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Abstract

Automatic modulation recognition (AMR) plays an important role in various communications systems. It has the ability of

adaptive modulation and can adapt to various complex environments. Automatic modulation recognition is also widely used

in orthogonal frequency division multiplexing (OFDM) systems. However, because the recognition accuracy of traditional

methods to extract the features of OFDM signals is very limited. In order to solve these problems, many deep learning based

AMR methods have been proposed to improve the recognition performance. However, most of these AMR methods neglect the

harmful effect by carrier phase offset (PO) which often appears in real communications systems. Hence it is required to consider

the PO effect for designing the OFDM system. Unlike conventional methods, we propose a convolutional neural network (CNN)

based AMR method for considering PO in the OFDM system. The proposed method is used to eliminate the PO to achieve the

high classification accuracy. Experiment results are provided to confirm the proposed method when comparing to conventional

methods.
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Abstract—Automatic modulation recognition (AMR) plays an
important role in various communications systems. It has the
ability of adaptive modulation and can adapt to various complex
environments. Automatic modulation recognition is also widely
used in orthogonal frequency division multiplexing (OFDM)
systems. However, because the recognition accuracy of traditional
methods to extract the features of OFDM signals is very limited.
In order to solve these problems, many deep learning based
AMR methods have been proposed to improve the recognition
performance. However, most of these AMR methods neglect the
harmful effect by carrier phase offset (PO) which often appears in
real communications systems. Hence it is required to consider the
PO effect for designing the OFDM system. Unlike conventional
methods, we propose a convolutional neural network (CNN)
based AMR method for considering PO in the OFDM system.
The proposed method is used to eliminate the PO to achieve the
high classification accuracy. Experiment results are provided to
confirm the proposed method when comparing to conventional
methods.

Index Terms—Deep learning, convolutional neural network,
automatic modulation recognition, phase offset.

I. INTRODUCTION

Blind signal recognition is considered as one of important
techniques in many military and civilian applications [1]–
[8], such as adaptive modulator, spectrum sensing and non-
cooperative signal detection. Automatic modulation recogni-
tion (AMR) is a key step to realize the recognition technique
and hence many AMR methods have been proposed in last
decades. Generally speaking, these traditional AMR methods
can be developed based on two types, i.e., likelihood function
and feature extraction [9]. For one thing, the likelihood-based
AMR method is formulated as a hypothesis testing problem
[10] and hence it is necessary to design a correct likelihood
function to find a likelihood for each modulation type within
hypothesis pool. However, the likelihood-based AMR methods
require accurate channel estimation of wireless channels.
For another, the feature extraction based AMR method is
formulated as a pattern recognition problem and it can be
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realized by pre-processing, feature extraction, and classifier
design. However, these feature extraction-based AMR methods
are considered as instantaneous realization scenarios, such
as instantaneous features, wavelet transform-based features,
high-order statistics-based features, cyclic spectrum analysis-
based features, and so on. To classify the modulation types
by extracted features [11], [12], they usually adopt various
classifiers, such as high-order cumulants (HOC), support
vector machine (SVM), decision tree (DT), k-nearest neighbor
(KNN) and multilayer perception (MLP). According to
aforementioned discussion, one may find that here traditional
AMR methods require instantaneous information and real-
time computational computing. Hence it is hard to apply
these AMR methods in the next-generation heterogeneous
communication systems [13]–[19].

Recently, deep learning (DL) has been attracted a lot of
attentions due to its powerful ability to combine the offline
training and online deployment [20]. In the perspective of
data analysis, DL is expert in automatic feature extraction
from big data, instead of the complex and difficult design
of manmade features [21], [22]. Motivated by the advances,
DL has been successfully applied in network traffic prediction
[23]–[25], wireless communications [26]–[31], and internet of
things [32]–[37].

Motivated by widespread applications, many DL-based
AMR methods have been proposed to recognize different
modulation signals in different systems. Among these deep
learning methods, convolutional neural network (CNN)
has been considered one of most effective methods due
to excellence performance for extracting signal feature
information in signal. CNN-based AMR methods have been
proposed for various wireless communications systems due
to their reliable performance [42]–[44]. For example, H.
Gu et al. [38] proposed a blind channel identification
aided generalized AMR method based on two independent
convolutional neural networks (CNNs). S. Hong et al.
[39] proposed a decision theory based AMR method for
orthogonal frequency division multiplexing (OFDM) system.
Note that OFDM technique can combat channel multipath
fading by multi-carrier transmission and hence support high-
speed parallel transmission by frequency division multiplexing
[40]. In addition, because all of subcarriers are orthogonal,
each sub-channel can overlap each other, which improves
the frequency band utilization rate and is suitable for high-
speed data transmission services. In the frequency domain, a
given channel is divided into many orthogonal sub-channels.
On each sub-channel, a sub-carrier is used for modulation,
and each sub-carrier is transmitted in parallel, so as to
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effectively suppress inter-symbol interference (ISI) caused by
time dispersion of wireless channels [41].

Fig. 1. Example of constellation diagrams of BPSK signal in two phase offset
cases.

However, these methods do not consider PO which is
strongly deteriorate to signal detection at the receiver. A simple
example of constellation diagrams of binary phase shift keying
(BPSK) signal in two PO cases is shown in Fig. 1. PO is a very
harmful factor in many multi-carrier communication systems
[46] and radar signal systems [47]–[53].

In view of the excellent performance of CNN in the
famous ImageNet large scale visual recognition challenge
(ILSVRC) [54], this paper introduces CNN into AMR to
complete the classification task. Among the two methods
of AMR, the method of decision theory requires obtaining
prior information and using probability theory and hypothesis
testing theory to identify modulation types. This method is
complex in calculation but simple in classification. Statistical
pattern recognition can reflect the difference between the
two, by extracting the characteristics of different modulation
methods, and no prior knowledge is required. In addition,
an appropriate classifier should be designed for modulation
recognition according to the extracted features. At present, the
latter method is the most important and effective one. In this
paper, we propose CNN-based AMR method by considering
the PO effect. At first, our proposed CNN is trained by in-
phase and quadrature (IQ) components of the received signal
containing received signals at different SNRs by considering
PO effects. We conduct the experiments to validate the
proposed CNN-based AMR method. Several typical results
show that our proposed can achieve comparable performance
of the ideal CNN-AMR method without PO.

The rest of this paper is organized as follows. Second
II introduces problem formulations including system model,
signal model, dataset training and CNN architecture. Section
III presents our proposed CNN-based AMR method. Section
IV conducts experiments and evaluates our proposed method
in different modulations. Finally, Section V concludes our
work.

II. PROBLEM FORMULATION

A. System Model

In this paper, a typical AMR-aided OFDM system is
considered. The system model is shown in Fig. 2. In the
whole system model, OFDM transmitter serves as the sending

terminal. Firstly, the data stream through the modulator is
converted in series and parallel, and the frequency domain
signal is converted into a time-domain signal by means of
inverse fast Fourier transformation (IFFT) for modulation. In
addition, a cyclic prefix (CP) is added to reduce the inter-
symbol interference (ISI) between sub-channels. Finally, the
parallel data stream is converted into serial data stream and
the output is OFDM signal.

Then, the generated OFDM signal is sent to receiver,
passing through channel and adding additive white Gaussian
noise (AWGN). The signal needs to be pre-processed and
signal-to-noise ratio (SNR) estimation is conducted. In this
paper, a non-cooperative communication system is considered.
That is to say, receiver cannot get any prior information
about received signal, including modulation types. Hence,
CNN-based AMR is introduced into the correct recognition
of modulation types of received signals. After recognized
signal modulation type, then it can be demodulated. Next, we
briefly introduce the signal model and corresponding dataset
generation for neural network training.

B. Signal Model and Dataset Generation

Here, single input single output (SISO) system is considered
and its received signal model is given as

rn = αejϕcsn + wn, (1)

where ϕc denotes the PO and it range is usually set as
ϕc ∈ [0, π]. wn stands for additive white Gaussian noise
(AWGN), i.e., wn ∼ CN(0, 1). {rn}N−1

n=0 refers to the discrete
time complex signal sequence sampled by Nyquist criterion.
sn denotes one symbol in modulation signal, and {sn}N−1

n=0 has
unit energy for fair comparison of different modulation types.
α represents channel attenuation factor, and it is constant,
when considering a time invariant system. Besides, non-
ideal synchronization problem is considered in order to make
simulation closer to actual communication. In this paper,
PO is the main influence of non-ideal synchronization to be
considered. PO mainly results of propagation delay and initial
carrier phase and assuming that PO obeys uniform distribution,
i.e., ϕc ∼ U(0, θ], 0 ≤ θ ≤ π. It is noted that PO is constant at
the same observation phase. IQ samples are applied to train the
former CNN. Through OFDM modulation, the i-th sampling
data we obtained can be represented by a complex vector as

si = [s0, s1, · · · , sn, · · · , sN−1], (2)

where n represents the number of sample points. At the same
time, sn represents the value of the Nyquist sampling point,
which is a complex number. sn can be expressed as

si = Ren + jImn, (3)

where Ren represents the real part of the n-th sampling point
and Imn represents its imaginary part of the signal sn. They
are the in-phase and orthogonal components of the signal
respectively. It also represents the I’s and Q’s in the IQ sample.
It is worth noting that RIQ is a real matrix with dimensionality
2×N and it is the input of neural network.
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Fig. 2. Framework of the proposed CNN-based AMR system.

III. THE PROPOSED DL-BASED AMR METHOD

A. CNN for AMR method

In this section, a DL-based AMR method is proposed
for uncooperative OFDM systems. The core of this method
is CNN because of its excellent performance in feature
extraction. It has been widely used in many fields, especially
in the field of image processing.

A simple CNN model consists of an input layer, an output
layer, a pooling layer, a fully connected layer, and an output
layer. The convolutional layer is mainly used to extract the
features of the input data and has been processed in the next
step. The pooling layer can be used to improve accuracy by
ignoring changes between the relative positions of the data.
On the other hand, the pooling layer can reduce the feature
dimension to avoid overfitting to a certain extent. The fully
connected layer functions as a classifier in the entire CNN
model. It uses the results of the previous layers to classify
the input data to achieve the function of the CNN model. In
this paper, modulation modes used by the received OFDM
signal are classified through the fully connected layer, so as
to effectively identify and facilitate subsequent demodulation
work.

Every layer in CNN except the input layer needs a suitable
activation function. More commonly used are rectified linear
unit (ReLu) activation function and parametric rectified Linear
Unit (PReLu) activation function. As the name suggests,
PReLu is ReLu with parameters. ReLU and PReLu activation
function formulas are as follows:

ReLu(x) =

{
x x > 0

0 x ≤ 0,
(4)

PReLu(x) =

{
x x > 0

ax x ≤ 0
, (5)

The sparse model implemented by PReLU can better mine
related features and fit the training data. In addition, compared
to other activation functions, PReLU has the following
advantages: For linear functions, PReLU has a better effect,
especially in deep neural networks. For non-linear functions,
PReLU does not have a Vanishing Gradient Problem because
the gradient of the non-negative interval is constant, so that
the convergence speed of the model is maintained in a stable
state.

Fig. 3. CNN structure design in the proposed CNN-based AMR method.

Softmax regression model is a generalization of logistic
regression model on multi-classification problems. It is ap-
plicable to multi-classification problems where the categories
are mutually exclusive.

Suppose there is an array E, ei represents the i-th element
in E, then the softmax value of the ei element is:

Si =
ei∑
j e

j
, (6)

The Softmax activation function maps the output of multiple
neurons into the (0,1) interval. It can be seen as the probability
that the current output belongs to each classification, thereby
completing the multi-classification task.

B. The Proposed DL-based AMR Method

As shown in Fig. 3, the proposed DL-based AMR
method is mainly implemented by CNN, which includes two
convolutional layers and three fully connected layers. There
are 128 convolution kernels in the first convolution layer, and
the size of each convolution kernel is 1 × 16. The second
convolution layer contains 64 convolution kernels, each of
which is 2×8 in size. The number of neurons in the three fully
connected layers is 256, 128, and n, where n represents the
number of modulation modes. The PReLU function is used
for all layers except the last layer, and the softmax function
is used for the last layer to implement a multi-classification
problem.

From Fig. 3, it can also been intuitively seen that each
layer except the last layer has a batch normalization (BN)
layer and a dropout layer. The BN layer has been widely used
in major networks, which has the effect of accelerating the
speed of network convergence and improving training stability.
It essentially solves the gradient problem in the process of
backpropagation. That is, the BN layer forcibly pulls the input
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distribution of the relevant data back to a relatively standard
normal distribution with a mean of 0 and a variance of 1. The
input value of the non-linear transformation function is made
to fall into a region that is more sensitive to the input, thereby
avoiding the problem of gradient disappearance.

When a complex feedforward neural network is trained on
a small data set, it is easy to cause overfitting. To prevent
overfitting, a certain neuron will stop working with a certain
probability during forward propagation. The performance of
neural networks can be improved by preventing the common
response of feature detectors. This also makes the model more
general, because the model does not rely too much on some
local features.

C. Algorithm Description

Algorithm 1 Algorithm of the proposed CNN-based AMR
method.
Input: Test sample {xj ,yj}Nr

j=1 and the trained CNN;
Output: The probability of correct classification;
1: for j = 1 : Nr:

Give the P j = xj ∇W ;
end

2: if P j = yj ,
P̂ = P̂ + 1;
end

3: Ppcc = 1
Nr

P̂ ;
4: return The probability of correct classification Ppcc.

The algorithm description of the proposed CNN-based
AMR method is shown in Algorithm 1. Known test samples
{xj ,yj}Nr

j=1, where xj is the data of the j-th sample, and yj

is the label value of the j-th sample, that is, the modulation
type. Traverse Nr samples and calculate the predicted label
of the j-th sample as P j . Where W is the weight of the
nerual network, and ∇ represents the calculation of the data
from input to output. By comparing the values of the predicted
label and the actual label, the number of samples with accurate
prediction P̂ is calculated. Finally, the probability of correct
classification of the proposed CNN-based AMR method Ppcc

is obtained.

D. Dataset Generation and Data Training

For the AMR problem, we generate two data sets with
different modulation modes. Dataset 1 consists of three
modulation modes, which are BPSK, quadrature phase shift
keying (QPSK), and eight phase shift keying (8PSK). Dataset
2 contains BPSK, QPSK, 8PSK, and sixteen quadrature
amplitude modulation (16QAM). In our experiments, the
OFDM system with 16 sub-carriers, 6 symbols of each sub-
carrier, CP of length 2 and 256-point FFT is considered.
Taking BPSK modulation as an example, an initial signal
is first generated. Then perform BPSK modulation, add
subcarriers, and use inverse fast Fourier transform (IFFT) to
convert the frequency domain signals into time domain signals.
After that, the cyclic prefix and phase offset are added in
turn. Finally, the received OFDM signal is obtained through
Gaussian white noise.

TABLE I
EXPERIMENT PARAMETERS AND SETTING.

Parameter Value
Style of the training Training IQ samples at each SNR = i dB,

where i ∈ {−10,−5, · · · , 20}
The number of training 20,000 samples/type/SNR
The number of testing 20,000 samples/type/SNR

Batch size 500
Epochs 500

Optimize Stochastic gradient descent (SGD)
Dropout (dr1-dr2-dr3-dr4) 0.6-0.6-0.6-0.6

A large number of OFDM signals obtained through different
modulation methods are sent to our proposed CNN-based
AMR model for training, and finally the weight values of
each neuron in the model are obtained. Then use the test data
to verify our proposed model. By comparing the recognition
accuracy, we can intuitively find that our proposed method has
a high accuracy, which will be introduced in detail in the next
section.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we performe several sets of comparative
experiments to verify the performance of DL-based AMR in
non-cooperative OFDM systems. Traditional AMR methods
are mostly composed of feature extraction and classifier. In
this paper we consider the use of artificial features, which are
mainly composed of the HOC feature and the instantaneous
feature of the signal. In the classifier section, we use decision
tree (DT) and random forest (RF) in traditional classification
algorithms. The other two neural network based methods are
CNN and Deep Neural Network(DNN). In addition, we also
consider the difference in performance between the proposed
method and the traditional method when the signal has a phase
offset. Simulation parameters and setting are listed in Table I.
The simulation requires powerful computing resources, so it
is conducted on the platform with one Intel i7-8750H CPU
and one NVIDIA GTX 1080Ti GPU. The implementation of
neural networks relies on Keras 2.2.2 with Tensorflow 1.10
and Python 3.6.5 as the backend. Moreover, Matlab R2018a
is applied to build our datasets.

In the simulation experiments, we prepare two datasets.
Dataset 1: {BPSK, QPSK, 8PSK} and dataset 2: {BPSK,
QPSK, 8PSK, 16QAM}. The robustness of the proposed
method is analyzed by performance comparison on different
data sets. All data samples range from −10 dB to 20 dB
with the interval of 5 dB. The total dataset consists of 20, 000
samples at each signal-to-noise ratio, which are divided into
training samples and test samples by 7:3. 70% of the data
is used for training the model, and 30% of the data is used
for testing the model to evaluate the recognition accuracy of
the proposed method. In addition, Stochastic gradient descent
(SGD) is chosen to detect the loss value to prevent overfitting.

Fig. 4 shows the probability of correct classification (PCC)
of the proposed DL aided AMR method in dataset1. It can be
seen intuitively that the performance of our proposed method
is better than the traditional method based on feature extraction
with or without phase offset. In the case of no phase offset,
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Fig. 4. Performance evaluations of these AMR methods in dataset 1: {BPSK,
QPSK, 8PSK}.

Fig. 5. Performance evaluations of these AMR methods in dataset 2: {BPSK,
QPSK, 8PSK, 16QAM}.

when the SNR is 0 dB, the recognition accuracy is as high as
100%. Although the accuracy is slightly lower in the case of
phase offset, almost no error recognition can be achieved when
SNR = 5 dB. On the other hand, the PCC of the traditional
method can only reach 70% under the high SNR. In Fig. 4, the
curve trends of the traditional methods based on DT and RF
are very similar, but the performance of the RF-based method
is slightly better than that based on DT. This is because RF is
composed of multiple DTs. When classifying and deciding,
it will comprehensively consider the decisions of multiple
DTs to give an overall decision. So the performance is better
than DT to a certain extent. By comparing the CNN-based
method and the DNN-based method, the superior performance
of the proposed method can also be found intuitively. Because
compared to DNN, CNN will first use the convolution layer
to extract features of the signal. Then use the extracted
features to recognize modulations. Taking into account the

characteristics of the signal will help improving the accuracy
of recognization.

In dataset 2, PCC of the proposed method is compared with
the other three methods as shown in Fig. 5. Compared with
curves in dataset 1, when the SNR is less than 5 dB, the
recognition accuracy based on dataset 2 will be lower, and it is
no exception when considering phase deviation. It can be seen
that the introduction of 16QAM has caused some confusion
to the original three modulation methods, so the recognition
accuracy is lower. But when SNR gradually increases to 5 dB,
the PCC of proposed method can also reach 100%. When SNR
is 10 dB, it can be recognized without error considering the
phase offset. Therefore, combining the PCC of the proposed
method and other traditional methods, we can find that the
proposed DL aided method has high recognition accuracy and
good robustness under different datasets.

V. CONCLUSION

In this paper, we have proposed a deep learning aided
automatic modulation recognition method in the presence
of phase offset in OFDM systems. This method is mainly
implemented using CNN and training on IQ samples. It can
accurately recognize four modulation modes: BPSK, QPSK,
8PSK, and 16QAM. Through comparative experiments, it is
found that its recognition performance is far superior to the
traditional feature extraction based methods. At the same time,
the proposed method shows good robustness for different
datasets. Although the introduction of phase offset will make
the recognition accuracy slightly decrease at low SNRs, but
with the gradual increase of SNRs, effective recognition can
be achieved eventually. In future work, we plan to consider
CNN aided AMR methods in multiple input multiple output
systems (MIMO). More importantly, we try to further validate
our proposed model using actual modulated signals instead of
the ideal signals generated by Matlab.
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