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Abstract

In order to classify linearly non-separable data,
neurons are typically organized into multi-layer
neural networks that are equipped with at least
one hidden layer. Inspired by some recent discov-
eries in neuroscience, we propose a new neuron
model along with a novel activation function en-
abling learning of non-linear decision boundaries
using a single neuron. We show that a standard
neuron followed by the novel apical dendrite acti-
vation (ADA) can learn the XOR logical function
with 100% accuracy. Furthermore, we conduct
experiments on three benchmark data sets from
computer vision and natural language processing,
i.e. Fashion-MNIST, UTKFace and MOROCO,
showing that the ADA and the leaky ADA func-
tions provide superior results to Rectified Liner
Units (ReLU) and leaky ReLU, for various neural
network architectures, e.g. 1-hidden layer or 2-
hidden layers multi-layer perceptrons (MLPs) and
convolutional neural networks (CNNs) such as
LeNet, VGG, ResNet and Character-level CNN.
We also obtain further improvements when we
change the standard model of the neuron with our
pyramidal neuron with apical dendrite activations
(PyNADA).

1. Introduction
The power of neural networks in classifying linearly non-
separable data lies in the use of multiple (at least two) lay-
ers. We take inspiration from the recent study of Gidon
et al. (2020) in order to propose a simpler yet more effec-
tive approach: a new computational model of the neuron,
termed pyramidal neuron with apical dendrite activations
(PyNADA), along with a novel activation function, termed
apical dendrite activation (ADA), allowing us to classify
linearly non-separable data using an individual neuron.

1University of Bucharest, Bucharest, Romania 2Politehnica Uni-
versity of Bucharest, Bucharest, Romania 3University of Trento,
Trento, Italy. Correspondence to: Radu Tudor Ionescu <ra-
ducu.ionescu@gmail.com>.
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Figure 1. Activation function observed in apical dendrites of pyra-
midal neurons in the human cerebral cortex. The input corresponds
to the horizontal axis and the output to the vertical axis.

Biological motivation. Recently, Gidon et al. (2020) ob-
served that the apical dendrites of pyramidal neurons in
the human cerebral cortex have a different activation func-
tion than what was previously known from observations
on rodents. The newly-discovered apical dendrite activa-
tion function produces maximal amplitudes for electrical
currents close to threshold-level stimuli and dampened am-
plitudes for stronger electrical currents, as shown in Figure 1.
This new discovery indicates that an individual pyramidal
neuron from the human cerebral cortex can classify linearly
non-separable data, contrary to the conventional belief that
non-linear problems require multi-layer neural networks.
This is the main reason that motivated us to propose ADA
and PyNADA.

Psychological motivation. Remember the first time you
ate your favorite dish. Was it better than the second or the
last time you ate the same dish? According to Knutson
and Cooper (2006), our brains provide higher responses to
novel stimuli than known (repetitive) stimuli. This means
that our brain gets bored while eating the same dish over
and over again, although it might become our favorite dish.
If we were to model the brain response over time for a
certain stimulus, we would obtain the function illustrated
in Figure 1. This is yet another reason to propose and
experiment with ADA and PyNADA.

Mathematical motivation. Despite the recent significant
advances in various application domains (Xu et al., 2017;
Wang et al., 2018) brought by deep learning (LeCun et al.,
2015), state-of-the-art deep neural networks rely on an old
and simple mathematical model of the neuron introduced by
Rosenblatt (1958). Minsky and Papert (1969) argued that a
single artificial neuron is incapable of learning non-linear
functions, such as the XOR function. In order to classify
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linearly non-separable data, standard artificial neurons are
typically organized in multi-layer neural networks that are
equipped with at least one hidden layer. Contrary to the
common belief, we propose an activation function (ADA)
that transforms a single artificial neuron into a non-linear
classifier. We also prove that the non-linear neuron can
learn the XOR logical function with 100% accuracy. Hence,
the ADA function can increase the computational power of
artificial neurons.

Empirical motivation. We provide empirical evidence in
favor of replacing the commonly-used activation functions,
such as Rectified Liner Units (ReLU) (Nair & Hinton, 2010)
and leaky ReLU (Maas et al., 2013), with the ones proposed
in this work, namely ADA and leaky ADA, in various neu-
ral network architectures ranging from 1-hidden layer or
2-hidden layers multi-layer perceptrons (MLPs) to convo-
lutional neural networks (CNNs) such as LeNet (LeCun
et al., 1998), VGG (Simonyan & Zisserman, 2014), ResNet
(He et al., 2016) and Character-level CNN (Zhang et al.,
2015). We attain accuracy improvements on several tasks:
object class recognition on Fashion-MNIST (Xiao et al.,
2017), gender prediction and age estimation on UTKFace
(Zhang et al., 2017) and Romanian dialect identification on
MOROCO (Butnaru & Ionescu, 2019). We report further
accuracy improvements when the standard artificial neu-
rons are replaced with our pyramidal neurons with apical
dendrite activations.

In summary, our contribution is threefold:
• We propose a new artificial neuron called pyramidal

neurons with apical dendrite activations (PyNADA)
along with a new activation function called apical den-
drite activation (ADA).

• We demonstrate that, due to the novel apical dendrite
activation, a single neuron can learn the XOR logical
function.

• We show that the proposed ADA and PyNADA pro-
vide superior results to standard neurons based on the
notorious ReLU and leaky ReLU activations. In most
cases, our improvements are statistically significant.

2. Related Work
Activation functions. Since activation functions have a
large impact on the performance of deep neural networks
(DNNs), studying and proposing new activation functions
is an interesting topic (Hayou et al., 2019). Nowadays, per-
haps the most popular activation function is ReLU (Nair &
Hinton, 2010). Formally, ReLU is defined as max(0, x),
where x is the input. Because ReLU is linear on the positive
side (for x > 0), its derivative is 1, so it does not saturate
like sigmoid and tanh. On the negative side of the domain,
ReLU is constant (equal to 0), so the gradient is 0. Hence,
a neuron that uses ReLU as activation function cannot up-
date its weights via gradient-based methods on examples

for which the neuron is inactive. If we have neurons that
never activate in a neural network, we risk not being able
to train the neural model using gradient-based methods. To
eliminate the problem caused by inactivate neurons with
ReLU activation, Maas et al. (2013) introduced leaky ReLU.
The leaky ReLU function is defined as:

y = ReLUleaky(x, l) = l ·min(0, x) + max(0, x), (1)

where l is a number between 0 and 1 (typically very close
to 0), allowing the gradient to pass even if x < 0. While
in the leaky version of ReLU the parameter l is kept fixed,
He et al. (2015) proposed Parametric Rectified Linear Units
(PReLU), in which the leak l is learned by back-propagation.
Different from ReLU, the Exponential Linear Unit (ELU)
(Clevert et al., 2016) outputs negative values, while still
avoiding the vanishing gradient problem on the positive
side of the domain. This helps in bringing the mean unit
activation down to zero, enabling faster convergence times.
Another generalization of ReLU is the Maxout unit (Good-
fellow et al., 2013), which instead of applying an element-
wise function, divides the input into groups of k values and
then outputs the maximum value of each group.

In contrast to all the recent (ReLU, PReLU, ELU, etc.) and
historically-motivated (sign, sigmoid, tanh, etc.) activation
functions, we propose an activation function that transforms
a single artificial neuron into a non-linear classifier. To
support our statement, in Section 3, we prove that a neuron
followed by our apical dendrite activation function can learn
the XOR logical function.

Models of artificial neurons. To our knowledge, the first
mathematical model of the biological neuron is the per-
ceptron (Rosenblatt, 1958). The perceptron solves linearly
separable problems by computing a linear combination of
the input and the weights, then adding the bias. The result is
passed through the sign transfer function, obtaining the final
output. The Rosenblatt’s perceptron was introduced along
with a rule for updating the weights, which converges to a
solution only if the data set is linearly separable. Although
the perceptron is a simple and old model, it represents the
foundation of modern DNNs. Different from the Rosen-
blatt’s perceptron, the Adaptive Linear Neuron (ADALINE)
(Widrow, 1960) updates its weights via stochastic gradi-
ent descent, back-propagating the error before applying the
sign function. ADALINE has the same disadvantage as
Rosenblatt’s perceptron, namely that it cannot produce non-
linear decision boundaries. Stochastic gradient descent is
currently the most popular algorithm of training DNNs, al-
though some researchers agree that it is not the best choice,
lacking biological motivation (Lee et al., 2015).

In contrast to Rosenblatt’s perceptron and ADALINE, we
propose an artificial neuron that has two input branches,
the basal branch and the apical tuft. The apical tuft is par-
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ticularly novel because it uses a novel activation function
(Gidon et al., 2020) that can solve non-linearly separable
problems.

Although there are a few works that studied various aspects
of the modeling of pyramidal neurons, e.g. segregated den-
drites in the context of deep learning (Guerguiev et al., 2017)
or memorizing sequences with active dendrites and multi-
ple integration zones (Hawkins & Ahmad, 2016), to our
knowledge, we are the first to propose an artificial pyrami-
dal neuron that is inspired by the recent discovery of Gidon
et al. (2020). Different from previous studies, the apical tuft
of our pyramidal neuron is equipped with the novel apical
dendrite activation suggested by Gidon et al. (2020). Fur-
thermore, we integrate our pyramidal neuron into various
deep neural architectures, showing its benefits over standard
artificial neurons. We note that Gidon et al. (2020) have not
presented the pyramidal neuron in a computational scenario,
hence we are the first modeling it computationally.

Other less related neural models are Kohonen Self-
Organizing Maps (SOMs) (Kohonen, 1990) and Long Short-
Term Memory (LSTM) networks (Hochreiter & Schmid-
huber, 1997). Both SOM and LSTM models are specific
types of neural architectures able to solve only certain tasks.
We however propose a novel artificial neuron that can be
plugged into different neural architectures, solving a broad
range of tasks.

3. Non-Linear Neurons
3.1. ADA: Apical Dendrite Activation Function

The activation function illustrated in Figure 1 and deduced
from the experiments conducted by Gidon et al. (2020) can
be formally expressed as follows:

y =

{
0, if x < 0
exp(−x), if x ≥ 0

, (2)

where x ∈ R is the input of the activation function and y is
the output. Since the function defined in Equation (2) is not
useful in practice1, we propose a closed form definition that
approximates the activation function defined in Equation (2),
as follows:

y = ADA(x, α, c) = max(0, x) · exp(−x·α+ c), (3)

where x ∈ R is the input of the activation function, α > 0
is parameter that controls the width of the peak, c > 0
is a constant that controls the height of the peak and y is
the output. Similar to ReLU, our apical dendrite activation
(ADA) is saturated on the negative side, i.e. its gradients
are equal to zero for x < 0. Thus, a neural model trained

1Commonly-used deep learning frameworks such as Tensor-
Flow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) do not
cope well with functions containing if branches.

Figure 2. Our leaky apical dendrite activation (ADA) function that
can be expressed in closed form (see Equation (4)). The input
corresponds to the horizontal axis and the output to the vertical
axis. This output is obtained by setting l = 0.005, α = 1 and
c = 1 in Equation (4).

with back-propagation (Rumelhart et al., 1986) would not
update the corresponding weights. We therefore propose
leaky ADA, a more generic version that avoids saturation on
the negative side, just as leaky ReLU. We formally extend
the definition of ADA from Equation (3) to leaky ADA as
follows:
y=ADAleaky(x, α, c, l) = l·min(0, x) +ADA(x, α, c),

(4)

where 0 ≤ l ≤ 1 is the leak parameter controlling the func-
tion steepness on the negative side and the other parameters
are the same as in Equation (3). By setting l = 0.005, α = 1
and c = 1 in Equation (4), we obtain the activation func-
tion illustrated in Figure 2. By comparing Figures 1 and 2,
we observe that the (leaky) ADA function defined in Equa-
tion (4) has a similar shape to the transfer function defined
in Equation (2). Indeed, both functions have no activation
or almost no activation when x < 0. Then, there is a high
activation peak for small but positive values of x. Finally,
the activation damps along the horizontal axis, as x gets
larger and larger.

Lemma 1. There exists an artificial neuron followed by
the apical dendrite activation from Equation (3) which can
predict the labels for the XOR logical function, by rounding
its output.

Proof. Given an input data sample represented as a row
vector x ∈ Rn, the output y ∈ R of an artificial neuron with
ADA is obtained as follows:

y = ADA(x · w + b, α, c), (5)

whereα and c are defined as in Equation (3),w is the column
weight vector and b is the bias term. The following equation
shows how to obtain the rounded output:

y = bADA(x · w + b, α, c)e , (6)

where b·e is the rounding function. Similarly, we can ob-
tain the rounded outputs for an entire set of data samples
represented as row vectors in an input matrix X:

Y = bADA(X · w + b, α, c)e. (7)

Let X and T represent the data samples and the targets
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Figure 3. The output of a neuron with apical dendrite activation, as
defined in Equation (5), able to classify the XOR logical function.

The output is obtained by setting the weights to w =

[
5
5

]
, the

bias term to b = −4 and the parameters of the ADA function to
α = 1 and c = 1. Large output values (closer to 1) correspond to
the green data points labeled as class 1, while low output values
(closer to 0) correspond to the red data points labeled as class 0.
Best viewed in color.

corresponding to the XOR logical function, i.e.:

X =


0 0
0 1
1 0
1 1

, T =


0
1
1
0

. (8)

We next provide an example of weights and parameters to

prove our lemma. By setting w =

[
5
5

]
, b = −4, α = 1 and

c = 1 in Equation (7), we obtain the following output:

Y =

ADA


0 0
0 1
1 0
1 1

 · [55
]
− 4, 1, 1




=

ADA


−4
1
1
6

, 1, 1

 ≈




0
1
1

0.04


 =


0
1
1
0

.
(9)

Since the output Y computed in Equation (9) is equal to the
target T defined in Equation (8), it results that Lemma 1 is
true.

Our proof is intuitively explained in Figure 3. The four data
points from the XOR data set are represented on a plane and
the output of the neuron followed by ADA is represented
on the axis perpendicular to the plane in which the XOR
points reside. The output for the red points (labeled as class
0) is 0 or close to 0, while the output for the green points
(labeled as class 1) is 1. Applying the rounding function
b·e on top of the output depicted in Figure 3 is equivalent

to setting a threshold equal to 0.5, labeling all points above
the threshold with class 1 and all points below the threshold
with class 0. This gives us the labels for the XOR logical
function.
Corollary 2. There exists an artificial neuron followed by
the apical dendrite activation from Equation (3) which can
predict the labels for the OR logical function, by rounding
its output.

Proof. We can trivially prove Corollary 2 by following the
proof for Lemma 1. We just have to set α and c to different
values, e.g. α = 0.4 and c = 0.5.

Corollary 3. There exists an artificial neuron followed by
the apical dendrite activation from Equation (3) which can
predict the labels for the AND logical function, by rounding
its output.

Proof. We can trivially prove Corollary 3 by following the
proof for Lemma 1. We just have to set the bias term to a
different value, e.g. b = −9.

From Lemma 1, Corollary 2 and Corollary 3, it results that
an artificial neuron followed by ADA has more computa-
tional power than a standard artificial neuron followed by
sigmoid, ReLU or other commonly-used activation func-
tions. More precisely, the ADA function enables individual
artificial neurons to classify both linearly and non-linearly
separable data.

3.2. PyNADA: Pyramidal Neurons with Apical
Dendrite Activations

Pyramidal neurons have two types of dendrites: apical den-
drites and basal dendrites. Electrical impulses are sent to
the neuron through both kinds of dendrites and the impulse
is passed down the axon, if an action potential occurs. Prior
to Gidon et al. (2020), it was thought that apical and basal
dendrites had identical activation functions. This is because
experiments were usually conducted on pyramidal neurons
extracted from rodents. In this context, proposing an artifi-
cial pyramidal neuron would not make much sense, because
its mathematical model would be identical to a standard ar-
tificial neuron. Gidon et al. (2020) observed that the apical
dendrites of pyramidal neurons in the human cerebral cortex
have a different (previously unknown) activation function,
while the basal dendrites exhibit the well-known hard-limit
transfer function. This observation calls for a new model
of artificial pyramidal neurons. We therefore propose pyra-
midal neurons with apical dendrite activations (PyNADA).
Given an input data sample x ∈ Rn, the output y ∈ R of a
PyNADA is obtained through the following equation:

y = ReLU(x · w′ + b′) +ADA(x · w′′ + b′′, α, c), (10)

where α and c are defined as in Equation (3), w′ and w′′

are column weight vectors and b′ and b′′ are bias terms. A
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Figure 4. A pyramidal neuron with apical dendrite activations (Py-
NADA). The input x goes through the basal dendrites followed by
ReLU and through the apical tuft followed by ADA. The results
are summed up and passed through the axon. Best viewed in color.

graphical representation of PyNADA is provided in Figure 4.
In the proposed model, the input x is distributed to the basal
dendrites represented by the weight vector w′ and the bias
term b′, and to the apical dendrites (apical tuft) represented
by the weight vector w′′ and the bias term b′′.

For practical reasons, we replace the hard-limit transfer
function, suggested by Gidon et al. (2020) for the basal den-
drites, with the ReLU activation. This change ensures that
we can optimize the weightsw′ and the bias b′ through back-
propagation, i.e. we have at least some non-zero gradients.
Since the intensity of electrical impulses is always positive,
the biological model proposed by Gidon et al. (2020) is de-
fined for positive inputs and the thresholds for the activation
functions are well above 0. However, an artificial neuron
can also take as input negative values, i.e. x ∈ Rn. Hence,
the thresholds of the activation functions used in PyNADA
are set to 0.

Corollary 4. There exists a pyramidal neuron with apical
dendrite activation, as defined in Equation (10), which can
predict the labels for the XOR logical function, by rounding
its output.

Proof. We can trivially prove Corollary 4 by following the
proof for Lemma 1. For the apical tuft, we can simply set

w′′ =

[
5
5

]
, b′′ = −4, α = 1 and c = 1 in Equation (10),

just as in the proof for Lemma 1. The demonstration results
immediately when we simply drop out the basal dendrites

by setting w′ =
[
0
0

]
and b′ = 0.

4. Experiments
4.1. Data Sets

We conduct experiments on three data sets: Fashion-MNIST
(Xiao et al., 2017), UTKFace (Zhang et al., 2017) and MO-
ROCO (Butnaru & Ionescu, 2019).

Fashion-MNIST (Xiao et al., 2017) is a recently introduced

data set that shares the same structure as the more popular
MNIST (LeCun et al., 1998) data set, i.e. it contains 60,000
training images and 10,000 test images that belong to 10
classes of fashion items. We use a subset of 10,000 images
from the training set for validation. The size of each image
is 28× 28 pixels. Fashion-MNIST was essentially proposed
because the accuracy on MNIST has saturated to nearly
100% on the test set, thus being hard to report any further
improvements.

UTKFace (Zhang et al., 2017) is a large-scale data set of
23,708 images. The images contain faces of people of
various age, gender and ethnicity. We use the unaligned
cropped faces in our experiments. We randomly divide
the data set into a training set of 16,595 images (70%),
a validation set of 3,556 images (15%) and a test set of
3,557 images (15%). We consider two tasks on UTKFace:
gender recognition (binary classification) and age estimation
(regression).

MOROCO (Butnaru & Ionescu, 2019) is a data set of 33,564
news articles that are written in Moldavian or Romanian.
Each text sample has an average of 309 tokens. The main
task is to discriminate between the Moldavian and the Ro-
manian dialects. The data set is divided into a training set of
21,719 text samples, a validation set of 5,921 text samples
and a test set of 5,924 text samples.

4.2. Generic Experimental Setup

Evaluation metrics. For the classification tasks (object
class recognition, gender prediction and dialect identifica-
tion), we employ the classification accuracy as evaluation
metric. For the regression task (age estimation), we report
the mean absolute error (MAE).

Baselines. We consider several neural architectures rang-
ing from shallow MLPs to deep CNNs: 1-hidden layer
MLP, 2-hidden layers MLP, LeNet, VGG-11, ResNet-50
and character-level CNNs with and without Squeeze-and-
Excitation blocks (Hu et al., 2018). The baseline architec-
tures are based on ReLU or leaky ReLU. The goal of our
experiments is to study the effect of (i) replacing ReLU
and leaky ReLU with ADA and leaky ADA, respectively,
and (ii) replacing the standard neurons with our PyNADA.
All neural models are trained using the Adam optimizer
(Kingma & Ba, 2015). With the exception of ResNet-50,
which is implemented in PyTorch (Paszke et al., 2019),
all other neural networks are implemented in TensorFlow
(Abadi et al., 2016). Since we employ different architec-
tures in each task, we describe them in more details in the
corresponding subsections below.

Hyperparameter tuning. We tune the basic hyperparam-
eters such as the learning rate, the mini-batch size and
the number of epochs, for each neural architecture using
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Table 1. Object class recognition accuracy rates (in %) for four neural models (1-hidden layer MLP, 2-hidden layers MLP, LeNet, VGG-11)
on Fashion-MNIST. Results are reported with various activations (ReLU, leaky ReLU, ADA, leaky ADA) and artificial neurons (standard
and PyNADA). Test results of models that are significantly better than corresponding baselines (ReLU or leaky ReLU), according to a
paired McNemar’s test (Dietterich, 1998), are marked with † or ‡ for the significance levels 0.05 or 0.01, respectively.

MODEL ACTIVATION α VALIDATION TEST

1-HIDDEN LAYER MLP RELU - 89.77 88.88
1-HIDDEN LAYER MLP LEAKY RELU - 89.78 88.40
1-HIDDEN LAYER MLP ADA 0.3 89.73 88.98
1-HIDDEN LAYER MLP LEAKY ADA 0.3 89.63 88.97‡

1-HIDDEN LAYER MLP+PYNADA RELU, ADA LEARNABLE 90.29 89.45‡

1-HIDDEN LAYER MLP+PYNADA LEAKY RELU, LEAKY ADA LEARNABLE 90.45 89.34‡

2-HIDDEN LAYERS MLP RELU - 89.77 88.71
2-HIDDEN LAYERS MLP LEAKY RELU - 89.52 88.18
2-HIDDEN LAYERS MLP ADA LEARNABLE 89.62 88.99
2-HIDDEN LAYERS MLP LEAKY ADA 0.1 89.98 88.93‡

2-HIDDEN LAYERS MLP+PYNADA RELU, ADA LEARNABLE 90.34 89.40‡

2-HIDDEN LAYERS MLP+PYNADA LEAKY RELU, LEAKY ADA LEARNABLE 90.13 89.27‡

LENET RELU - 91.90 90.84
LENET LEAKY RELU - 91.76 90.88
LENET ADA 0.3 92.05 91.34†

LENET LEAKY ADA 0.9 91.71 91.38†

LENET+PYNADA RELU, ADA 0.3 91.78 91.27
LENET+PYNADA LEAKY RELU, LEAKY ADA LEARNABLE 92.22 91.60‡

VGG-11 RELU - 94.07 93.38
VGG-11 LEAKY RELU - 93.90 93.21
VGG-11 ADA 1.0 94.15 93.48
VGG-11 LEAKY ADA 0.3 94.22 93.66†

VGG-11+PYNADA RELU, ADA 0.3 94.27 93.54
VGG-11+PYNADA LEAKY RELU, LEAKY ADA 1.0 94.24 93.47

grid search on the validation set of the corresponding task.
We consider learning rates between 10−3 and 10−5, mini-
batches of 10, 32, 64 or 128 samples and numbers of epochs
between 10 and 100. The parameter tuning is performed us-
ing the baseline architectures based on ReLU. Once tuned,
the same parameters are used for ADA, leaky ADA, Py-
NADA and leaky PyNADA2. Hence, the basic parameters
are tuned in favor of ReLU. The leak parameter for leaky
ReLU and leaky ADA is set to l = 0.01 in all the experi-
ments, without further tuning. We note that (leaky) ADA
and (leaky) PyNADA have two additional hyperparameters
that require tuning on validation. For the constant c, we
consider two possible values, either 0 or 1. For the parame-
ter α, we consider two options: (a) perform grid search in
the range [0.1, 1] using a step of 0.1, or (b) learn α using
gradient descent during training.

4.3. Results on Fashion-MNIST

Neural architectures. For the Fashion-MNIST data set,
we consider two MLPs and two CNNs (LeNet, VGG-11).

2Note that for PyNADA we consider both standard and leaky
activations. In leaky PyNADA, the basal dendrites are followed by
leaky ReLU and the apical dendrites are followed by leaky ADA.

We kept the same architecture as in the original paper for
VGG-11 (Simonyan & Zisserman, 2014), but for LeNet
(LeCun et al., 1998), we replaced the average-pooling layer
with max-pooling. The first MLP architecture (MLP-1)
is composed of one hidden layer with 100 units and one
output layer with 10 units (the number of classes). The
second MLP has two hidden layers with 100 units and 10
units, respectively, followed by the output layer with another
10 units. The considered MLP architectures are similar to
those attaining better results among the MLP architectures
evaluated by Xiao et al. (2017).

Hyperparameter tuning. We trained LeNet for 30 epochs,
using a learning rate of 10−3 for the first 15 epochs and 10−4

for the last 15 epochs. We trained MLP-1 and MLP-2 in
the same manner as LeNet. However, VGG-11 was trained
for 100 epochs, starting with a learning rate of 10−4 in the
first 50 epochs, decreasing it to 10−5 in the last 50 epochs.
We trained all models on mini-batches of 64 images. In
all the experiments with (leaky) ADA or (leaky) PyNADA,
we either validated or learned α and we set the parameter
c = 0.

Results. We present the results obtained on Fashion-MNIST
in Table 1. Our baseline MLP architectures obtain better
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Table 2. Gender prediction accuracy rates (in %) and age estimation MAEs for ResNet-50 on UTKFace. Results are reported with various
activations (ReLU, leaky ReLU, ADA, leaky ADA) and artificial neurons (standard and PyNADA). Test results of models that are
significantly better than corresponding baselines (ReLU or leaky ReLU), according to a paired McNemar’s test (Dietterich, 1998), are
marked with ‡ for the significance level 0.01.

TASK MODEL ACTIVATION α VALIDATION TEST

RESNET-50 RELU - 90.11 88.56
RESNET-50 LEAKY RELU - 89.93 88.91

GENDER RESNET-50 ADA 0.1 90.06 88.29
PREDICTION RESNET-50 LEAKY ADA 0.1 89.86 89.12

RESNET-50+PYNADA RELU, ADA 0.5 90.36 90.66‡

RESNET-50+PYNADA LEAKY RELU, LEAKY ADA 0.5 90.51 90.80‡

RESNET-50 RELU - 6.16 6.39
RESNET-50 LEAKY RELU - 5.85 6.01

AGE RESNET-50 ADA LEARNABLE 5.66 5.91‡

ESTIMATION RESNET-50 LEAKY ADA LEARNABLE 5.68 5.88‡

RESNET-50+PYNADA RELU, ADA 0.5 5.44 5.79‡

RESNET-50+PYNADA LEAKY RELU, LEAKY ADA 0.5 5.60 5.83‡

accuracy rates than those of Xiao et al. (2017), e.g. the
difference obtained for MLP-1 with ReLU is 1.78% (we
report 88.88%, while Xiao et al. (2017) report 87.10%). We
notice that leaky ReLU obtains slightly lower accuracy rates
than ReLU, the only exception being the result of LeNet on
the test set. When we replace ReLU with ADA, we notice
a slight accuracy drop on the validation set for the MLP
architectures, but, for the CNN architectures, the valida-
tion accuracy improves. Nonetheless, for both MLP and
CNN architectures, the accuracy of ADA on the test set
improves by up to 0.5% over ReLU. We obtain a significant
improvement, from 90.84% to 91.34%, for the replacement
of ReLU with ADA using LetNet. Interestingly, we notice
that the value of the cross-entropy loss is always lower (on
both validation and test sets) when we use ADA instead of
ReLU. When we employ PyNADA, the accuracy rates on
the validation and the test sets improve for all the architec-
tures. The largest improvement of PyNADA on the test set
is 0.69%, obtained with MLP-2. Our highest absolute gain
on Fashion-MNIST is 1.09%, obtained using MLP-2 with
leaky PyNADA (89.27%) instead of leaky ReLU (88.18%).

4.4. Results on UTKFace

Neural architecture. For gender prediction and age esti-
mation, we employ the ResNet-50 architecture (He et al.,
2016). Residual networks use skip connections to propagate
information over convolutional layers, avoiding the vanish-
ing gradient problem. This enables effective training of very
deep models, e.g. ResNet-50 is formed of 50 layers.

Hyperparameter tuning. All ResNet-50 variants are
trained on mini-batches of 10 samples using a learning rate
equal to 10−4. The models are trained for 15 epochs on
the gender prediction task, and for 100 epochs on the age
estimation task. For (leaky) ADA and (leaky) PyNADA, we

either validate or tune the parameter α, in the same time
setting the parameter c = 0.

Results. We present the gender prediction and age estima-
tion results in Table 2. In the gender prediction task, we
notice that ADA yields slightly lower results than ReLU,
while leaky ADA attains slightly better results than leaky
ReLU on the test set. We observe more significant differ-
ences in favor (leaky) PyNADA versus (leaky) ReLU. Our
highest absolute gain (2.1%) in the gender prediction task
is obtained when ResNet-50 is equipped with PyNADA
(90.66%) instead of standard neurons with ReLU (88.56%).
In the age estimation task, we notice that all versions of
(leaky) ADA and (leaky) PyNADA surpass (leaky) ReLU
by significant margins. With an MAE of 5.44 on the val-
idation set and an MAE of 5.79 on the test set, PyNADA
attains the best results in age estimation. With respect to
ReLU, PyNADA reduces the average error by 0.72 years on
validation and by 0.6 years on test.

4.5. Results on MOROCO

Neural architectures. For dialect identification, we con-
sider the character-level CNN models presented in (Butnaru
& Ionescu, 2019), which follow closely the model of Zhang
et al. (2015). The two CNNs share the same architecture,
being composed of an embedding layer, followed by three
convolutional and max-pooling blocks, two fully-connected
layers with dropout 0.5 and the final softmax classification
layer. The second architecture contains attention in the form
of Squeeze-and-Excitation (SE) blocks (Hu et al., 2018) in-
serted after every convolutional layer. For the SE blocks, we
set the reduction ratio to 64. For both architectures, we keep
the same size for the embedding (256) and the same number
of convolutional filters (128) as Butnaru and Ionescu (2019).
In fact, our baseline architectures (CNN and CNN+SE) are
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Table 3. Dialect identification accuracy rates (in %) and training times (in seconds per epoch) for two character-level neural models (CNN
and CNN+SE) on MOROCO. Results are reported with various activations (ReLU, leaky ReLU, ADA, leaky ADA) and artificial neurons
(standard and PyNADA). Training times are measured on a computer with Nvidia GeForce GTX 1080 GPU with 11GB of RAM. Test
results of models that are significantly better than corresponding baselines (ReLU or leaky ReLU), according to a paired McNemar’s test
(Dietterich, 1998), are marked with † or ‡ for the significance levels 0.05 or 0.01, respectively.

MODEL ACTIVATION α VALIDATION TEST TIME(S)

CNN RELU - 92.99 92.79 27
CNN LEAKY RELU - 93.04 92.90 30
CNN ADA LEARNABLE 93.97 93.68† 33
CNN LEAKY ADA 0.4 93.67 93.55† 37
CNN+PYNADA RELU, ADA LEARNABLE 93.95 93.61† 52
CNN+PYNADA LEAKY RELU, LEAKY ADA LEARNABLE 93.81 93.53† 57

CNN+SE RELU - 93.02 92.99 42
CNN+SE LEAKY RELU - 93.08 93.06 45
CNN+SE ADA LEARNABLE 93.83 93.99‡ 47
CNN+SE LEAKY ADA LEARNABLE 93.70 93.49† 51
CNN+SE+PYNADA RELU, ADA 0.5 93.81 93.72† 70
CNN+SE+PYNADA LEAKY RELU, LEAKY ADA LEARNABLE 93.90 93.61† 75

completely identical to those of Butnaru and Ionescu (2019).

Hyperparameter tuning. Since Butnaru and Ionescu
(2019) already tuned the hyperparameters of the character-
level CNNs on the MOROCO validation set, we decided to
use the same parameters and skip the grid search. Hence,
we set the learning rate to 5 · 10−4 and use mini-batches of
128 samples. Each CNN is trained for 50 epochs, keeping
the model with highest validation accuracy for evaluation
on test. For (leaky) ADA and (leaky) PyNADA, we obtain
optimal results with c = 1, while α is either validated or
optimized during training.

Results. We present the dialect identification results on MO-
ROCO in Table 3. First, we observe the baseline CNN and
CNN+SE models confirm the results reported by Butnaru
and Ionescu (2019). We also note that the reported the ac-
curacy rates are consistent across validation and test, for all
models. For the character-level CNN (without SE blocks),
we obtain the largest improvement on the test set when we
replace ReLU (92.79%) with ADA (93.68%). Nonetheless,
the improvements of leaky ADA, PyNADA and leaky Py-
NADA are all higher than 0.6% on the test set, and the
differences are statistically significant. The results are some-
what consistent among the two architectures, CNN and
CNN+SE. For example, for the CNN+SE model, we report
the largest improvement on the test set by replacing ReLU
(92.99%) with ADA (93.99%), just as for the CNN without
SE blocks. Our highest absolute gain on MOROCO is 1%.
Overall, the results indicate that all variants of (leaky) ADA
and (leaky) PyNADA attain significantly better results than
(leaky) ReLU.

Running time. Since ADA needs to compute the exponen-
tial function, it is more computational intensive than ReLU.

Moreover, PyNADA has twice more weights than a standard
neuron. Hence, in addition to the accuracy rates, we report
the training time (in seconds per epoch) in Table 3. With
respect to (leaky) ReLU, it seems that (leaky) ADA requires
5 or 6 additional seconds per epoch, which means that the
training times increases by 15% or 20%. Meanwhile, (leaky)
PyNADA seems to need about 25 to 30 extra seconds com-
pared to (leaky) ReLU, increasing the training time by 70%
or 100%. We thus conclude that the accuracy improvements
brought by (leaky) ADA and (leaky) PyNADA come with a
non-negligible computational cost.

5. Conclusion
In this paper, we proposed a biologically-inspired activation
function and a new model of artificial neuron. The novel
apical dendrite activation function (i) enables individual
artificial neurons to solve non-linearly separable problems
such as the XOR logical function and (ii) brings signifi-
cant performance improvements for a broad range of neural
architectures and tasks. Our research also opens a few di-
rections for future research. Since the activation damps
along the positive side of the domain, we believe it is worth
investigating if ADA is more robust to out-of-distribution
or adversarial examples. As the gradient saturates on the
positive side, other directions of study are to inject noise
into ADA to avoid saturation (Gulcehre et al., 2016) or to
employ alternative optimization methods (that do not rely
on gradients) in conjunction with ADA. In future work, we
could also study if ADA or PyNADA are more useful in
certain layers.
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