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Abstract

A phaseless Gauss-Newton inversion (GNI) algorithm is developed for microwave imaging applications. In contrast to full-
data microwave imaging inversion that uses complex (magnitude and phase) scattered field data, the proposed phaseless GNI
algorithm inverts phaseless (magnitude-only) total field data. This phaseless Gauss-Newton inversion (PGNI) algorithm is
augmented with three different forms of regularization, originally developed for complex GNI. First, we use the standard
weighted L2 norm total variation multiplicative regularizer which is appropriate when there is no prior information about the
object being imaged. We then use two other forms of regularization operators to incorporate prior information about the object
being imaged into the PGNI algorithm. The first one, herein referred to as SL-PGNI, incorporates prior information about
the expected relative complex permittivity values of the object of interest. The other, referred to as SP-PGNI, incorporates
spatial priors (structural information) about the objects being imaged. The use of prior information aims to compensate for
the lack of total field phase data. The PGNI, SL-PGNI, and SP-PGNI inversion algorithms are then tested against synthetic

and experimental phaseless total field data.
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Abstract—A phaseless Gauss-Newton inversion (GNI) algo-
rithm is developed for microwave imaging applications. In
contrast to full-data microwave imaging inversion that uses
complex (magnitude and phase) scattered field data, the proposed
phaseless GNI algorithm inverts phaseless (magnitude-only) total
field data. This phaseless Gauss-Newton inversion (PGNI) algo-
rithm is augmented with three different forms of regularization,
originally developed for complex GNI. First, we use the standard
weighted L2 norm total variation multiplicative regularizer which
is appropriate when there is no prior information about the object
being imaged. We then use two other forms of regularization
operators to incorporate prior information about the object being
imaged into the PGNI algorithm. The first one, herein referred to
as SL-PGNI, incorporates prior information about the expected
relative complex permittivity values of the object of interest.
The other, referred to as SP-PGNI, incorporates spatial priors
(structural information) about the objects being imaged. The use
of prior information aims to compensate for the lack of total
field phase data. The PGNI, SL-PGNI, and SP-PGNI inversion
algorithms are then tested against synthetic and experimental
phaseless total field data.

Index Terms—Microwave imaging, phaseless (magnitude-only)
inversion, inverse scattering, Gauss-Newton inversion (GNI), and
regularization.

I. INTRODUCTION

LECTROMAGNETIC inverse scattering algorithms are

used in the microwave imaging (MWI) modality to
calculate a quantitative image of the complex dielectric (per-
mittivity) profile in a region of interest (ROI). The ROI, which
is commonly referred to as the imaging/investigation domain,
contains unknown objects that can often be characterized by
analyzing these dielectric reconstructions.

In a microwave imaging system, transmitting antennas
successively interrogate the ROI with incident microwave
radiation and the resulting total electric (and/or magnetic)
fields are measured by receiving antennas on a measurement
domain S outside the ROI. Inverse scattering algorithms then
process the measured data, as well as the known incident
field data on S to reconstruct the complex dielectric profile
in the ROI. Therefore, these algorithms inherently enable a
non-destructive and non-ionizing imaging modality that can
be used in many applications such as biomedical imaging,
non-destructive evaluation, and remote-sensing [1]—[4].
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A. Full Data (Complex) Inversion

Typically, inverse scattering algorithms use the magnitude
and phase (i.e. complex data) of the measured total and
incident electric fields to reconstruct the complex permittivity
profile within the ROI. (The total and incident fields refer
to the measured fields in the presence and absence of the
objects being imaged, respectively.) The availability of these
complex data enable the calculation of the scattered field data,
defined as the difference between the total and incident fields
on S. The scattered field data facilitate the imaging process;
these data can be thought of as being generated solely by the
objects being imaged based on the electromagnetic volume
equivalence principle. Therefore, the (complex) scattered field
data are processed (inverted) to reconstruct the unknown
complex permittivity profile in the ROI. The availability of
the scattered field data also enable the use of the so-called
scattered field calibration technique [5], which has shown
promise to calibrate raw microwave imaging data. Several
inverse scattering algorithms (or, simply, inversion algorithms)
have been proposed to invert complex scattered field data,
e.g., the multiplicatively-regularized contrast source inversion
(MR-CSI) [6] and multiplicatively-regularized Gauss-Newton
inversion (MR-GNI) [7], [8] algorithms. Due to the use of
the multiplicative regularization scheme, these algorithms offer
automated adaptive regularization [9], [10]. Furthermore, in
conjunction with the scattered field data, these algorithms have
also been modified to take into account prior information
regarding the ROI. For example, the multiplicative regular-
ization schemes of these two methods have been modified
to incorporate prior information about the expected complex
permittivity values within the ROI [11], [12].

B. Phaseless Data Inversion - Overview

Although these state-of-the-art full data inverse scatter-
ing algorithms show promise with many applications, their
requirement of using both magnitude and phase data can
be limiting in some ways. For example, measuring phase
information is generally challenging at high frequencies and
typically requires expensive equipment, e.g., vector network
analyzers, as compared to magnitude-only measurements using
affordable power meters. The affordability is, in particular,
important depending on the specific imaging application. For
example, it may not be reasonable for microwave biomedical
imaging to be phaseless due to its required high sensitivity and
specificity, however, for some industrial non-destructive testing
applications the achievable accuracy from an affordable phase-
less microwave imaging system can be sufficient and may be



desirable. The use of phaseless data has also been considered
in another area that is closely related to microwave imaging:
near-field antenna measurements and diagnostics. Near-field
antenna measurements generally require both magnitude and
phase data for near-field to far-field transformation. However,
phaseless near-field antenna measurement techniques can be
helpful when phase data is not accurate or when near-field
measurement system cost must be reduced. In particular, in
planar near-field antenna measurements when relatively high
probe positioning errors are present, it has been shown that
a phaseless approach can outperform the full data (magnitude
and phase) approach [13]. This is generally due to the fact
that the measured phase data are more sensitive to probe posi-
tioning errors as compared to measured magnitude data [13].
For these reasons, phaseless (also known as magnitude-only,
amplitude-only or intensity-only) approaches to inverse source
and inverse scattering algorithms have been considered. In
particular, many phaseless inverse scattering algorithms, such
as phaseless MR-CSI [14], [15] have been reported in previous
years [16]-[27].

C. Phaseless Data Inversion - Strategies

Broadly speaking, two main strategies are used in phaseless
data inverse scattering algorithms [22]. The first strategy is
a two-step process where the first step retrieves the phase
data from measured magnitude-only data, and then standard
full data (complex) inverse scattering algorithms invert the
retrieved complex scattered field data in the second step [21],
[24]. This phaseless strategy in microwave imaging is similar
to the iterative Fourier technique [28] in phaseless planar
near-field antenna measurements in which the phase data on
measurement planes are directly retrieved from two sets of
magnitude-only data based on the correlation between the
magnitude of the data on two different measurement planes
via the iterative use of the plane wave spectrum. The second
strategy (the focus of this paper) is a one-step process where
the phaseless data are directly inverted to reconstruct the
complex permittivity profile of the ROI [14], [16], [18]. This
phaseless approach in microwave imaging is similar to the
phaseless source reconstruction method in near-field antenna
measurements where the phaseless data are directly inverted
to reconstruct the equivalent currents of the antenna under
test [29]. Herein, we provide a method that falls under the
second strategy.

From an information point of view, it is clear that when
the phase data are not available, we ideally need to provide
the inversion algorithm with some extra information. For
example, in phaseless planar near-field antenna measurements,
the magnitude data are collected on two measurement planes
as opposed to one measurement plane for the case of complex
(magnitude and phase) near-field antenna measurements [28],
[29]. Although having two planes of measured phaseless data
is practical in antenna measurements due to the use of a
mechanically scanning probe, this approach is not practical
in typical microwave imaging systems because microwave
imaging systems typically use co-resident stationary antenna
elements [30], [31] to accelerate data collection in order to

minimize image artefacts that may be caused from the poten-
tial movement of the objects being imaged. In addition, the
use of a second measurement domain in phaseless microwave
imaging, such as two rings of co-resident antennas, can result
in blockage effects. Recently, the use of specialized probes
to recover the phase from magnitude-only data has been
proposed and experimentally tested with cylindrical dielectric
targets [32], [33]. However, it is still worthwhile in phaseless
microwave imaging, to investigate other methods to inject
information into the inversion algorithm to compensate for
the lack of phase data, without having to alter the hardware
of existing microwave imaging systems.

In this paper, we first present a phaseless GNI algorithm
(there is no explicit phase retrieval step). The phaseless
GNI algorithm is then augmented with different forms of
multiplicative regularization techniques in order to handle
the inherent ill-posedness of the problem and to add prior
information to make up for the lack of phase information.
To the best of the authors’ knowledge, this is the first time
that a multiplicatively-regularized phaseless GNI algorithm
has been developed. As will be seen, the presented phaseless
GNI algorithm starts from a trivial initial guess (relative
permittivity of the background) for the ROI, as opposed to
a more sophisticated initial guess'.

The first regularization scheme used herein is weighted
Lo norm total variation multiplicative regularization. When
the basic phaseless GNI algorithm is augmented with this
regularization scheme, we refer to it as PGNI (‘p’haseless
GNI). We emphasize that PGNI uses the same regularization
technique as the phaseless MR-CSI algorithm in [14]. Then,
we incorporate prior information into the PGNI algorithm to
compensate for the lack of the phase data. First, the PGNI
algorithm is augmented with another multiplicative regularizer
that incorporates prior information about the expected complex
permittivity values (shape and location regularization) in the
ROI. We refer the resulting algorithm as SL-PGNI. Finally the
PGNI is also augmented with a multiplicative regularizer that
takes into account prior structural (spatial prior regularization)
information in the ROI. Herein, this algorithm is referred to as
SP-PGNI. These regularization methods, originally developed
for full data (complex) inversion, are explained in more detail
in later sections.

We start by briefly reviewing the full data (complex) MR-
GNI algorithm in Section II for the sake of completeness.
Then, in Section III, the phaseless GNI formulation is de-
veloped, along with an overview of the different forms of
regularization schemes used to augment this phaseless GNI
algorithm. Section IV will explain how the raw experimental
data are calibrated prior to the inversion process and Section
V will explain the limitation of our phaseless GNI imple-
mentation. Next in Section VI, reconstruction results obtained

'In contrast to the GNI algorithm, the standard initial guess for CSI
relies on the back propagation technique which requires the phase of the
data. Therefore, CSI’s initial guess is not directly applicable to the phaseless
implementation. In [14], an ad hoc procedure based on numerical simulations
has been suggested to adapt this initial guess to the phaseless case. In
particular, in [14], an ad hoc phase has been assumed for the total field data.
Based on this assumption, the scattered data are formed and used for back
propagation.



from the inversion of synthetic and experimental data sets are
shown and discussed. Finally, the conclusions of this paper are
presented in Section VII. A time-dependency of exp(jwt) is
considered in this paper along with a 2D scalar configuration
for the imaging setup where the electric field is assumed to
be perpendicular to the cross section being imaged.

II. GNI - A REVIEW

First, we formally define some terms and then briefly review
the standard Gauss-Newton inversion (GNI) algorithm that
utilizes full (complex) field data (i.e., magnitude and phase
information). Let us denote the incident and total fields by
E™ and E respectively. The difference between the total and
incident fields, i.e., the scattered field, is then denoted by E5,
For full data (FD), the inverse scattering problem may then be
defined as the minimization of the following data misfit cost
functional

C™(x) = n||F - B ()|’ (1)

over x where ||-|| is the Lo norm taken over the measurement
domain S. In addition, F' is a complex vector that stores the
measured scattered field data on S, and the normalization
factor 7 is set to || F|| . Moreover, E*(x) represents the
simulated scattered field due to a predicted relative complex
permittivity contrast x. The contrast x(r) in the ROI (the
unknown we seek) is defined as

yry 2 0= )
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where €(r) and is the relative complex permittivity at position
r within the ROL In addition, €, is the relative complex per-
mittivity of the background medium. When the GNI algorithm
is applied to minimize (1), the contrast at the n'" iteration is
updated as X,4+1 = Xn + VnAXxn Where v, is the step length
(calculated as in [34, Section 9]), and Ay, is the correction
found by solving

[323,)Ax, = -Jd,. 3)

In the above equation, J,, denotes the Jacobian (sensitivity)
matrix that represents the derivative of the scattered field data
on S with respect to the contrast y. The subscript n of J,
indicates that this derivative is evaluated at x = x,, and the su-
perscript ‘H’ denotes the Hermitian (complex conjugate trans-
pose) operator. Furthermore, d,, represents the complex dis-
crepancy vector at the n'M iteration; i.e., d,, = E**(y,,) — F.
Due to the ill-posedness of the inverse scattering problem,
(1) needs to be augmented with a regularization term. For
example, at the n' iteration of the GNI algorithm, C*P () may
be multiplicatively regularized as Cr%(x) = CIP(x)CMR(x)
where CMR is the weighted Ly norm total variation multiplica-
tive regularizer (MR) given as [7], [8], [35]

CMR(X) — l |VX(I‘)|2 + 572L S.
" A Jrot [Vxn(r)[? + 02

In the above equation, A denotes the area of the ROI, and 67% is
the steering parameter set to C'°(,,)/(AzAy) where AzxAy
is the area of a single rectangular cell within the discretized
ROI; the integration is performed over the area of the ROI.
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Applying the GNI algorithm to the multiplicatively-regularized
cost functional Cp,®, (3) will change to the following regular-

ized form

where L£,, is the regularization operator. This operator, when
operated on a vector of appropriate size, say x, is defined as

Lpr = —lv . ;QV:E . (6)
A |V xn(r)] +572L

In the above expression, ‘V-” and ‘V’ denote the divergence
and gradient operators, respectively. Finally, the weight of this
operator in (5), i.e., 35, is C*P(x,,)/n. Herein, we refer to this
algorithm as the MR-GNI algorithm. We emphasize that the
abbreviation MR-GNI, when used in this paper, implies the
use of full (complex) data. This completes our review of the
MR-GNI algorithm which was mainly based on [7], [8], [35].
It is instructive to note that the right hand side of (5) consists
of two components. The first one represents the (negative)
gradient of the data misfit cost functional CtP (), thus, helping
the algorithm extract the information within F' to reconstruct
x- The second term represents the (negative) gradient of the
regularization term CMR which helps the algorithm stabilize the
inversion process and apply some edge-preserving operations.
The relative weight of these two gradients are controlled by
Br, which comes directly from the multiplicative nature of the
regularized cost functional C™®. Finally, the left hand side of
(5) represents the operation of the Hessian matrix> on Ay,,. As
expected, the Hessian consists of two parts as well: one for the
data misfit cost functional, and the other for the regularization
term.

III. PHASELESS GNI
A. Phaseless Data Misfit Cost Functional

Herein, we begin to discuss the phaseless GNI algorithm.
The lack of phase information prevents the scattered field data
from being calculated. Therefore, the data to be inverted for
the phaseless GNI algorithm will be the magnitude of the total
field data. Herein the magnitude of the total field data is stored
in the vector M. We then form the phaseless data misfit cost
functional as

c(x) = ¢|M? - [EGP| 7

where |E(x)| denotes the magnitude of the simulated total

field data due to a predicted contrast x. In addition, ¢ is the
normalization factor that has been set to
; -2

¢ = [[m® =" ®)

Similar to the full data (complex) MR-GNI algorithm,

the contrast at the n™ iteration is updated according to

Xnt+l = Xn + UnQXxn (Where v, was calculated using the

2In the GNI algorithm, the Hessian matrix is obtained by ignoring the
second derivative of E with respect to x, e.g., see [36]. In other words,
the GNI algorithm applies Newton optimization to the regularized data misfit
cost functional. However, the second-order derivative of the cost functional is
calculated under the approximation that the second derivative of the scattered
field (not the cost functional) with respect to x is zero.



methods in [34, Section 9]). As derived in the Appendix, the
correction A, at the n™ iteration is then found from

231 diag(2 B (xa)* = M*)J,| A =
=23 [E(xn) © (E(a)* = M?)] 9

where ‘diag’ represents the diagonal operator that turns a
vector into a diagonal matrix, and ©® denotes the element-
wise (Hadamard product) of two vectors of the same size.
Note that the Jacobian matrix J,, used in (9) is the same
as that used in (3). This may come as a surprise since in
the full data (complex) GNI, J,, represents the derivative
of the scattered field with respect to the contrast at the n
iteration of the algorithm; and in phaseless GNI J,, should
represent the derivative of the foral field with respect to the
contrast at the n™ iteration. However, since the total field is
the summation of the incident and scattered fields, and noting
that the incident field does not depend on the contrast, the
derivative of the total field with respect to the contrast is the
same as the derivative of the scattered field with respect to
the contrast; i.e., ag:a‘ = g—f. Also, note that in (9), E(xy)
represents the vector that contains the simulated total field on
the measurement domain S due to the predicated contrast x.,.
As can be seen in (9), both magnitude and phase of F(x)
have been used. This is not contradictory to phaseless inversion
since E(x,) represents the simulated total field data due to
the predicted contrast X, and not the phaseless measured data.
Finally, we note that in all the examples shown herein, we
use a trivial initial guess, x = 0, to start the phaseless GNI
algorithm.

B. Regularization

Similar to the full data (complex) GNI algorithm that
required regularization, the phaseless GNI algorithm also
requires the regularization of its cost functional (7). Note
that regularization is typically performed on the contrast
X; therefore, the regularization operators for the phaseless
problem can be the same as the complex problem. Herein, we
consider three types of multiplicative regularization schemes.
The first is the weighted Lo norm total variation multiplicative
regularizer given in (4), which does not assume any particular
prior information about the contrast profile in the ROI. The
second is developed for shape and location reconstruction [11],
[12]. This regularization assumes prior information about the
complex permittivity values (thus, the contrast values) within
the ROI. The problem then becomes one of finding the shape
and location of the dielectric scatterers within the ROIL. The
third assumes prior information about the shape (structural
information) of the target’s regions of identical relative per-
mittivity [37], [38]. If this spatial prior regularizer is used,
the problem becomes one of reconstructing the appropriate
complex permittivity values within the known regions of the
ROI. When the phaseless GNI algorithm is used with each of
these three regularization schemes, we refer to the resulting
three different regularized algorithms as PGNI, SL-PGNI and
SP-PGNI, respectively.

C. PGNI Algorithm

Similar to the complex GNI algorithm, we multiplicatively
regularize the phaseless data misfit cost functional as

Cr¥(x) = C(x) CY%(x)-

Applying the GNI algorithm to this regularized phaseless cost
functional, (9) will turn into the following regularized form

(10)

|23 ding (2 B2 = M3 4+ 7L | A =

=23 [E(xn) © (|E(xn)]> = M?)] = 7 Lnxn  (11)

where 7, is C(x»)/¢. Herein, we refer to this phaseless algo-
rithm as the PGNI algorithm. Note that the PGNI algorithm
does not use any particular prior information about the ROI,
and can therefore be considered as a blind phaseless inversion
algorithm.

D. SL-PGNI Algorithm

This regularization scheme incorporates prior information
about the expected contrast values within the ROI. Therefore,
it is mainly used to reconstruct the shape and location of the
dielectric scatterers within the ROI. To this end, we augment
(10) with an extra regularization term

CoF¥(x) = C(x) CYR(x) CF(X)

where the superscript ‘SL’ notes the suitability of this regular-
izer for shape and location reconstruction. This regularization
term is given as [11], [12]

(12)

L 2 2

1 —
CSL(X) . |X(r) Xfl 2+ an ds
A Jror 7 [xn(x) = xel* + a2

13)

where y, for £ = 1 to L denotes the expected values of the
complex contrast, and Hle denotes the product of L different
functions. The simplest form of this regularization term is
binary regularization in which we are dealing with two values
of the contrast: x; = 0 which is for the background medium,
and xo2 which represents the expected contrast value of the
scatterer. We emphasize that the given prior information Y,
contains no knowledge about the shape and location of the
scatterers. In addition, o2 is the steering parameter which is
set to a2 = C(x»). Applying the GNI algorithm to (12) will
change (11) to

23 diag (2| E|? — M), + 70 Lon + 70 Srey Rn,€:| Axn
= =230, © (Baf* = M*)] = 7L
— T 35y Rone(Xn — X)

where the regularization operators R, ¢ when operating on a
vector x of appropriate size are given as [12]

(14)

1 1
R ez = —diag z.
A <|Xn(r)_X£2+04721>

We refer to this phaseless GNI algorithm with prior expected
contrast values as SL-PGNIL.

15)



E. SP-PGNI Algorithm

In contrast to the above shape and location regularization
scheme which assumed prior information about the expected
complex permittivity values, we now consider a spatial prior
regularization scheme which assumes prior spatial (or struc-
tural) information in the ROI without making any assumptions
regarding their complex permittivity values. In this prior in-
formation approach, the shapes of the regions having identical
permittivity are assumed to be known?. If this regularization
scheme is used, the resulting inverse scattering algorithm
attempts to reconstruct the relative complex permittivity values
within these regions. Intuitively, one can think of this reg-
ularizer as reducing the amount of x variables in the ROI,
because there are fewer regions of identical permittivity than
the original number of discrete cells in the ROL. To this end,
(10) is augmented with an extra regularization term

CPE(x) = C(x) CYR(x) CF (x)

where the superscript ‘SP’ denotes the spatial prior informa-
tion given to the regularizer. This regularization term is given
as [37], [38]

(16)

_ po (A +72
Ip © (Axa)lI” + 72

In CSP(x), A is a sparse matrix consisting of only zeros
and *1. Its purpose is to enforce equality between contrast
values in the specified regions of identical permittivity. In
other words, the prior structural information of the ROI is
stored in the matrix A via several 0 and +1 elements. (This
choice of A was also utilized in [40], [41] in the form of
an additive regularization scheme for complex GNI.) The
probability vector p contains elements 0 < p; < 1. In this
work, p; has been set to 1 for all ¢’s. Finally, 72 is a steering
parameter chosen to be 72 = C(x,)N where N is the length
of the vector x [37, Section D]. Applying the GNI algorithm
to (16) will result in

Cyr(x)

a7

[ZJrljdiag(mEn'Q - M2)Jn + 7Ly 4+ ThSn AXn =

—2JM(E, © (|Eal®> = M?)] = TuLnXn — TaSnXn  (18)

where the operator S,, acting on a vector x of appropriate size
is

1
xr = 3 2
lp © (Axa)|I” +~2

Herein, we refer to this phaseless GNI algorithm with prior
spatial information as SP-PGNIL.

A" (po(po (Az)). (19)

IV. CALIBRATION OF THE EXPERIMENTAL DATA
A. Classification — Review

In microwave imaging, there will always be some discrep-
ancy between the actual measurement environment, and the
numerical model used in the inversion algorithm. To alleviate

3For example, in a combined magnetic resonance imaging (MRI) and
microwave imaging system, the high resolution structural information obtained
from the MRI can be given as spatial prior information to the microwave
imaging system [39].

these discrepancies, so-called data calibration techniques such
as the scattered field or the incident field calibration meth-
ods [5] are used.* For phaseless inversion, the scattered field
data are not available, and therefore, the scattered field calibra-
tion technique cannot be used. Therefore, we decided to use
the incident field calibration technique for our experimental
data. There are at least two ways that incident field calibration
can be applied. In the first method, a simulated incident field,
such as a zeroth-order Hankel function of the second kind is
assumed for the incident field, and then complex calibration
coefficients are found to reduce the discrepancy between the
simulated and measured incident field data. These calibration
coefficients are then used to modify the raw experimental data.
The second method is a more general way, which is based on
the so-called source reconstruction method (SRM).

B. SRM Calibration

In the SRM-based calibration method, the SRM is used to
find equivalent surface current distributions for the transmitting
antennas that can also generate the measured incident field
data. Once these equivalent currents are found, they can be
used in the GNI algorithm to represent the actual antennas.
Since these equivalent currents are associated with the raw in-
cident field data, the raw phaseless total field data are directly
given to the inversion algorithm to be inverted. Therefore,
as opposed to the previous calibration methods, the SRM-
based calibration method makes it possible to invert the raw
experimental data directly.

Herein, we have used the second method; i.e., the SRM
for incident field calibration. The details of this calibration
method can be found in [44]. To this end, we have utilized the
SRM to replace each transmitting antenna with its equivalent
currents. That is, for example, if 24 antennas are present in a
microwave imaging setup, we have replaced them with 24 sets
of equivalent currents. We have used both the magnitude and
phase of the measured incident field. Thus, the inverse source
problem associated with the SRM becomes a linear inverse
source problem. Due to the fact that the L-curve method is
particularly suited for linear ill-posed problems [10], [45],
we have used the L-curve method to choose an appropriate
solution when performing SRM.®

V. LIMITATION

Note that the above calibration method requires the mag-
nitude and phase of the incident field data (not the phaseless
total field data). The presence of the phase data for the incident
field is not a bad assumption since it can be regarded as part
of system characterization (antenna characterization) prior to

4Similar to the calibration object in radar cross section measurements,
the scattered field calibration technique in microwave imaging uses an
object, such as a metallic cylinder [42], for which the complex scattered
fields are analytically known. These analytical expressions and the measured
scattered field data are then compared to construct complex-valued calibration
coefficients, which will then used to calibrate the actual measured data.

5The source reconstruction method is, in fact, an electromagnetic inverse
source algorithm [43].

5The L-curve method requires determining the knee point of the L-curve;
in our implementation the knee point is chosen in an ad hoc manner.



performing imaging. This assumption is also present in many
other phaseless microwave imaging algorithms [14], [15], [21],
[22], [24]. In all of these algorithms, the total field data, but
not the incident field data, are assumed to be phaseless. If this
assumption is not made, we would have to use a phaseless
SRM algorithm, e.g., see [29], to characterize the antennas
using measured phaseless incident fields. Once the equivalent
currents of the antennas are obtained using phaseless incident
fields, it can be used in the phaseless GNI algorithm similar to
the above. Therefore, in summary, similar to other phaseless
microwave imaging algorithms, this paper assumes phaseless
total field data but considers complex incident field data.

VI. RESULTS

Herein, we show synthetic and experimental results to
evaluate the performance of our phaseless GNI algorithms.
First, the PGNI, SL-PGNI, and SP-PGNI algorithms are used
to reconstruct images of a pair of lossy concentric squares in
the ROI using synthetically generated data. Next, experimental
data collected from the Institut Fresnel in France [46] are used
to validate the PGNI, SL-PGNI, and SP-PGNI algorithms.
Because the experimental data from Institut Fresnel are from
lossless targets, we then consider experimental data obtained
from a skinless bovine leg [35] to evaluate the performance
of the PGNI, SL-PGNI, and SP-PGNI algorithms against a
lossy object. In addition to lossy versus lossless objects, there
are two other differences between these two data sets: (I) the
Fresnel data sets use a mechanical scanning probe to collect
the data whereas the bovine leg data are collected by 24 co-
resident dipole antennas; (II) the background medium in the
Fresnel data sets is air whereas the background medium in the
bovine leg data set is salty water.’

Since these experimental data sets all contained measured
magnitude and phase data, we removed the phase of the
measured total field data, and only worked with the measured
magnitude-only total field data. Finally, we note that the
iterative nature of the phaseless inversion algorithms means
that a stopping condition is necessary. In this work, we stopped
the algorithm when C(x,,) decreased below 10~3 or when the
change in the reconstructed contrast was smaller than 10~*
after two consecutive iterations.

A. Synthetic Concentric Squares Data Set

To validate our phaseless GNI algorithms, synthetic data
at 4 GHz were created from a pair of concentric dielectric
squares with a background of free-space (¢, = 1). The relative
complex permittivities of the outer and inner squares were
€& = 1.3 —0.45 and ¢, = 1.6 — 0.2j, respectively, see
Figure 1(a)-(b). For phaseless data collection, 36 transceivers
were located on a circle of radius 76 cm around the origin.
(The transceivers are assumed to be infinite line sources,

"To reduce unwanted reflections, the Fresnel data sets were collected in an
anechoic chambers with absorbers. On the other hand, for the bovine leg data,
salt has been added to water to make it lossy, thus reducing the reflections
from the imaging chamber wall. This is necessary since the imaging algorithm
assumes a free space Green’s function that does not take into account the
reflections from the walls of the imaging chamber.

thus, they are numerically modelled by zeroth-order Hankel
functions of the second kind.) The ROI was discretized into
43 by 43 square elements and was 166 mm by 166 mm in
size. The inversion was done at a single frequency of 4 GHz.®
The results from attempting to reconstruct the lossy concentric
squares from phaseless total field data using the PGNI, SL-
PGNI, and SP-PGNI algorithms are shown in Figure 1(c)-(h).
As noted earlier, the PGNI is blind phaseless inversion (no
prior information is given to the algorithm). In the case of SL-
PGNI, the phaseless inversion algorithm was provided with the
true three contrast values as prior information, i.e., the contrast
value of the background medium and the contrasts of the two
squares. The SL-PGNI then reconstructs the shape and location
of the objects being imaged. Finally, in the case of the SP-
PGNI, the spatial map of the target (i.e. the regions of identical
permittivity) was provided to the phaseless inversion algorithm
as prior structural information. The SP-PGNI then reconstructs
the complex permittivity values in these spatial regions. As
can be seen, the SL-PGNI and SP-PGNI reconstructions were
more accurate than that of the PGNI algorithm. This is to be
expected as the latter two algorithms include more information
about the objects being imaged whereas the PGNI algorithm
is a blind inversion.

B. Experimental FoamDiellntTM Data Set

To study the performance the phaseless GNI algorithms with
experimental data, we consider the measured data provided by
the Institut Fresnel in France [46]. The phase of the measured
total field was disregarded and only its magnitude data were
used. The first target consists of two dielectric cylinders, one
inside the other, and the background is air. The inner-most
cylinder is 31 mm in diameter with a relative permittivity of
€, = 3£ 0.3, and is slightly offset from being concentric
with the outer cylinder by 5 mm in the z-direction. The
outer cylinder has a relative permittivity of €, = 1.45 £ 0.15
and a diameter of 80 mm. This target is referred to as
FoamDiellntTM by [46] and is shown in Figure 2(a). Note
that the imaginary parts of the complex permittivities of
these cylinders are zero, and therefore, the objects being
imaged are lossless. The experimental dataset used for the
FoamDielIntTM inversions included eight transmitters and 241
receivers for each transmitter. The transmitters and receivers
were located 1.67 m from the centre of the ROI [46] and the
ROI was discretized into 65 by 65 elements and was 150 mm
by 150 mm in size. The frequency of inversion was 2 GHz.

In Figure 2(b)-(c) the result of inverting the FoamDiellntTM
data with PGNI are shown and the reconstructed overall shape
and permittivities are reasonable; however, they are not very
accurate. For example, the reconstructed size of the inner
cylinder is greater than the actual one, and its reconstructed
permittivity is smaller than its true permittivity. In addition,
there is a small imaginary part present in the reconstructed
permittivity. In Figure 2(d)-(e), the reconstructed permittivity
using SL-PGNI is shown. In the SL-PGNI algorithm, the
relative permittivities of the cylinders are assumed to be known

8The synthetic data were created on a different grid to avoid the so-called
inverse crime.
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Fig. 1. The real (left) and imaginary (right) parts of the reconstructed relative
permittivity from the inversion of the synthetically generated phaseless total
field data from two lossy concentric squares (first row) at 4 GHz using
the PGNI (second row), SL-PGNI (third row), and SP-PGNI (fourth row)
algorithms, respectively.

and are given as prior information to the phaseless inversion
algorithm. As a result, the SL-PGNI algorithm reconstructs the
shape and location of the target more accurately compared to
the blind phaseless inversion algorithm (PGNI). Similar to the
PGNI reconstruction, the SL-PGNI reconstruction also shows
small imaginary parts in the complex permittivity (i.e., some
small loss).”

9The fact that there are small imaginary parts in the reconstructed per-
mittivity using the SL-PGNI algorithm may come as a surprise. This is
due to the fact that the SL-PGNI gets the value of the permittivity as the
prior information. In this particular inversion, we have provided the SL-PGNI
algorithm with the relative permittivity of 3 and 1.45 (and, of course the
relative permittivity of 1 for the background). That is, the imaginary parts
of the relative complex permittivities in the prior information were zero.
However, these values are only enforced as soft regularization in the sense
that the inversion algorithm will favour these values but still has the chance
to not completely enforce them.

ROI
L
I
I
I
L
L
L
L
!
1
L
L
L
)
i
o
b
Vo
5 mm
e =3+03
e = 1.454+0.15
Me, =1
(@
. 0
0.06 -0.05
0.04 0.1
Y 0.02 -0.15
=
-0.02 -0.25
] -0.04 03
0.06 -0.35
0.4
-0.05 0 0.05 -0.05 0 0.05
x[m] x[m]
(b) ()
. 0
0.06 -0.05
0.04 0.4
y 0.02 0.15
=
-0.02 -0.25
. -0.04 0.3
-0.06 035
0.4
-0.05 0 0.05 -0.05 0 0.05
x[m] x[m]
(G e
. 0
0.06 -0.05
0.04 0.1
’ 0.02 -0.15
E o 02
=
-0.02 -0.25
. -0.04 03
0.06 -0.35
0.4
-0.05 0 0.05 -0.05 0 0.05
x[m] x[m]
® (8)

Fig. 2. The FoamDiellntTM Fresnel data [46], without the phase of the
measured total field, are inverted. An illustration of the true target is shown
(top row) before showing the reconstructed permittivity results for a single
frequency of 2 GHz from the PGNI (second row), SL-PGNI (third row), and
SP-PGNI (fourth row) algorithms. The real (left) and imaginary (right) parts
of the reconstructed relative permittivity from the inversion are reported.

We now invert these phaseless measured data using the
SP-PGNI algorithm. To this end, we need to give the struc-
tural information of this target as prior information to SP-
PGNI. Ideally, this spatial prior information should come
from a higher resolution imaging modality such as magnetic
resonance imaging (MRI). Once high resolution structural
information is given to SP-PGNI, this inversion algorithm
will aim to find the complex permittivity values in different
regions from phaseless data. However, since MRI data were
not available for this target, we use a different method to
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Fig. 3. The FoamTwinDielTM dataset [46] without the phase of the measured
total field, are inverted. An illustration of the true target (top row) is presented.
The real (left) and imaginary (right) parts of the reconstructed relative
permittivity from inversions at 4 GHz using the PGNI (second row), SL-PGNI
(third row), and SP-PGNI (fourth row) algorithms are shown.

create the spatial prior map; we used the full data (complex)
MR-GNI algorithm to invert the data set at 4 GHz, 6 GHz
and 10 GHz simultaneously. The achieved inversion result
is then used to create spatial priors for this target. (Note
that we do not provide any prior information regarding the
complex permittivity values for SP-PGNI.) These spatial priors
are then given to the SP-PGNI algorithm to find the complex
permittivity at these regions. The reconstruction results using
the SP-PGNI algorithm are shown in Figure 2(f)-(g).

C. Experimental FoamTwinDielTM Data Set

Next, inversion results for the FoamTwinDielTM experi-
mental data from the Institut Fresnel are shown [46]. (Note
that we once again disregard the phase and invert just the
magnitude of the total field data.) For this experiment, the
target is similar to the FoamDiellntTM case, except there is
another small cylinder with the same dielectric properties and
size as the inner-most cylinder external to the outer cylinder.
The two small cylinders are 55.5 mm apart. An illustration
of the FoamTwinDielTM target is shown in Figure 3(a). The
data collection for this test included 18 transmitters with 241
receivers each. Once again, the transmitters and receivers
are located on a circle of radius 1.67 m and the ROI was
discretized into a 65 by 65 grid with side lengths of 150 mm
each. The results of the inversion using the PGNI, SL-PGNI
and SP-PGNI algorithms are shown in Figure 3(b)-(g) for a
frequency of 4 GHz. (Similar to the previous example, the spa-
tial priors for the SP-PGNI algorithm were obtained through
a multi-frequency full-data MR-GNI algorithm.) In addition,
similar to the previous example, the relative permittivity values
given as prior information to the SL-PGNI algorithm are 3,
1.45, and 1. It can be observed once again that adding more
information through more sophisticated regularization schemes
with the SL-PGNI and SP-PGNI algorithms enables sharper
reconstructions, with more evidence of the larger cylinder.
Comparing the reconstructions from the SL-PGNI and SP-
PGNI algorithms shows that for the SL-PGNI algorithm, the
permittivities are smooth but the shape of the reconstructed
cylinders is not completely circular. In contrast the SP-PGNI
algorithm has a much more accurate shape, but the permittivity
is not as smooth overall for the small dielectric cylinders as the
SL-PGNI algorithm. This result is expected as both algorithms
do well reconstructing what they have been informed is prior
information.

D. Experimental Skinless Bovine Leg Data Set

In order to test the phaseless GNI algorithms with a lossy
target and background medium in the ROI, we use the experi-
mental data collected from a skinless bovine leg in a salt-water
medium using 24 co-resident dipole antennas [35]. (Similar to
the previous cases, we ignore the phase of the measured total
field data, and invert only its magnitude data.) The ROI is a
square discretized into a 50 by 50 grid with a total length of
120 mm. The data was collected at 0.8 GHz with the relative
complex permittivity of the background being €, = 76 — 14j.
The expected relative permittivity values of the bone (centre-
most region of the bovine leg) is ¢, = 26 — 87, and flexor
(region around bone) is €, = 54 — 185 [35]. Prior to showing
the phaseless inversions, let us take a look at the inversion of
the full data (magnitude and phase) as shown in Figure 4(a)-
(b)‘10

10Herein, for the full data (complex) case, we have also used the SRM-
based incident field calibration method. We note that the inversion of these
full data using the scattered field calibration method, as shown in [35], seems
to be better than the inversion shown in Figure 4(a)-(b) (and, also shown in
[44]). However, since the use of the scattered field calibration method was
not possible for the phaseless case, we have also calibrated the full data using
the SRM-based incident field calibration method for consistency.
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Fig. 4. Experimental inversion results for a skinless bovine leg in a salt water
medium [35]. The real (left) and imaginary (right) parts of the reconstructed
relative permittivity at 0.8 GHz using the full data (complex) MR-GNI (first
row), and the phaseless SL-PGNI (second row) and SP-PGNI (third row)
algorithms are shown.

For this lossy experimental data set, the blind phaseless
inversion algorithm (i.e., the PGNI algorithm) failed to provide
any meaningful reconstruction; thus, it is not shown here.
We then tried the phaseless inversion algorithms incorporating
prior information; i.e., the SL-PGNI and SP-PGNI algorithms;
the reconstruction results using these phaseless algorithms are
shown in Figure 4(c)-(f). It can be seen that the SL-PGNI
algorithm performed poorly when compared with the SP-
PGNI algorithm. This is an indication that the spatial prior
information may have been more useful in reconstructing the
true target than the prior knowledge of expected permittiv-
ities. Also, in the reconstruction process, we have limited
the variation of the allowed relative complex permittivity as
follows: 1 < Re(e,) < 80 and —30 < Im(e,) < 0. Due to
this enforcement, the reconstructed permittivity of the bone
using the SP-PGNI method shown in Figure 4(e)-(f) looks
very uniform, but is mistakenly similar to free-space and not
bone (i.e., ¢, = 26 — 85) as it should be. In addition, the
phaseless inversion of the skinless bovine leg data set had
another challenge: the steering parameters of the phaseless
inversion algorithms (i.e., 62, a2, and v2) had to be modified
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Fig. 5. The squared magnitudes of the measured total field, the measured
incident field, and simulated total field from the SL-PGNI algorithm [left]
are shown to be very similar showing the lack of information present about
the bovine target in the measured magnitude data. The phase distributions are
then shown [right] to be more varied. This is shown for one transmitter but
the same plots are similar for all transmitters.

for this particular example to work.!" That is, the phaseless
inversion of this data set was more sensitive to the overall
regularization weight as compared to the other cases. This was
perhaps due to the lossy nature of the complex permittivities
which further reduces the information content of the measured
data.

It is instructive to investigate the information content avail-
able for the phaseless inversion in this skinless bovine leg data
set. To this end, let us take a look at Figure 5(a), where the
measured squared magnitude of the total field (black) and the
measured squared magnitude of the incident field (blue) are
shown for a given transmitter. On the other hand, Figure 5(b)
shows the phase of the total measured (black) and incident
(blue) field data for the same transmitter. As can be seen, as
opposed to the phase data, the magnitude data of the total and
incident fields are quite similar, and therefore, the information
content of the imaging experiment is mainly encoded in the
phase data that cannot be used for phaseless inversion. This is
the main reason behind the difficulty of performing phaseless
inversion on this data set. Let us now take a look at the
phaseless inversion result using the SL-PGNI algorithm shown
in Figure 4(c)-(d). As can be seen this phaseless inversion
was relatively unsuccessful, however, if we now take a look

HThis modification was done in an ad hoc manner. In particular, we made
the steering parameters smaller for the skinless bovine leg example thereby
changing the weight of the regularization operators. For example, consider
the steering parameter for the spatial prior case, i.e., the SP-PGNI algorithm.
If we make 2 smaller, then the weight of the regularization operator S, can
increase due to having 2 in the denominator of (19).



at the simulated squared magnitude of the total field data
at the last iteration of this inversion algorithm, i.e., the red
curve in Figure 5(a), we understand that the simulated data
are quite similar to the measured magnitude data. Therefore,
the phaseless inversion algorithm performed well; however,
there was not a great deal of information left to be extracted
from the magnitude-only data to improve the reconstruction
result. Now, if we look at the simulated phase of the total
field data at the last iteration of this phaseless algorithm, i.e.,
red curve in Figure 5(b), we see that the simulated phase data
are different than the phase of the measured total field data.
Since these measured phase data were not provided to the SL-
PGNI inversion algorithm, the algorithm was not able to take
advantage of the embedded information content in this dataset
to improve its reconstruction.

VII. CONCLUSION

A novel phaseless GNI algorithm was developed and was
augmented with three forms of multiplicative regulariza-
tion: (i) weighted Lo norm total variation regularization, (ii)
weighted Ly norm total variation regularization combined with
prior information regarding the expected complex permittivity
values of the objects being imaged, and (iii) weighted Lo norm
total variation regularization combined with prior information
regarding the structural information of the regions of identical
permittivity of the objects being imaged. We have referred to
these three implementations of the phaseless GNI algorithm as
the PGNI, SL-PGNI, and SP-PGNI algorithms, respectively.
These algorithms were shown to be able to invert synthetic
phaseless data, experimental phaseless data from lossless and
lossy targets. The incorporation of prior information was
shown to play a strong role with these phaseless GNI algo-
rithms to compensate for the lack of phase of the total field
data.
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APPENDIX
A. Required Derivative Operators

Herein, we show in more detail how we minimize the
phaseless data misfit cost functional C(x) using the Gauss-
Newton inversion framework. In particular, we aim to derive
the main (unregularized) update equation given in (9). At the
n® iteration, we update our latest x,, as Xn+1 = Xn +VnQXn
by minimizing the regularized form of C(). This requires the
derivative operators of both the phaseless data misfit functional
and the regularization terms. Since the regularizations terms

for full data (complex) inversion and phaseless inversion
are the same, we focus on the required derivative operators
for the phaseless data misfit cost functional. The phaseless
cost functional C(x) maps the complex vector x to a real
number and is not analytic with respect to y in the complex
domain. Therefore, in order to calculate Ay, within the GNI
framework, we use Wirtinger calculus [36], [47]-[49] to define
the required derivative operators. This is based on treating x
and its complex conjugate x* as two independent functions
(or, vectors in the discrete domain).!?> The GNI framework
calculates the update Ay, by approximating C(x + Ax,,) by
a quadratic model. The update Ay, is then found for the min-
imum of this quadratic model. Within the Wirtinger calculus
framework, we consider the cost functional C(x, x*) = C(x),
where C(x, x*) is analytic with respect to x for a fixed y*
and also analytic with respect to y* for a fixed . Minimizing
C(x, x*) is equivalent to minimizing C(x). Applying Newton
optimization to the phaseless cost functional leads to Ay,
obeying the following relation

8%¢C 8%¢C A ac
IxOX OxOx* Xn Ox
=— (20)
a%¢c a%¢c A% oc
ox*0x Ix*Ox* Xn ox*
where g—c and aac* are the derivative operators with respect
X X

to y and *, respectively at the n iteration. These derivative
operators, in the discrete domain, act on a complex vector
and output a complex number. Similarily, atz:acx is a second
derivative operator, in this case, with respect to x and then
X again evaluated at the n'" iteration of the algorithm. In the
discrete domain, the second order derivative operators act on

a complex vector and output a complex vector.

B. First Order Derivative Operators

In order to derive the required first order derivative opera-
tors, we use the following relation

5 — Tim SO €¥) =€)
e—0 €
where € € R is a scalar, and ¢ is an arbitrary function (vector)
that is used to modify . Since we are treating x and x* as
two independent functions, 6C will bel3

oc oc , .

As will be seen later, the two terms on the right hand side of
(22) are complex conjugates of each other. Therefore, JC will
be a real number. This is expected since C(x) € R. Also, note
that the range of these two first order derivative operators will
be complex numbers. In other words, the operation of these
derivative operators can be represented by inner products. In
our case, the inner product over the ROI is defined as

(o) = /R pvds

2

(22)

(23)

12 An alternative approach would be to optimize over the real and imaginary
parts of the contrast. This has been shown to be the same as treating x and
x* as two independent functions (vectors), see [36, Appendix D.5].

13Ty understand this better, let us consider a function such as f(z,y), then
of = %61 + 2—569 Since we have treated x and x* as two independent
functions, we have a similar form for 5C as shown in (22).



Based on this, the right hand side of (22) can be represented
by two inner products, from which we can obtain the ex-
pression for the first order derivative operators. In (24), we
have shown how to write §C based on two inner products.
It should be noted that ?’75 in (24) should be evaluated at
the current estimate of y, and ‘Re’ denotes the real-part
operator. For example, when we are at the n iteration, this
derivative operator should be evaluated at x = . In addition,
the second order derivative ?;E has been neglected (GNI
approximation) in (24). Noting (24) and the definition of the
inner product over the ROI given in (23), it is now possible
to identify our first order derivative operators. In the discrete
domain, the first order derivative operators evaluated at y,, are

ocC

ox*
ac
x

= 2037 [E(xn) © (|E(xn) [ = M?)]

X=Xn
*
X=Xn>

B ( ac
X=Xn BX*

where ( is the normalization coefficient of the phaseless data
misfit cost functional, see (8), and J,, denotes the Jacobian
(sensitivity) matrix that represents the derivative of the total
field data on the measurement domain with respect to the

i OEy 14
contrast y (i.e., Bx)'

(25)

C. Second Order Derivative Operators

To calculate the second order derivative operators required
to calculate Ay,,, we first calculate a second order differential
as [36, Appendix D.2]

(26)

52C, = lim %|x+ew(9@) - %|X(90)7
e—0 €

where the vertical lines denote that the derivative operators
are evaluated at y + ey and x respectively. Note that the
first order derivative operators are operating on an arbitrary
function ¢ (or, vector in the discrete domain). Also, note that
the expressions for the first-order derivative operators have
been derived in (24), which will now be used to find the
second-order derivative operators. Similar to the first order
derivative case, some of the intermediate steps are shown in
(27). (For simplicity of notation, the derivative operator g—g
when used without a vertical line indicates that this operator
is evaluated at x as opposed to at x + €.) Using the result
in (27), the second order derivative operators can be found by
noting that 62C' can be written as
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14The derivation and expression for the Jacobian matrix can be found in [36,
Appendix D.1]. This requires the calculation of the so-called inhomogeneous
(or, distorted) Green’s function. Also, we remind the reader that the derivative
of the total field with respect to the contrast is the same as the derivative of
the scattered field with respect to the contrast.

Thus, it follows that, in the discrete domain, the second order
derivative operators derived from (27) are

0%C
Ix*0x

0 CX () (1) = 2637 diag(E> (x))* T,

(0) (") = 203/ diag(2| B(xn)|* — M?) T,
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In addition to assuming that g%
X

is negligible in (27), we

. . 2
make the following extra assumption: aaxacx and consequently
2 . . e
aa* ac - are disregarded since they are not hermitian (self
X Ox

adjoint) operators.!?
Based on the above approximation and assumption, (20) at
the n™ iteration will simplify to

0%C

O ox X=Xn
Note that the above equation in the continuous domain indi-
cates the equality of two operators. However, in the discrete
domain, it represents the equality of two vectors. In particular,
using (29) and (25), the discrete form of (30) will become

oc
ox*

(30)

X=Xn

[%Jf diag(2|E () > — M2>Jn] Axn —

—2¢3} [E(xn) © (|E(xn)]* = M?)] .

This is the main update equation (in un-regularized form)
which was shown in (9).

€1y

5Note that this extra assumption was not needed in the development of the
complex GNI algorithm [36, Equation (D.33)]. In fact, in the complex GNI

. : . 9%E . . a%¢c
algorithm, the assumption of a negligible 9z 18 sufficient to have Bxox

; a%c ¢
and xTOxT S zero.
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