadays having a small amount of ECED fuel cost to operate thermal power plants with “Min-Max” price penalty 

creates contamination in the environment and causes premature death in humans leaving near the thermal power plant. 

 

Reference [55] introduced a new technique to participate in online engine calibration and to control increasing the performance of 

the engine, and decrease gas emission of the greenhouse. For this purpose, the mentioned reference used a robust model centered 

on a multi-objective genetic algorithm or NSGA-II, multi-objective dragonfly algorithm, fuzzy dependent on inference system, 

and sub-structural neural network or SSANN. Throttle angle, injection angle, engine rpm, and injection time were used as the 

inputs for SSANN. The fuel flow (FF), CO, torque, and NOx were used as outputs. Initially, the data from GT-POWER used to 

train SSANN. Based on various engine speeds, 15 working points were selected randomly to examine the accuracy of SSANN. 

Linear regression was utilized for assessing the linear relationship between the measured and predicted outputs. For this problem, 

MODA converged earlier (at the 40th generation), and it had better inverse generation distance (IGD). However, NSGA-II 

converged after the 80th generation. Besides, it was discovered that increasing the number of iterations MODA showed better 

convergence. It was because of the use of the food/enemy selection technique in the MODA.  

 

In reference [56], the vibrant strength of the hybrid energy distributed power system (HEDPS) considered. The HEDPS was subject 

to wind power and load variations. A controller with three degrees of freedom (3-DOF) proportional-integral-derivative (PID) 

implemented and designed in the HEDPS to balance frequency fluctuations and power after the perturbation. Unlike the single-

degree-of-freedom (1-DOF) controller, the 3-DOF controllers own the ability of an outstanding set-point tracking, and it produces 

superior regulations for the input disturbance. DA used for optimizing the factors of 3-DOF PID controllers. Also, to optimize the 

3-DOF controller gains, integral time absolute error (ITAE) used as an objective function. The achieved outcomes evaluated 

against the outcomes of other popular metaheuristic algorithms, such as Zeigler-Nichols or so-called ZN. The isolated, 

interconnected modes of hybrid energy and distributed power system implemented for assessing the proposed controller's 

performance. For qualitative assessment, the convergence of DA evaluated against other algorithms. The outcomes demonstrated 

that the dragonfly algorithm established the value of global optimum by a quicker rate and that lesser minimum value for the 

fitness function generated compared to the other participated algorithms. For this work, all the algorithms generated the optimal 

global point between 60 to 70 generations, which gave the choice of having 100 iterations. Furthermore, the results concluded that 

the DA outpaced the other stated algorithms with regards to faster convergence and the value of minimum fitness.  

 

D. ECONOMIC LOAD DISPATCH 

Wind integrated system with valve-point effect considered in [57]. DA used to overcome the problem of economic load dispatch 

(ELD) along with valve-point effect. The Weibull distribution function used to model the stochastic nature of wind. Furthermore, 

a closed integral function was used to analyze the overestimation/underestimation cost. In the proposed work, the optimization 

technique started by generating a set of random solutions for the assumed problem. The dragonfly’s vectors (position and step) 

randomly initialized within upper and lower bounds of generators. The outcomes exhibited that the DA successfully resolved the 

power system of the economic dispatch of the wind thermal integrated system. Two cases and the IEEE-30 bus system implemented 

for calculating the performance. The problem of non-convex economic dispatch solved in the first case. The obtained results from 

this case compared to a sequential quadratic programming particle swarm optimization (SQP-PSO) technique. ELD with wind 

power penetration was solved using DA in the second case. Moreover, the performance of the work in case 2 compared to SQP-

PSO [58]. In both cases, 1200MW considered a load demand. The results showed that the DA found a global optimum solution 

and it was remarkably unrestricted from tricking into local optima. 

 

In reference [59], the dragonfly algorithm applied to improve a novel technique to resolve economic dispatch incorporating solar 

energy. In carrying out the economic dispatch, the mentioned reference considered prohibited operating zone and valve-point 

loading constraints. Beta distribution function applied for modeling the solar energy system and the objective function. The output 

predicted to include four diverse periods. Various loading circumstances considered for each. The proposed work addressed that 

compared to other optimization methods dragonfly algorithm gave a low cost, minimum power loss, and converges in the minimum 

running time. It is concluded that more power could be generated if the availability of the sun was abundant in the chosen location. 

Moreover, in the case of using the produced system power correctly, the economy will maximize, and the system loss will 

minimize.  

  

The proposed work considered three different cases. In case 1, the system used for testing consisted of six generators and 1263 

MW.  The results from the first case study compared to the most recent optimization methods. The results proved that the DA was 

the best regarding the convergence time, the smallest objective function, power loss, and evaluations. Similarly, in terms of 

generations, cost, and transmission loss, DA was the best. Concerning case 2, the number of used generators was 15, and 2630 

MW considered. Here, the total cost generation for the DA was minimum. In case 3, the 86 bus test system utilized in south Indian. 

It consisted of 7 generators, 131 lines, and 86 buses. This case considered ramp rate constraint, transmission loss, down reserve 



 

 

constraints, and up the reserve. Here, the obtained results proved that the optimal cost of DA was much smaller than the completive 

algorithms. 

 

E. LOSS REDUCTION 

The research work [60] based on the BDA. A new technique for wrapper-selection was proposed in the research work. The 

suggested technique aimed at diminishing the number of characteristics concerning the standard feature set and obtain better 

accuracy in classification at the same time. The K-Nearest Neighbourhood or KNN classifier applied to test the selected subset of 

the feature. The subset of feature selection is a problem of multi-objective. Problems of multi-objective study two diverse goals. 

The proposed work aimed at maximizing the accuracy of classification, and diminishing the features. Equation (11) shows the 

objective function. The proposed approach evaluated using 18 UCI datasets. A comparison made between the proposed technique 

and the similar techniques that used GA, and PSO. The comparison is concerned with the accuracy of classification and number 

of the carefully chosen attributes. The outcomes proved that BDA had a superior ability in examining the space of features and 

choosing the features with more information for the task of classification. 

 

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑎𝑦𝑅(𝐷) + 

|𝑅|

|𝐶|
 

 (11) 

 

𝑦𝑅(𝐷) shows the rate of error of the classification used. 

|R| represents the selected subset’s cardinality. 

|C| signifies the whole number of characteristics included with the dataset. 

 𝑎 And  signify factors representing the classification importance and length of the subset, respectively. 

 𝑎 ∈ [0, 1] and  = (1- 𝑎), the author adopted these from [61]. 

 

Reference [62] solved a nearly-zero-energy-building design problem. A comparison made in terms of performance among seven 

multi-objective algorithms. In the utmost of the cases, the attained solutions enhanced by increasing the generation number. Each 

algorithm ran 20 times with moderately raising the evaluation number. The optimization results in most running cases proved that 

the results of MODA were uncompetitive. In terms of contribution and running time, MODA was not competitive, and it was slow. 

According to this work, MODA did not have any outstanding features.  

 

Power loss, electric distribution system’s maximum loadability, and voltage stability margin (VSM) are greatly affected by 

inadequate reactive power generation. To solve these problems, in reference [63], optimal concurrent as well as multiple separate 

installations of distributed generation (DG), and capacitor were examined. For this work, minimizing the total of reactive power 

loss (QL) counted as the primary objective, and DA used to optimize the problem. Standard 33-bus distribution systems utilized to 

test the methodology proposed in this work. The proposed work handled different capacitors and DG installation cases. The results 

of the proposed work compared to weight improved particle swarm optimization or WIPSO technique. The results proved that the 

primary behavior of DA for updating the individual’s position provided an enhanced QL reduction compared to the other methods. 

The results also showed a better convergence rate by producing fitter solutions in 15 to 20 iterations. 

 

VI. A COMPARISON BETWEEN DRAGONFLY ALGORITHM AND OTHER ALGORITHMS 

Reference [64] addressed an assignment of court cases that has an impact on enhancing the effectiveness of the jurisdictional 

structure. The effectiveness of the jurisdictional structure extremely relies on punctuality and operating the court cases efficiently. 

In the proposed work, mixed-integer linear programming or MILP utilized to solve the problem of assigning cases in the justice 

court. The objective function of this issue was assigning N cases to M groups. Each group might cope with the cases altogether. 

However, because of the requirement of the cases, personal potentiality, and other assigned cases, the necessary time for each 

group to solve the same case was not the same. To find the best solution for the proposed work, DA and the firefly algorithm (FA) 

utilized [41]. Two problems were assessed in a uniform distribution. In the form P1: Lower bound (Ll) = (1, 30), Upper bound (Ui) 

= (1, 90), efficacy rate (i) = (1, 90), and P2: Lower bound (Ll) = (1, 60), Upper bound (Ui) = (1, 90), efficacy rate (i) = (1, 90). 

The outcomes exhibited that for finding the best solution the DA required less time and an average percentage deviation to 

maximize efficacy compared to the firefly algorithm. The outcomes proved that in 50 cases and three-justice groups aiming at trial 

parameters: P1 (50:3, 4, 5) and P2 (50: 3, 4, 5), the DA was greater compared to FA.  

 

In [65], GWO, DA, and MFO algorithms assessed for optimizing the best sitting of the capacitor in several radial distribution 

systems or RDSs. The loss sensitivity factor examined for discovering the candidate buses. The authors considered 33-, 69-, and 

118-bus RDSs to prove the efficiency and effectiveness of the addressed optimization technique. This study aimed at minimizing 

the total cost with voltage profile improvement and power loss. The outcomes evaluated against the outcomes of the PSO for 

showing the advantage of the utilized methods. The GWO-, DA-, and MFO-based techniques produced better outcomes about the 

PSO-based technique concerning several iterations and the convergence speed for the addressed issue. Furthermore, for the 69-

bus distribution system case, DA-, GWO-, and MFA-based optimization exhibited an enhanced convergence level. Additionally, 

GWO, DA, and MFO were assessed using statistical tests. The results showed that GWO, DA, and MFO had an acceptable root-

mean-square error (RMSE).  

 



 

 

Reference [66] introduced a novel binary multi verse optimization algorithm. In the article, the authors compared the new algorithm 

to some other binary optimization algorithms, including binary DA. Binary DA ranked as the second-best algorithm, among others, 

this was because of the excellent stability between DA’s exploitation and exploration phases. Furthermore, the sudden changes in 

the variables cause a quick convergence. 

Reference [67] compared DA with the Harris hawks optimization algorithm or so-called HHS. The algorithms utilized to enhance 

the multi-layer perceptron’s performance, which was used to analyze the stability of two-layered soil. The work compared the 

accuracy and computational time of the algorithms. Mean absolute error (MAE), the area under the receiving operating 

characteristic curve (AUC), and Mean square error (MSE) utilized for evaluating the predictive models’ performance. In general, 

both algorithms helped to improve the applicability accuracy of the MLP. However, the DA reached the lowest error within 500 

iterations, whereas the HHS needed 1000 iterations for the same task. Hence, the DA provided a better convergence comparing to 

the HHS for the problem mentioned above. 

 

VII. RESULTS AND EVALUATIONS 

The results of the applications in the literature showed that the dragonfly algorithm is suitable to optimize various applications in 

the engineering field. The provided outcomes proved the superiority of the algorithm. Here, to demonstrate the ability of the DA, 

it is evaluated against the traditional benchmark functions. Moreover, to further evaluate the algorithm, it was examined on the 

IEEE Congress of Evolutionary Computation Benchmark Test Functions or CEC-2019, also known as “the 100-digit challenge” 

[68]. The test functions of Wilcoxon rank-sum are utilized for showing the importance of the outcomes statistically.  

 

To examine the ability of the algorithm and its performance, three groups of traditional benchmark functions utilized with various 

characteristics in the original work. The groups of the traditional test functions consist of three groups, which are unimodal (F1-

F7), multi-modal (F8-F13), and composite test functions (F14-F23). The test functions’ results are in Tables 2 and 3 are from [14]. 

However, we assessed the FA on all the test functions (F1-F23). 

It can be seen in Table 2, the results of DA on unimodal test functions outperformed the PSO. The results of the unimodal test 

functions are evident that the DA has outstanding exploitation and speed of convergence compared to the PSO. Alternatively, for 

the unimodal benchmark functions, FA provided superior results compared to the PSO and DA. Nevertheless, the results from the 

references mentioned above are another evidence for the speed of convergence of the DA. Reference [41] utilized the DA and FA 

for optimizing the same problem. The results showed the high convergence of the DA. Furthermore, the p-value in Table 3 for this 

group of benchmark functions is smaller than 0.05, this proved the statistical importance of the outcomes. Moreover, in the 

references above, DA proved its high convergence speed.  

 

 

 

 

 

 

 

 

 
Table 2: Classical Benchmark Results of DA, PSO, and FA 

F Measurements. DA PSO FA 

F1 Mean 2.85E-18 4.2E-18 1.72e-10 

Std. 7.16E-18 1.31E-18 9.43e-10 

F2 Mean 1.49E-05 0.003154 6.01e-07 

Std. 3.76E-05 0.009811 3.29e-06 

F3 Mean 1.29E-06 0.001891 1.58e-10 

Std. 2.1E-06 0.003311 8.66e-10 

F4 Mean 0.000988 0.001748 5.913-03 

Std. 0.002776 0.002515 0.029813 

F5 Mean 7.600558 63.45331 2.383765 

Std. 6.786473 80.12726 1.350716 

F6 Mean 4.17E-16 4.36E-17 1.9e-10 

Std. 1.32E-15 1.38E-16 1.04e-09 

F7 Mean 0.010293 0.005973 1.57e-04 

Std. 0.004691 0.003583 1.01e-04 

F8 Mean -2857.58 -7.1E+11 -3566.452419 

Std. 383.6466 1.2E+12 239.113661 

F9 Mean 16.01883 10.44724 7.462188 

Std. 9.479113 7.879807 4.41686 

F10 Mean 0.23103 0.280137 8.47e-07 

Std. 0.487053 0.601817 4.64e-06 

F11 Mean 0.193354 0.083463 0.053309 



 

 

Std. 0.073495 0.035067 0.053615 

F12 Mean 0.031101 8.57E-11 1.92e-12 

Std. 0.098349 2.71E-10 1.05e-11 

F13 Mean 0.002197 0.002197 8.21e-12 

Std. 0.004633 0.004633 4.5e-11 

F14 Mean 103.742 150 0.99800 

Std. 91.24364 135.4006 1.700065e-16 

F15 Mean 193.0171 188.1951 3.77e-04 

Std. 80.6332 157.2834 1.853-04 

F16 Mean 458.2962 263.0948 -1.031628 

Std. 165.3724 187.1352 1.06e-15 

F17 Mean 596.6629 466.5429 3.0 

Std. 171.0631 180.9493 6.05e-15 

F18 Mean 229.9515 136.1759 -3.862782 

Std. 184.6095 160.0187 2.79e-15 

F19 Mean 679.588 741.6341 -3.259273 

Std. 199.4014 206.7296 0.059789 

F20 Mean -3.32199 -3.27047 -9.316829 

Std. -3.38E-06 0.059923 2.21393 

F21 Mean -10.1532 -7.3874 -10.147907 

Std. 6.60E-15 3.11458 1.396876 

F22 Mean -10.4029 -8.5305 -9.398946 

Std. 1.51E-06 3.038572 1.99413 

F23 Mean -10.5364 -9.1328 -10.2809 

Std. 2.97E-07 2.640148 1.39948 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3: The Wilcoxon Rank-Sum Test Overall Runs For the Classical Benchmark Functions 

F DA PSO 

F1 N/A 0.045155 

F2 N/A 0.121225 

F3 N/A 0.003611 

F4 N/A 0.307489 

F5 N/A 0.10411 

F6 0.344704 N/A 

F7 0.021134 N/A 

F8 0.000183 N/A 

F9 0.364166 N/A 

F10 N/A 0.472676 

F11 0.001008 N/A 

F12 0.140465 N/A 

F13 N/A 0.79126 

F14 N/A 0.909654 

F15 0.025748 0.241322 

F16 0.01133 N/A 

F17 0.088973 N/A 

F18 0.273036 0.791337 

F19 N/A 0.472676 

F20 0.938062 0.938062 

F21 N/A N/A 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the test functions of the multi-modal showed the great exploration level of the dragonfly algorithm that aids in 

discovering the exploration space. Generally, particle swarm optimization for the multi-modal exhibited superior results. 

Furthermore, as shown in Table 3, these results again are statistically noteworthy as the furthermost of the p-values are a smaller 

amount than 0.05.  

The FA outperformed the DA and PSO for the composite test function. Similar to the unimodal test functions, the outcomes of the 

DA and PSO were competitive. However, in some cases, PSO provided better results, which proved that the FA has a superior 

balance between the phases of exploration and exploitation compared to DA and PSO PSO. The intention of this is that the DA’s 

level of exploitation is smaller than the level of exploration. Moreover, the majority of the statistical results for this group of 

benchmark functions are significant and less than 0.05, as shown in Table 3.  

Furthermore, in the original work, the CEC benchmark functions were not used to evaluate the DA. Hence, in this paper, the test 

functions of CEC-2019 are used to assess the DA further. This group of test functions utilizes an annual optimization competition. 

Professor Suganthan and his colleges improved these benchmark functions to optimize single objective problems [8268]. All 

the CEC-2019 benchmark functions are scalable.  However, only function number 4 to function number 10 are shifted and rotated. 

Whereas, the functions (1 to 3) are not. The functions (1 to 3) have different dimensions. However, functions (4 to 10) set as 

minimization problems with 10 dimensions. See Table 4 for more details about the functions. 

 
Table 4: CEC-2019 Benchmark Functions- 100-Digit Challenge [68] 

No. Functions Dimension Range fmin 

1 STORN’S CHEBYSHEV POLYNOMIAL FITTING PROBLEM 9 [-8192, 8192] 1 

2 INVERSE HILBERT MATRIX PROBLEM 16 [-16384, 16384] 1 
3 LENNARD-JONES MINIMUM ENERGY CLUSTER 18 [-4, 4] 1 

4 RASTRIGIN’S FUNCTION 10 [-100, 100] 1 

5 GRIENWANK’S FUNCTION 10 [-100, 100] 1 

6 WEIERSRASS FUNCTION 10 [-100, 100] 1 

7 MODIFIED SCHWEFEL’S FUNCTION 10 [-100, 100] 1 

8 EXPANDED SCHAFFER’S F6 FUNCTION 10 [-100, 100] 1 
9 HAPPY CAT FUNCTION 10 [-100, 100]  1 

10 ACKLEY FUNCTION 10 [-100, 100] 1 

 

In the original paper, the DA compared to the PSO; hence, for this group of test functions, DA again will be compared to the PSO. 

The default parameter settings were not changed during the optimization. For this evaluation, the authors used 100 iterations and 

30 agents. As shown in Table 5, DA outperformed the PSO in three CEC-2019 benchmark functions (1, 2, and 3), and the results 

were competitive in two functions (3 and 10).  

 

VIII. DISCUSSION AND FUTURE WORKS 

DA is modest and can be easily applied. For exploring the search space, allocate little weight of cohesion and great weight of 

alignment to individuals. Contrarily, for exploiting the exploration space, assign individuals to high cohesion and low alignment 

weights. Another way for balancing exploitation and exploration is adaptively adjusting the swarming weights, such as s, a, e, c, 

w, and f throughout the process of optimization. To make a transition concerning the exploration and exploitation, neighborhood 

F22 0.256157 0.256157 

F23 0.59754 0.59754 



 

 

radii enlarged proportionally to the number of iterations could be applied. It usually provides reasonable results for small to 

medium-scale problems. However, for large-scale optimization problems, more affords are required, and it causes an increase in 

convergence time and a reduction in performance, which may cause falling into local optima.  

 
Table 5: The IEEE CEC-2019 Benchmark Results for DA, and PSO 

Function No. Measurements DA PSO 

1 Mean 46835.63679 1.47127E+12 

Std. 8992.755502 1.32362E+12 

2 Mean 18.31681239 15183.91348 

Std. 0.041929318 3729.553229 

3 Mean 12.70240422 12.70240422 

Std. 1.50E-12 9.03E-15 

4 Mean 103.3295366 16.80077558 

Std. 20.00405422 8.199076134 

5 Mean 1.177303105 1.138264955 

Std. 0.057569859 0.089389848 

6 Mean 5.646572343 9.305312443 

Std. 4.27E-08 1.69E+00 

7 Mean 898.5188217 160.6863065 

Std. 4.023921424 104.2035197 

8 Mean 6.210996106 5.224137165 

Std. 0.001657324 0.786760649 

9 Mean 2.601134198 2.373279266 

Std. 0.233292964 0.018437068 

10 Mean 20.0506995 20.28063455 

Std. 0.070920925 0.128530895 

 

With growing the complexity of optimizing real-world problems, computing demands are hard to be satisfied with the single 

version of optimization algorithms. One obstacle that may occur during using the DA is that updating position in this algorithm is 

not so much correlated with the algorithm’s population centroid in the preceding generations. Consequently, the produced solutions 

have low accuracy, and premature convergence to local optima may occur. Additionally, it may cause it difficult to find the global 

optimal solution. Furthermore, as mentioned earlier, distraction, cohesion, alignment, and separation in the direction of enemy 

sources with desirability in the direction of the sources of food mainly determine the exploration and exploitation of the DA. This 

searching technique maximizes solution diversity and makes the capability of exploration of the DA stronger to some extent. 

Nonetheless, the performance reduces with a large number of exploitation and exploration operators because they enlarge the 

convergence time, which causes trapping into local optima. 

 

Similar to other metaheuristic algorithms, DA has several strong points, as well as some weak points. It owns powerful optimization 

capability. The DA has few parameters for adjusting. Most of the time, it can keep a reasonable convergence rate to the global 

optima. DA is one of the new algorithms. However, as discussed in the literature, it has been utilized for optimizing an enormous 

number of applications. The straightforwardness of DA is one of the main reasons for its contributions to various applications. 

Also, choosing the individuals from the record, the worst hypersphere avoids the DA from discovering the non-promised zones. 

Another advantage is that DA has few parameters for tuning. Similarly, over other optimization algorithms, the algorithm 

converges earlier, more stable, and more straightforwardly can be hybridized with diverse algorithms.  

 

Alternatively, for complex optimization problems, as examined in [27], one of the restrictions of the DA is that it easily traps into 

local optima, and it has a slow convergence speed. Internal memory does not exist in the DA, which is a reason for early arrival at 

local optimums. This overcame in [69] through emerging a new memory-based hybrid dragonfly or so-called MHDA. Additionally, 

as presented earlier, DA uses Levy flight as a search process when the neighborhood does not exist. Nevertheless, the giant steps 

of the Levy flight mechanism caused an interruption.  The original work used a step control mechanism to prevent overflowing. 

However, this distorts the characteristics of the swarm, also, it is a reason for falling into local optima. Hence, utilizing other 

searching techniques instead of the Levy flight and compared the results of the various methods is highly recommended. Moreover, 

using an adaptive step instead of the original stochastic step will help in harmonizing phases of exploration and exploitation and 

enhancing the DA performance. The position updating technique is another way to prevent trapping into local optima. Using the 

population’s centroid technique, as discussed in [70] can reduce the probability of locating into local optima.  

Furthermore, after assessing the algorithm in the above section, it was noted that the ability of the DA for balancing between the 

phases of exploration and exploitation is low; this was because the algorithm has a great exploration level. This great level of the 

search in the initial phases of the course of optimization is decent, though, in the last iterations of the algorithm, it ought to be 

diminished, and the exploitation level ought to be improved. For binary dragonfly algorithms, for example, using time-dependent 

transfer function can increase the balance between both phases of the DA; exploitation, and exploration.  Hence, at the beginning 

of the optimization, the exploration level is great. The exploration level gradually decreases during the process and the exploitation 

level increases. The mentioned technique will provide a better performance and it prevents trapping into local optima. Tuning 

parameters automatically improves the performance of different algorithms. Moreover, it improves the stability between the two 



 

 

phases and the variety of the population [71]. On the other hand, the outcomes of the traditional benchmark function of the 

unimodal, and the produced outcomes of the majority of the literature works displayed that the dragonfly has a good convergence. 

The greater convergence of the algorithm makes it outperform most of the mentioned algorithms in the previous works in dealing 

with small to medium problem sizes. 

Generally, the results from the previous section and the applications in the literature proved that the DA has a significant level of 

exploration and exploitation. The reason for this is the DA’s static swarming behavior, which enlarges the exploration’s level, and 

increases the probability of trapping into local optima for simple problems. Additionally, enlarging the number of iterations 

enlarges the exploitation degree, and enhances the accuracy of the global optimum solution.  

 

However, hybridizing the algorithm with other techniques will give power to the algorithm to overcome the bottlenecks. As 

discussed, some hybrid versions of DA proposed to overcome the weakness of this algorithm. For example, MHDA was examined 

for overcoming the shortage that may cause premature convergence to local optima. Moreover, reference [72] utilized Gauss 

chaotic map to adjust variables. The outcomes exhibited that the hybridized algorithm concerning stability quality, the speed of 

convergence, classification performance, and the number of selected features provided better results. Although the DA and the 

hybridized DAs provided some good results for several problems of complex optimization, yet, more or less disadvantages found. 

In DA, high exploration and exploitation acquire through desirability on the way to food and diversion on the road to enemies. 

The correlation of updating the position in the DA with the population centroid from the preceding generation is not high. Thus, it 

may solve with that traps into local optima, low accuracy, and struggles to find the global optima. Hence, finding a new technique 

for updating the position of individuals is highly recommended. Another research area that will improve the algorithm is finding 

suitable stability concerning phases of exploration and exploitation. Proper stability concerning exploration and exploitation will 

circumvent DA from falling into the local optima. Besides, merging new searching methods with the DA is highly recommended 

to researchers. Moreover, tuning parameters dynamically during the practice of optimization will have significant guidance on 

enhancing the exploitation and exploration balance of the algorithm.  

 

IX. CONCLUSIONS 

This paper reviewed one of the new metaheuristic algorithms. The various types of the algorithm, including the merging versions 

with other techniques, were discussed. Besides, most of the optimization problems in engineering and physics that used DA were 

discussed. From the reviewed works, the authors discovered that DA is one of the practical techniques in the area. The simplicity 

of the algorithm was one of the reasons that encouraged the researchers to use the algorithm to optimize the problems in hand. 

Moreover, the accuracy and convergence speed of the algorithm are other reasons. For instance, in general, for small to medium 

problems, the algorithm provided good results. However, similar to other algorithms, for some problems (especially complex 

problems) DA cannot produce reasonable results. The exploration of the algorithm is high, which may cause trapping into local 

optima, mainly for the complex problems. Moreover, the produced results from the test functions (F20-F23) proved that the results 

of the DA and PSO are competitive. Besides, the results of the CEC-2019 test function also showed that the DA is comparative 

with the PSO, and FA showed better results than both DA and PSO. Finally, reviewing the DA and its applications proved that we 

could utilize the mentioned algorithm successfully to optimize almost all the problems in the real world.   

 

As an extension of this work, the authors are willing to find a technique for providing a decent balance about the exploration and 

exploitation phases of DA. Likewise, the representation of the DA can be assessed and evaluated against other well-known and 

competitive algorithms, such as Donkey and Smuggler Optimisation Algorithm [12], WOA-BAT Optimisation Algorithm [73], 

Fitness Dependent Optimiser [74], Modified Grey Wolf Optimiser [75], etc.
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