
P
os
te
d
on

27
J
an

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
18
39
12
2.
v
3
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
r.
63
40

Day-ahead renewable scenario forecasts based on generative

adversarial networks

Congmei Jiang 1,1,1, Yongfang Mao 2, Yi Chai 2, and Mingbiao Yu 2

1Chongqing University
2Affiliation not available

November 8, 2023

Abstract

With the increasing penetration of renewable resources, such as wind and solar, the operation and planning of power systems,

especially in large-scale integration, are faced with great risks due to the inherent stochasticity of natural resources. Although

this uncertainty is anticipated, their timing, magnitude and duration cannot be predicted accurately. In addition, the renewable

power outputs are correlated in space and time and bring further challenges in characterizing their behaviors. To address these

issues, this paper provides a data-driven method to forecast renewable scenarios considering its spatiotemporal correlations based

on generative adversarial networks (GANs), which has the ability to generated realistic samples from an unknown distribution

making them one of the hottest areas in artificial intelligence research. We first utilize GANs to learn the intrinsic patterns and

model the dynamic processes of renewable energy sources. Then by solving an optimization problem, we are able to generate

large number of day-ahead forecasting scenarios. For validation, we use power generation data from NREL wind and solar

integration data sets. The experimental results of this present research accord with the expectations.
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Summary

With the increasing penetration of renewable resources such as wind and solar, espe-
cially in terms of large-scale integration, the operation and planning of power systems
are faced with great risks due to the inherent stochasticity of natural resources.
Although this uncertainty can be anticipated, the timing, magnitude, and duration
of fluctuations cannot be predicted accurately. In addition, the outputs of renewable
power sources are correlated in space and time, and this brings further challenges for
predicting the characteristics of their future behavior. To address these issues, this
paper describes an unsupervised distribution learning method for renewable scenario
forecasts that considers spatiotemporal correlation based on generative adversarial
network (GAN), which has been shown to generate realistic time series for stochas-
tic processes. We first utilize an improved GAN to learn unknown data distributions
and model the dynamic processes of renewable resources. We then generate a large
number of forecasted scenarios using stochastic constrained optimization. For valida-
tion, we use power generation data from the National Renewable Energy Laboratory
wind and solar integration datasets. The simulation results show that the generated
trajectories not only reflect the future power generation dynamics, but also correctly
capture the temporal, spatial, and fluctuant characteristics of the real power genera-
tion processes. The experimental comparisons verify the superiority of the proposed
method and indicate that it can reduce at least 50% of the training iterations of the
generative model for scenario forecasts.

KEYWORDS:
artificial intelligence, unsupervised learning, generative adversarial network, renewable energy sources,
scenario generation

1 INTRODUCTION1

To protect the environment and reduce the consumption of conventional energy resources, renewable energy will become pro-2

gressively more important in the future. However, the intermittent and volatile nature of renewable power generation brings3

negative impacts formanaging the operation of power systems, and additional reserves and facilities are required to accommodate4

the resulting power imbalances and aid network transmission, especially in the case of large-scale integration 1,2. Scenario gen-5

eration plays an important role in characterizing the uncertainties inherent in the use of renewable resources, and this technique6

is widely used in time-dependent and multistage decision-making problems such as the optimal unit commitment, electricity7
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Nomenclature
A. Acronyms
AI Artificial intelligence CDF Cumulative distribution function
ML Machine learning SO Stochastic optimization
DL Deep learning PI Prediction interval
GAN Generative adversarial network U Upper bound
WGAN Wasserstein generative adversarial network L Lower bound
ARMA Auto regressive moving average GDO Gradient descent optimization
VAE Variational autoencoder NWP Numerical weather prediction
ANN Artificial neural network WD Wasserstein distance
DNN Deep neural network
CNN Convolutional neural network B. Parameters
WGANGP Wasserstein generative adversarial network N Number of sites

with gradient penalty K Length of forecast horizon
WGANCT Wasserstein generative adversarial network

with a consistency term
� Bound parameter for controlling the forecast

range
Pr Probability distribution of real time series

data
�, � Weight parameters of stochastic optimiza-

tion objective
PG Probability distribution of generated time

series data
� Match parameter of optimizing generator

and discriminator
NREL National renewable energy laboratory
RES Renewable energy sources C. Indices
PV Photovoltaic n Site index
G Generator/generative network k Time index
D Discriminator/discriminative network h Lag time index

market trading, and energy storage sitting and sizing 3,4,5. For power system planning and operation, accurate modeling of the1

output of renewable energy sources (RES) is therefore key to enforcing reliability criteria and increasing economic benefits.2

Extensive research has been conducted into scenario generation. Gaussian copula has been proposed for the generation of3

statistical scenarios, and the interdependence structure of forecast errors for various look-ahead times is considered for wind4

power 6,7. Moment-matching scenario generation from multivariate random variables with specified moments and correlations5

was introduced by Hoyland et al. 8, and Meibom et al. used a method based on auto regressive moving average (ARMA) model6

to produce wind and load scenarios 9. An artificial neural network (ANN) was presented by Vagropoulos et al. to create more7

representative scenarios for electric loads, photovoltaic (PV) and wind production 10. These methods have been applied to a8

single site, and some of them may be extended to capture spatial correlation for multisite datasets. Copula-based methods have9

been used to produce spatially correlated scenarios across different geographical sites 11,12,13, and time-series models have been10

applied to characterize the stochastic processes representing spatial-temporal information from multisite wind data 14,15. Each11

of these scenarios embodies time dependencies and is spatially dependent on other stochastic wind processes.12

Probabilistic models are usually based on statistical assumptions, and it is a challenge to capture the intrinsic patterns13

underlying stochastic power generation dynamics using these models. The generated scenarios can be used to represent future14

uncertainty but cannot correctly describe all the salient features in the power output from renewable energy sources. Further-15

more, the complex spatiotemporal behavior of the sources and the use of sampling from high-dimension joint distributions make16

it difficult to apply the probabilistic methods in practice.17

Deep learning (DL) is one of the newest trends in artificial intelligence (AI) and machine learning (ML) research, with18

unprecedented results across various application domains16,17,18,19,20. In the task of unsupervised learning, generative models19

are one of the most promising technologies. Two popular examples of generative model approaches are generative adversarial20

network (GAN) 21 and variational autoencoder (VAE) 22. Since generative models can learn the underlying realistic distribution21

of stochastic processes, they can generate data that exhibit similar characteristics to the original data. The GAN-based methods22

have been adopted for generating a scenario set that can capture the intrinsic patterns of volatile power production 23,24,25. The23
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FIGURE 1 Framework for the GAN used for different forecasting tasks.

simulated scenarios can correctly characterize the dynamic and time-varying characteristics of historical observations. Varia-1

tional inference was also incorporated into GAN by Hu et al. to produce wind and solar scenarios that capture different salient2

characteristics in the data 26. In a previous work, we utilized an improved GAN to create scenarios for wind power by applying3

alternative training techniques to enforce Lipschitz constraints on the discriminator 27. As another popular framework for gen-4

erative models, VAE learns the data distribution by calculating the mean square error between samples. Compared with GAN,5

it has features that do not need to achieve Nash equilibrium and can directly compare the generated samples with the original6

samples. A scenario generation method based on a variational autoencoder was proposed by Pan et al. to generate stochastic7

load profiles for electric vehicles 28. Zhang et al. designed the variational autoencoder to capture the fluctuant characteristics8

and spatiotemporal correlation of solar and wind power 29. Recently, the flow-based generative models 30,31 have also been used9

for the generation of realistic scenarios. Zhang et al. proposed a flow-based conditional generative model to provide reliable and10

sharp scenarios for residential load 32. To accurately capture the potential behavior of real samples, a generative network based11

on nonlinear independent component estimation was proposed by Ge et al. to model the daily load profiles 33.12

These data-driven models do not rely on probabilistic assumptions and can characterize the stochastic processes with a full13

diversity of behaviors. However, although these methods can create realistic scenarios that correctly characterize the salient14

features of training data, most of these methods do not consider forecast information to generate scenarios that can characterize15
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the future dynamics. Unlike uncertainty modeling that generates time series with the same statistical characteristics as historical1

data, scenario forecasts can generate a group of time series that represent the possible future realizations and can therefore be2

used for a wide range of downstream tasks in power systems. Previous works have made substantial progress in using generative3

models to model the stochastic dynamics of renewable power generation processes, but how to use these powerful models4

to forecast future renewable scenarios remains a challenging problem. Chen et al. proposed an approach based on generative5

models to generate future scenarios representing dynamic and time-varying characteristics for a particular location 34. Due6

to the similarity of meteorological dynamics, the power output of renewable energy in different locations will have a natural7

correlation. Uncertainty estimation considering spatial dependence is essential for power system operation and planning studies.8

To tackle this issue, we propose a data-driven method based on generative adversarial network to forecast renewable scenarios9

for multiple geographical locations. Furthermore, due to the use of weight clipping, the GAN has problems such as unstable10

training and underused network capacity in the existing works 24,34. We further adopted improved training techniques to improve11

the model performance for scenario forecasts.12

The framework for the GAN used for renewable scenario forecasts is shown in Figure 1. In this work, we adapt GAN to13

efficiently generate future scenarios for a single or multiple renewable power generation processes. We first use GAN to learn14

and create realistic trajectories with the same statistic properties as the training data, then incorporate forecast information to15

generate a group of future scenarios for different forecasting tasks.16

Specifically, the main contributions of this research can be listed as follows:17

• Introduction of spatiotemporal scenario forecasts for wind and solar power by utilizing deep generative models.18

• Scenario forecasts of different forecasting tasks via the same GAN model and network structure.19

• High flexibility of the length of forecast horizons and the number of power generation sites via structure and parameter20

adjusting.21

• Assessment of the improved performance for scenario forecasts via weights, scenario quality and convergence speed.22

2 GENERATIVE ADVERSARIAL NETWORK23

GAN offers a new framework for drawing realistic samples from an unknown data distribution, and it is therefore currently one24

of the most active research areas in artificial intelligence. Since the introduction by Goodfellow in 2014, GAN has become a25

powerful method for a variety of applications 35,36,37,38. However, the GAN can be remarkably difficult to train. Wasserstein26

GAN (WGAN) 39 has made progress in model performance, but still suffers from instability in training and may generate low-27

quality samples 40. In this section, we first introduce the WGAN and the improved training techniques, and then present the28

training effect for capturing the data distribution of renewable resources.29

2.1 Wasserstein GAN30

The idea of GAN is to estimate generative models as a competing game between two networks: a discriminator networkD and a
generator networkG. Consider a historical dataset xwith a data distribution denoted by Pr. To train the generatorG over data x,
we define an noise variable z (usually sampled from a simple distribution, such as Gaussian distribution or uniform distribution)
and map it to a data space represented as G(z). The generator G tries to output plausible samples by minimizing −D(G(z)),
which means that the generator is trained to learn the data distribution of real data. The discriminator D is alternately updated
by the generator, and can be trained by maximizing between D(G(z)) and D(x), which reflects that the discriminator is good at
distinguishing the difference between input samples. In a general form, the loss functions for D and G can be expressed as

LD = −Ex∼Pr[D(x)] + Ez∼Pz[D(G(z))],
LG = −Ez∼Pz[D(G(z))].

(1)

With the above objectives defined, the adversarial networks try to minimize each objective function in each training iteration.
Formally, the game between the discriminator D and the generator G is represented by the minimax objective

min
G

max
D
V (G,D) = Ex∼Pr[D(x)] − Ez∼Pz[D(G(z))]. (2)
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The value function (2) can be interpreted as Wasserstein distance (WD, also called Earth-Mover distance) 41. Compared
with other distances and divergences (e.g., Jensen-Shannon divergence 21), this distance is shown a more reasonable objective
function when used for the training of generative models. The Wasserstein distance is defined as

W (Pr, PG) = inf
 ∈

∏

(Pr,PG)
E(x,y)∼ [‖x − y‖], (3)

where
∏

(Pr, PG) denotes the set of all joint distributions  (x, y) whose marginals are Pr and PG. Intuitively,  (x, y) indicates
the transport cost of converting distribution PG into distribution Pr. However, it is impractical to achieve the objective function in
such a formula using neural networks. According to the Kantorovich–Rubinstein duality 41, this distance can also be expressed
as

W (Pr, PG) = sup
‖D‖L≤1

Ex∼Pr[D(x)] − Ez∼Pz[D(G(z))], (4)

where D is the set of 1-Lipschitz functions.1

2.2 Improved training techniques2

The Wasserstein distance has better theoretical properties that make generator optimization easier. However, it can still produce
low-quality samples as a result of particular inputs or fail to converge in some settings. The clipping parameter c will affect the
optimization process, which may lead to the problems of vanishing or exploding gradients in the training of generative models.
To overcome these issues, an alternative to clipping weights has been proposed to improve the performance of WGAN 40. In
particular, a gradient penalty GP is introduced in the discriminator loss function.

GP |x̂ = Ex̂∼Px̂[(∥ ∇x̂D(x̂)∥2 − 1)2], (5)

where x̂ represents uniform samples along straight lines between pairs of points from PG and Pr.3

It is better to utilize the gradient penalty for enforcing a Lipschitz constraint. Clear advantages of this when compared to weight4

clipping are its improved training speed and improved sample quality. Since the well-trained discriminatorD has gradients with5

norm at 1 almost everywhere, enforcing this along straight lines between a pair of data points sampled from PG and Pr seems6

feasible and results in good performance 40.7

The gradient penalty GP can penalize at the sampled data point x̂, but it cannot penalize everywhere with a limited number
of training iterations. In particular, in the early training stage, data point x̂ is distant from the manifold of the real data x. The
Lipschitz continuity over the manifold is not enforced until data distribution PG becomes close to data distribution Pr. Therefore,
a consistency term (CT ) 42 is introduced to enhance the performance of GAN model by resorting to the basic definition of
the Lipschitz continuity. The data manifold and surrounding regions are checked by using perturbed data near any real data x.
The next-to-last layer D_ of D is also utilized to improve the training of the generative model. The final additional term can be
expressed as

CT |x′,x′′ = Ex∼Pr[max(0, d(D(x′), D(x′′)) + 0.1 ⋅ d(D−(x′), D−(x′′)) −M ′)], (6)
where d denotes the l2 metric on an input space,M ′ is a constant, and x′ and x′′ are perturbed data points.8

This new consistent regularization effectively complements and improves the gradient penalty used in the training of WGAN.
Based on these improvements, the discriminator loss in (1) can be reformulated as

LD = Ez∼Pz[D(G(z))] − Ex∼Pr[D(x)] + �1GP |x̂ + �2CT |x′,x′′ . (7)

With the redefined function LD, we can train the GAN model to learn the real distribution of renewable data. An important9

benefit of WGAN is that its value function is correlated with sample quality, which provides a useful metric for training the gen-10

erator to optimality. To show the training effect of the generative model, we used solar and wind data from National Renewable11

Energy Laboratory (NREL) to train the model, and the convergence curves of the generative model are shown in Figure 2. By12

training the two adversarial networks to an equilibrium, we can see that the two loss curves for wind and solar power gradually13

converge to minima and remain stable. To further check whether the discriminator overfits and provides an inaccurate estimate14

of a training point at which all bets are correlated with sample quality, we explored the behavior of the loss curves from the test15

sets. It can be seen that the training and testing losses have almost the same trend for these two data sets, which indicates that16

the model can be well trained for renewable resources.17

In order to show the effect of the improved techniques on the use of discriminator’s weights for renewable integration datasets,18

we plotted the comparison of the weights in Figure 3. When the discriminator is trained using weight clipping on a wind or solar19

dataset, as Figure 3(a) shows, the weights for both datasets are pushed towards two sides of extreme values, which match the20
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FIGURE 2 Convergence curves of the generative model trained on (a) solar data and (b) wind data.

extremes of the clipping range. It shows that the network capacity of the discriminator is underused during the training. Besides,1

the optimization process is difficult because of interactions between the weight constraint and the cost function, which may result2

in either vanishing or exploding gradients, depending on the value of the clipping threshold. In contrast, as Figure 3(b) shows, the3

GAN trained using improved training techniques does not suffer from these behaviors. The weights of the discriminator trained4

on both datasets are controlled within a symmetric distribution. It is clear from these experimental results that the improved5

generative model can achieve a more stable training process for scenario forecasts.6

3 SCENARIO FORECASTS USING PRE-TRAINED GAN7

Using a pre-trained GAN, we can generate realistic data that reflect the intrinsic patterns of renewable power generation dynam-8

ics. However, one more interesting problem is the generation of time series trajectories that can represent future uncertainty.9

Figure 1 shows the framework for the GAN used for scenario forecasts, which comprises two steps that proceed as follows. In10

step 1, based on deep learning, the GAN can learn and create samples with the same statistic properties as the training set. The11

generator network uses random noise to imitate real samples and the discriminator network tries to distinguish between real12

samples and generated samples. Once the training in step 1 is completed, an optimal generator is obtained that is able to gen-13

erate realistic samples. Step 2 can further help us to incorporate forecast information to generate a group of future scenarios.14

The generated trajectories should be able to reflect the future power generation dynamics and capture the temporal, spatial, and15

fluctuant characteristics of the real power generation processes.16
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FIGURE 3 Weight comparison of the discriminator trained on (top) a wind dataset and (bottom) a solar dataset using (a) weight
clipping and (b) improved training techniques, respectively.

Since the data of a single site is a special case of the data of multiple sites, we can formulate the scenario forecasting problem
for typical multiple renewable energy sources. We assume that at time node t, we are provided with the following point forecast
for each look-ahead time and each power generation site.

p̂pred =

⎡

⎢

⎢

⎢

⎢

⎣

p1,1 p1,2 ⋯ p1,K
p2,1 p2,2 ⋯ p2,K
⋮ ⋮ ⋱ ⋮
pN,1 pN,2 ⋯ pN,K

⎤

⎥

⎥

⎥

⎥

⎦

, (8)

where K represents the forecast horizon andN represents the number of sites.1

The unpredictability and variability of renewable energy sources is one of the fundamental issues associated with its integra-2

tion into the power system. Point forecasts are able to provide deterministic information about uncertain future changes. Since3

we focus on the scenario forecasting problem, this information can be provided by any method, e.g., information from numerical4

weather prediction (NWP).5

Based on the pre-trained GAN model, the forecasted trajectories should reflect the future dynamics and be volatile within a
certain range. We can describe the fluctuation by defining a prediction interval (PI) 34,43, which can be controlled by a parameter
�:

L�(p̂pred) =
1
�
p̂pred

U�(p̂pred) = �p̂pred ,
(9)

where L�(p̂pred) represents a lower bound and U�(p̂pred) represents an upper bound.6

As introduced in Section 2 , z is a pre-defined random variable that is mapped to a data space G(z). If the variable z is not
constrained, the trained generator G can generate any scenarios that may exceed the upper and lower bounds in (9). Since the
central point forecast will not fall outside the prediction interval, we can solve the following problem to obtain an initial point z
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for producing time series.

min
z

‖

‖

‖

ℙpred(G(z)) − pinit
‖

‖

‖2

s.t. L�(p̂pred) ≤ pinit ≤ U� (p̂pred)
z ∈ Z,

(10)

where the constraint is element-wise inequality and pinit is sampled from an initial interval [L� (p̂pred), U�(p̂pred)].1

Note that our goal is to produce trajectories that can capture the intrinsic characteristics of stochastic processes and represent
the future uncertainty of variable power generation. A larger discriminator output for the generated samples indicates more
realistic samples. Meanwhile, the fluctuation of the generated trajectories can be controlled by the pre-determined confidence
interval �. Using all these objectives, with the pre-trained GAN and the element-wise inequality constraint of the forecast range,
we can formulate the scenario forecasting problem to be a stochastic optimization (SO) problem where

min
z

−D(G(z))

s.t. L� (p̂pred) ≤ ℙpred(G(z)) ≤ U�(p̂pred)
z ∈ Z.

(11)

To start with a good initial z incurring G to generate a forecasted scenario, the parameter � in (10) can be set to be smaller than
that in the optimization (11). This can help G(z) to generate time series that fluctuate within an appropriate range. Since the
inequality constraint is not convenient for solving the stochastic optimization (11), we can use two log barriers to replace it into
the main objective. The optimization problem can then be expressed as

min
z

− ‖

‖

‖

� log(ℙpred(G(z)) − L�(p̂pred)) + � log(U�(p̂pred) − ℙpred(G(z)))
‖

‖

‖1
−D(G(z))

s.t. z ∈ Z,
(12)

where � and � are weighting parameters.2

Since the two adversarial networks G and D are highly nonconvex, there are many local optima in (11). By solving the3

stochastic optimization in (12) with different initial z, we can generate realistic forecasted trajectories that can characterize the4

intrinsic dynamics and different uncertainties of volatile power generation.5

4 EXPERIMENTAL6

In this section, we discuss in detail the proposed method for capturing the characteristics of renewable resources. We show7

that the method can create realistic trajectories that are able to represent the future uncertainty for a single or multiple power8

generation locations. The experimental results validate that our proposed method is an effective tool for renewable scenario9

forecasts.10

4.1 Data description11

To test the performance of the proposed method, we used actual data from the previous publication 34 as the input. These data12

were collected from public datasets provided by NREL 44, which provides tools and data for the analysis of grid technologies13

and strategies, including power systemmodels and renewable datasets. This includes seven years’ historical data with a temporal14

resolution of 5 minutes. More details about the relevant information can be found in the paper 44. Wind data from 20 sites15

and solar data from 32 sites, all located in Washington State, were chosen to construct input data for different modeling tasks.16

We randomly selected 80% of the data to train the generative model, and the remaining 20% was used as testing data. The17

public datasets not only provide historical data, but also contain corresponding point forecasts. Along with the input data, this18

information was used for stochastic optimization based on the pre-trained GAN. The chosen sites have the same rated capacity19

for wind or solar power and the corresponding data were normalized into the range [0, 1].20

4.2 Model structure and optimization algorithm21

The network structure of GAN for scenario forecasts is based on our previous work 27. Due to the strong feature extraction22

abilities, we use convolutional neural networks (CNNs) in the GAN model. In this system, a discriminator D is used to judge23
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FIGURE 4 A group of generated trajectories for renewable resources: (left) solar power and (right) wind power.

FIGURE 5 Forecasted trajectories for wind power with a � value of (a) 1.5, (b) 2, and (c) 3.

whether a generator G can generate realistic samples. We use three convolutional layers with kernel size of 4 × 4 and stride size1

of 2 × 2 to down-sample the input data matrix x or G(z). The generator G with a reverse structure is used to generate plausible2

samples. We use three deconvolutional layers with kernel size of 4 × 4 and stride size of 2 × 2 to do up-sampling from a random3

noise z to a data space G(z). The choice of the kernel and stride is determined by experiment. In order to match the “game”4

process between the generator and the discriminator, the match parameter � is set to 5 so that the model is optimized between5

1 step of G and 5 steps of D. The discriminator use multi-layer perceptron to output a scalar to distinguish the input and the6

samples are updated with a mini-batch size of 64. LeakyReLU and ReLU are used as activation functions for the discriminator7

D and the generator G, respectively. Stochastic dropout is adopted to the hidden layers ofD. Batch normalization has been used8

in the network structures for previous time series modeling24,34. But it changes the mapping form between the input and output9

of the gradient penalty GP . Therefore, it can be simply omitted in the generative model.10

In order to train the GAN model to the optimum and incorporate the prediction information to generate trajectories, different11

gradient descent optimization (GDO) algorithms can be used to achieve these stochastic optimization objectives. TheMomentum12

and RMSprop optimization algorithms have long been popular for different deep learning structures, but the Adam algorithm13

combines the advantages of these two methods and is suitable for application to a wide range of non-convex optimization14

problems 45. Therefore, we use Adam for the gradient based stochastic optimization. The generator G and the discriminator D15

are deep neural networks (DNNs), which can be implemented by the open-source AI learning framework TensorFlow 46. All16

the training of the generative model is accelerated by an NVIDIA GeForce RTX GPU.17

4.3 Model training and trajectory generation18

The proposed method for scenario forecasts consists of two steps as shown in Figure 1. To verify that our algorithm can generate19

the desired trajectories for renewable energy sources, we first trained a generative model to model the time series of renewable20
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FIGURE 6 Autocorrelation plots for measured value and generated trajectories.

data, and then incorporated point forecasts to generate future trajectories. Repeatedly inputting real historical samples allowed1

the generative model to automatically learn the distribution of historical data. Figure 2 shows the training curves for the model2

trained on wind and solar data. At the early stage, the losses have large fluctuations because the model has not yet captured the3

distribution of power generation dynamics. The discriminator and the generator are continuously updated, and the generator4

gradually captures the intrinsic underlying patterns in the historical samples. As can be seen from the figure, the training evolution5

is reduced to a minimum and remains basically stable after about 8,000 iterations [see Figure 2(a)] for solar data, while it takes6

nearly about 13,000 iterations [see Figure 2(b)] for wind data to reach the same level. Wind power can be generated at any7

time during the day or night, while solar energy can only be generated during the day and cannot be generated under certain8

conditions (such as cloudy or rainy days). Therefore, the complexity of solar data relative to wind data is remarkably reduced.9

This may be an important reason why the generative model takes less time to learn the data distribution for solar data. When10

the generative model is trained to converge, the optimal generator can generate realistic time series representing the stochastic11

dynamics of renewable resources.12

After the model training is completed, we can easily generate a large number of time series trajectories using the stochastic13

optimization objectives in (10) and (12). First, an appropriate initial z needs to be found according to the point forecast p̂pred .14

This z is then fed to the trained generator to generate future trajectories according to the parameter �. Figure 4 shows a group of15

generated trajectories for solar andwind power, respectively. It can be seen that the generated trajectories can reflect the nonlinear16

time dynamics of variable power generation. The volatility characteristics (peak-valleys, ramp events and daily patterns) of the17

predicted data can be correctly captured by the proposed method. In addition, wind energy usually changes quickly at any time18

and any place, while solar energy changes relatively slowly during its occurrence. Therefore, from Figure 4, we can see that19

wind power is more volatile than solar power.20

4.4 Forecast uncertainty and evaluation21

Figure 1 shows the framework of using GAN to generate future uncertain trajectories for renewable resources. The same model22

structure can be used to forecast scenarios for a single or multiple sites. Since wind power has more complex uncertainty and23

volatility characteristics than solar power, we can use wind power data for the following experimental demonstrations.24

4.4.1 Scenario forecasts for a single site25

To verify that a group of generated trajectories is representative of future uncertainty, the scenarios should cover the actual26

values of real power generation. The historical data provided have a resolution of 5 minutes. We used samples composed of two27

days of data as the training set. Training samples were randomly and repeatedly input to train the generative model for scenario28

forecasts. Figure 5 shows the simulation results when the prediction interval � is 1.5, 2, and 3. By choosing different parameters29

�, we can see that the resulting trajectories can be used to represent different degrees of uncertainties. When the parameter �30

is 1.5, the trajectories are relatively concentrated, but they cannot cover the actual power measurement. When � is 3, the time31

series have a larger degree of volatilities and can cover the measurement but are less concentrated. The range of the prediction32
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FIGURE 7 Comparison of the cumulative distribution function of measured and generated data for multiple sites.

confidence can be chosen according to the accuracy of point forecast information and the required level of risk management.1

At the same time, the weight parameters � and � in (12) can be adjusted so that the generated trajectories can better meet actual2

needs.3

To verify the temporal statistical characteristics of the created trajectories, we used an autocorrelation coefficient R(ℎ) to
measure the degree of correlation of a trajectory and a lagged copy of itself. This coefficient at lag time ℎ can be calculated from

R(ℎ) =
E[(si − �)(si+ℎ − �)]

�2
, (13)

where s denotes a time series with mean � and variance �2.4

We computed and compared the autocorrelation for the measured value and generated trajectories when different prediction5

interval values � were selected. As can be seen from Figure 6, the forecasted trajectories can represent different variations of6

temporal correlation. When the parameter � is 3, the autocorrelation plots of the generated trajectories are able to cover the7

range of the measured data, which means that the generated trajectories can represent the temporal correlation of variable power8

generation.9

4.4.2 Scenario forecasts for multiple sites10

To examine forecasting scenarios for multiple sites, we used a data matrix {x(i)} of size N × K as the historical samples input11

to the generative model. Specifically, we selected N = 20, K = 24 with a resolution of one hour. After training the model to12

converge, the available point forecasts can be easily incorporated to generate a large number of future scenarios. We first verified13

the statistical properties for individual locations. In probability and statistics, the cumulative distribution function (CDF) of a14

random variable X is the probability of getting a value less than a specific value x. We randomly generated 50 samples and15
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FIGURE 8 The results of scenario forecasts for multiple wind-site data. Left: a group of predicted (top), generated (middle)
and measured (bottom) data; right: their respective spatial correlation coefficient matrices.

computed the CDFs of these samples, and some of the results are plotted in Figure 7. For different wind farms, it can be found1

that the generated data correctly maintain the marginal distributions of the measured values.2

To show the correlation between individual locations, a group of predicted, generated and measured data is shown in Figure 8.3

By visual inspection, it can be seen that they have similar behaviors and characteristics for the 20wind farms. The spatio-temporal4

correlation of the measured data is correctly preserved by the created trajectories. From the visualizations on the right of the5

figure, it can be seen that the cross-site correlation coefficients of the three samples have relatively large values. This indicates6

that all sites have a relatively high correlation for the plotted samples and the similarity among the upper, middle and lower7

correlations suggests that the proposed method can correctly capture the stochastic dynamics for multiple power generation sites.8

Besides, we can observe that there are four wind farms with different behaviors and dynamics in Figure 8. Their point forecasts9

and measurements are not very consistent. This can be an explanation of why the CDF of wind farm 10 in Figure 7 is somewhat10

different from those of other wind farms.11
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FIGURE 9 Cross-correlation between a given site and all 20 sites for wind power data.

To further verify the spatial dynamics of multiple sites, we compared the correlation between each site and all other sites. The1

correlation coefficient matrix for each of the samples was computed for all different sites. In this matrix, the diagonal positions2

represent the auto-correlation of a site, and the other positions represent the cross-correlation between sites. Each row or column3

of a matrix represents the correlation between that particular site and the other sites. Figure 9 illustrates some of the elements4

of the correlation matrix for multiple power generation sites. It is clear that the correlation curves of the generated data are5

basically consistent with the measured values, demonstrating that the spatial correlation in stochastic power generation can be6

correctly captured.7

4.5 Experimental Comparison8

Wasserstein distance is a meaningful index for measuring different data distributions. It can be used not only for debugging and9

hyperparameter searching, but also for judging the quality of generated trajectories. We assume that the Wasserstein distance10

can be continuously estimated during GAN training. When the model converges to the optimum, the closer the index is to zero,11

the higher the quality of generated trajectories.12

To verify the superiority of the proposed method, we compared our method with WGAN on both wind and solar data. As13

shown in Figure 10, the training curves of the two methods for these two data sets have large difference at the initial stage of14

training. This is because the samples generated at this stage are completely different from the real samples. As the training15

progresses, the generator gradually learns the intrinsic characteristics of the real samples and the outputs D(x) and D(G(z))16

of the discriminator are close to each other. When the training converges, it can be seen from Figure 10(a) and Figure 10(b)17

that the Wasserstein distance of our method is closer to zero than that of WGAN on either wind or solar data, suggesting that18

our method can better capture the underlying patterns of real data. Therefore, the proposed method can improve the quality of19

generated trajectories for various prediction intervals and forecast horizons.20
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FIGURE 10Comparison of training evolution andWasserstein distance betweenWGAN and the proposedmethod on renewable
data: (a) wind power and (b) solar power.
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The WGAN uses weight clipping to enforce a Lipschitz constraint in neural network settings so that the weights of the1

discriminator will be limited to a certain range. Since the capacity of the DNN is not fully utilized in the training process, this2

will slow down the training speed of the neural network. Wasserstein distance has been shown to be effective in judging the3

quality of generated trajectories, so it can conveniently help to indicate the training process of the model. Owing to the use of4

improved training strategies, from Figure 10, we can see that our method can achieve faster convergence for renewable energy5

sources. When trained on wind power data, as Figure 10(a) shows, our method reaches a minimum after about 13,000 iterations6

and the WGAN starts to stabilize after about 32,000 iterations. When trained on solar power data, as Figure 10(b) shows, our7

method can reach a minimum after about 8,000 iterations, while the WGAN takes nearly 24,000 iterations to reach convergence.8

From the above experimental results, we can see that our method can not only improve the quality of created trajectories, but9

also accelerate the training speed of the generative model. It is clear that our proposed method can significantly improve the10

performance of the generative model for scenario forecasts.11

5 CONCLUSION AND FUTURE WORK12

This paper presents an unsupervised distribution learning method to generate future scenarios that can characterize the temporal13

and spatial correlation of stochastic power generation processes. The improved training techniques detailed here can better utilize14

the network capacity and achieve more stable training for the generative model. The proposed method is able to characterize the15

uncertainty and variability characteristics of a single or multiple power generation locations. It can not only create a large number16

of future trajectories without relying on sampling techniques but can also capture the inherent dynamics of the stochastic power17

generation processes. Comprehensive case studies were used to validate the feasibility and validity of our proposed method for18

generating scenarios within a stochastic programming framework. The marginal distribution for each stochastic process was19

preserved by the data that were produced. The temporal correlation was examined at each site and the cross-correlation was20

verified at different geographical sites. Also, compared with the existing method for scenario forecasts, the proposed method can21

improve the quality of generated trajectories for various prediction intervals and forecast horizons, and achieve faster convergence22

for the generative model on both wind and solar data.23

Since the generative model can adapt the input data of stochastic power generation dynamics to different regions only by24

adjusting the network structure and a few parameters, it has high flexibility in terms of the length of the forecast horizons and25

the number of power generation locations. With its high reliability and flexibility, our method provides a meaningful tool for26

characterizing the future behavior of renewable energy. Therefore, for further research, it would be interesting to apply the27

forecasted trajectories to the operation and planning studies on a wide range of decision-making problems in sustainable energy28

systems.29
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