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Abstract

In this paper, a diffusion maximum correntropy criterion (DMCC) algorithm with adaption kernel width is proposed, denoting

as DMCC$ {\rm adapt}$ algorithm, to find out a solution for dynamically choosing the kernel width. The DMCC$ {\rm

adapt}$ algorithm chooses small kernel width at initial stage to improve its convergence speed rate, and uses large kernel

width at completion stage to reduce its steady-state error. To render the proposed DMCC$ {\rm adapt}$ algorithm suitable

for sparse system identifications, the DMCC$ {\rm adapt}$ algorithm based on proportional coefficient adjustment is realized

and named as diffusion proportional maximum correntropy criterion (DPMCC$ {\rm adapt}$). The theoretical analysis and

simulation results are presented to show that the DPMCC$ {\rm adapt}$ and DMCC$ {\rm adapt}$ algorithms have better

convergence than the traditional diffusion AF algorithms under impulse noise and sparse systems.
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ABSTRACT Impulsive noises are widely existing in various systems like noise cancellation system and
wireless communication systems, where adaptive filtering (AF) is always employed to identify specific
systems. Additionally, the impulsive noises will affect the performance for estimating these systems,
resulting in slow convergence or worse identification accuracy. In this paper, a diffusion maximum
correntropy criterion (DMCC) algorithm with adaption kernel width is proposed, denoting as DMCCadapt
algorithm, to find out a solution for dynamically choosing the kernel width. The DMCCadapt algorithm
chooses small kernel width at initial stage to improve its convergence speed rate, and uses large kernel
width at completion stage to reduce its steady-state error. To render the proposed DMCCadapt algorithm
suitable for sparse system identifications, the DMCCadapt algorithm based on proportional coefficient
adjustment is realized and named as diffusion proportional maximum correntropy criterion (DPMCCadapt).
The theoretical analysis and simulation results are presented to show that the DPMCCadapt and DMCCadapt
algorithms have better convergence than the traditional diffusion AF algorithms under impulse noise and
sparse systems.

INDEX TERMS Adaptive kernel width, diffusion algorithm, impulse noise, maximum correntropy
criterion, sparse system identification

I. INTRODUCTION

W IRELESS sensor network (WSN) has been widely
considered in the use of bridge detections, position-

ing, area monitoring, and air pollution monitoring. In the
WSNs, the channel estimation that is belonged to the system
identification should be considered for these distributed chan-
nel links. In addition, the channel response is always sparse in
the practical system and the background noise is impulsive,
which are important to apply practical system. For example,
underwater acoustic channel and network echo channel [1]–
[5] are existing in the distribution networks with mentioned
characteristics. Moreover, the impulsive noise is common
in many practical applications which happens in fan, radar
and electromagnetic environments such as electromagnetic
interferences [6]– [8]. In the past works, most of the noise
models in the sensor network are considered as Gaussian
mixture in the system identifications, which are diffusion
over an interested area with certain topology. Furthermore,
the linear finite impulse response (FIR) like the channel re-
sponse impulse is sparse [9]–[12] and the noise in the system

is additive, resulting in an effort to estimate the system from
the noisy received signals based on adaptive filter technique
for WSNs. There are two approaches for estimating the
parameters in the WSN that are centralized estimation and
diffusion estimation. In the centralized estimation, the mutual
communications between the nodes require a large amount
of energy, and the central node performs to fusion processing
on the data information from all the received nodes. How-
ever, once the central node fails, the entire network function
will be ineffective [13]. The biggest difference between the
diffusion estimation and centralized estimation is that the
former has no central node to avoid the disadvantage that
the network lacks robustness due to the dependence on the
central node. For diffusion one, each node in the network has
communication and computing capabilities, and these nodes
can complete the iterative operation of the data obtained from
the received sensors. Then, these nodes can interact with the
neighbor nodes in real time to update their estimated values
with the merged results. Since the diffusion estimation has
potential superiority, it has been studied extensively and di-
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vided into two types: incremental estimation and distributed
estimation. In the incremental collaboration mode, all nodes
are assigned to a circular loop structure, and the information
is sent from one node to its neighbors in sequence. In this
case, the collaborative mode has little traffic and needs less
energy, but it is always unrealistic to form all the nodes into a
ring structure, and it is also sensitive to link failures [14],
[15]. Diffusion estimation are widely used because of its
ease of implementation and good robustness. In the diffusion
cooperation mode, nodes in the network are used to estimate
the unknown system, which is to say that each node in the
network can share and fuse information at its neighbor nodes
through a combined method. Thus, the diffusion cooperation
mode enables communication of the entire network.

As we know, adaptive filtering (AF) has been applied to
many fields such as echo cancellation, system identification,
active noise control [16], [17]. However, most of the AF
methods are realized in the background noise of Gaussian
distribution. In fact, many application scenes exist impulsive
noise like the underwater noise and radar clutter [18], [19].
And hence, the early developed AFs cannot combat the
impulsive noise well. On the other hand, the kernel method
in statistical signal processing has been well developed and
used to exploit new methods. In order to solve this problem,
an AF algorithm based on least mean p-power (LMP) and
an AF algorithm based on sign function were proposed [20],
[21]. Recently, another AF method has been proposed based
on kernel technique that is named as maximum correntropy
criterion (MCC). The MCC constructs a new cost function
to suppress the impulse noise by introducing an exponential
term [22]- [31]. Due to the negative exponential term and
kernel width of Gaussian kernel function in the MCC, the
effects of the larger error is weakened [32]. The numerical
instability caused by the increase of the deviation will not
occur in the MCC since the correntropy has strong robust-
ness. In addition, the MCC is similar to the LMS from the
complexity view, making MCC widely used in various fields.
In the MCC, the influence of kernel width has key effects
on its performance and it is not easy to choose a suitable
kernel width, which would be affect the racking performance
and steady-state performance of the MCC. Then, an adaptive
kernel width has been developed and integrated into the
MCCs [33]–[35]. As for these algorithms, some of them are
not stable in performance under strong pulse interference. In
[36], a new variable kernel width MCC (VKW-MCC) algo-
rithm was proposed, which solved the stability problem under
strong impulse noise interference. However, the complexity
has increased. On the other hand, there are many sparse
systems in life, resulting in that the sparse AFs are required to
exploit these prior information. Thus, many sparse AFs have
been proposed [37]– [44].

In this paper, a diffusion MCC (DMCC) algorithm with
adaption kernel width is proposed, denoting as DMCCadapt
algorithm. At the initial stage, the proposed DMCCadapt
provides a small kernel width via a kernel width updating
scheme since the tracking error is large. Then, DMCCadapt

provides a larger kernel width value to obtain a smaller
steady-state error when it approaches to the convergence
completion stage. Thus, the DMCCadapt ensures the con-
vergence speed at the initial stage and controls steady-state
error, which makes that it can track the system. To exploit
the prior sparse information in practical systems, the idea
of proportional scheme is integrated into the MCCadapt to
implement the proportionality DMCCadapt (DPMCCadapt).
The theoretical analysis and simulation results are presented
to show that the DPMCCadapt and DMCCadapt algorithms
have better convergence performance than the traditional
diffusion AF algorithms under impulse noise and sparse
systems. The main contributions of this paper are listed as
follows:
(1) A novel kernel width adaption MCC algorithm is created.
In the initial stage of convergence, it gives a smaller kernel
width, which speeds up the convergence, and provides a
larger kernel width to reduce the steady-state error in steady-
state stage.
(2) Considering MCCadapt with the distributed network, a
new distributed estimation algorithm is proposed, denoted as
DMCCadapt, which can effectively combat impulsive inter-
ference in distributed networks.
(3) Integrating DMCCadapt with the idea of proportionality
scheme, a DPMCCadapt algorithm is proposed, which is
suitable for different sparsity system identifications.

A lowercase bold letter is used to denote a vector, and cap-
ital bold letter denotes a matrix, respectively. (.)T represents
as transposed. bvec(.) is the vectorization operator to trans-
form matrix into column vector. ⊗ is denoted as Kronecker
product. For vector x, diag(x) denotes a diagonal matrix
with its diagonal elements being the entries of vector x. IM
denotes an M ×M identity matrix. For two random matrices
A, B, the operation ‖B‖2A = BAB.

II. PREVIOUS WORK
A. THE MCC ALGORITHM
Correntropy criterion is a nonlinear similarity measure be-
tween two random sequencesX and Y , defining as

V (X,Y ) = E[κ(X − Y )]

=

∫∫
x,y

κ(x− y)fXY (x, y)dxdy, (1)

where E(.) denotes the expectation operator, x, y are the ele-
ments in sequencesX,Y . fXY (x, y) is the joint probability
density function of X,Y , κ(.) represents the Mercer kernel
function, where the most commonly used Mercer kernel
function is Gaussian kernel, giving by

κ(x− y) = exp(
−(x− y)2

2σ2
), (2)

where σ > 0 denotes the kernel width.
We consider that the desired signal d(n) arises from the

linear model

d(n) = uT (n)w0 + v(n), (3)
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where u(n) = [u(n) u(n − 1) ... u(n − M + 1)]T

denotes the input vector, M denotes the length of the AF,
and the unknown parameter vector to be estimated isw0 that
is a M × 1 vector, and v(n) is the background noise. The
error signal is given by

e(n) = d(n)− uT (n)w(n), (4)

where w(n) is an estimate of w0 at iteration n.
In the MCC, the cost function is

JMCC(n) = exp(
−e2(n)

2σ2
). (5)

B. THE DMCC ALGORITHM
Since the MCC algorithm cannot be used for the distribu-
tion estimation, the DMCC has been proposed in [45]–
[49], where the DMCC has two diffusion strategies that are
combine-then-adapt (CTA) and adapt-then-combine (ATC).
The ATC strategy can traverse all nodes more quickly than
the CTA strategy, which is widely used [50], which will be
used in this paper.

The DMCC uses the same cost function as the MCC to
suppress non-Gaussian noises for each node in the network.
In a diffusion network withN nodes, the unknown parameter
vector to be estimated is w0,k that is a M × 1 vector, and
the local observation of node k at the n iteration denotes as
{dk(n),uk(n)}, k = 1, ..., N, where

dk(n) = wT
0,kuk(n) + vk(n), (6)

where vk(n) is the background noise, vk(n) and uk(n) are
mutually independent. The DMCC is to estimate w0,k by
maximizing a linear combination of the local correntropy
within the node k’s neighbor Nk, and the DMCC’s cost
function at node k is

J localk (n) =
∑
l∈Nk

αl,kexp(
−e2

l,k(n)

2σ2
), (7)

where el,k(n) = dk(n)−wT
k uk(n). wk is the estimation of

w0,k, {αl,k} are some non-negative combination coefficients
satisfying

αl,k =

{
deg(k), l ∈ Nk
0, l /∈ Nk,

(8)

where deg(k) represents the degree of node k (the number of
k adjacent node-to-node links, including the agent k itself).
The derivative with respect to wk is given by

∇J localk (n) =
∂J localk (n)

∂wk

=
∑
l∈Nk

αl,k
exp(

−e2l,k(n)

2σ2 )el,k(n)uk(n)

σ2
.

(9)

Then, the DMCC algorithm for estimating w0,k at node k
based on the gradient method is written as

Φk(n) = wk(n− 1) +
µkexp(

−e2l,k(n)

2σ2 )el,k(n)uk(n)

σ2

wk(n) =
∑
l∈Nk

αl,kΦl(n),

(10)
where Φk(n) is the intermediate estimate of node k at time
n.

III. THE PROPOSED ALGORITHMS
A. ADAPTIVE KERNEL WIDTH
The kernel width in the Gaussian kernel has a significant
influence on the convergence speed of the MCC algorithms.
When other parameters are fixed, a smaller kernel width can
enhance the convergence rate but the steady-state error is
large. If a larger kernel width is selected, the MCC converges
slowly, but it has smaller steady-state error. Therefore, it is
necessary to develop an adaptive kernel width to form the
MCCadapt.

Then, an on-line recursive scheme is implemented for
kernel width updating in the MCCadapt algorithm. Herein,
the error el,k(n) is used to adjust the kernel width that is
updated using

σk(n) = max{(2σ0 − 1)exp(−
e2l,k(n)

2 ), σ0}, (11)

where σ0 is same as the kernel width of the MCC.
Based on common knowledge, we know

0 < exp(−
e2
l,k(n)

2
) < 1, (12)

and thus
1 < σk(n) < 2σ0 − 1, (13)

When the error is large,

σk(n)→ 1, (14)

and when the error is small,

σk(n)→ 2σ0 − 1. (15)

In general, MCC σ0 > 1 [36], thus, 2σ0 − 1 ≥ σ0. The
MCCadapt algorithm reduces the steady-state error compared
with the MCC algorithm.

At the beginning of iteration, the MCCadapt uses the same
kernel width as the MCC to obtain same initial convergence
speed rate. Then, the MCCadapt algorithm switches to (2σ0−

1)exp(−
e2l,k(n)

2 ), which reduced the steady-state error.

B. THE PROPOSED DMCC ALGORITHM BASED ON
ADAPTIVE KERNEL WIDTH
Based on the discussions, the cost function of the
DMCCadapt is written as

J localk (n) =
∑
l∈Nk

αl,kexp(
−e2

l,k(n)

2σ2
k(n)

). (16)

VOLUME 4, 2016 3



where

σk(n) = max{(2σ0 − 1)exp(−
e2l,k(n)

2 ), σ0}, (17)

The derivative with respect to wk is given by

∇J localk (n) =
∂J localk (n)

∂wk

=
∑
l∈Nk

αl,k
exp(

−e2l,k(n)

2σ2
k(n)

)el,k(n)uk(n)

σ2
k(n)

.

(18)

Then, the gradient decent scheme is used to get the updating
at node k

wk(n) = wk(n− 1) + µk
∂J localk (n)

∂wk

= wk(n− 1)

+
∑
l∈Nk

αl,k
µkexp(

−e2l,k(n)

2σ2
k(n)

)el,k(n)uk(n)

σ2
k(n)

,

(19)

According to above analysis, one can obtain the general
DMCCadapt method presented by

Φk(n) = wk(n− 1) +
µkexp(

−e2l,k(n)

2σ2
k(n)

)el,k(n)uk(n)

σ2
k(n)

wk(n) =
∑
l∈Nk

αl,kΦl(n).

(20)

C. THE PROPOSED DPMCC ALGORITHM BASED ON
ADAPTIVE KERNEL WIDTH
In order to achieve better performance in sparse system-
s, the idea of proportional scheme is introduced into the
DMCCadapt algorithm to implement (DPMCCadapt). The
update equation of the proposed DPMCCadapt is realized and
presented as

wk(n) = wk(n− 1) +
µkGk(n)∇J localk (n)

uk(n)Gk(n)uTk (n) + θ

= wk(n− 1)+

∑
l∈Nk

αl,k
µkGk(n)exp(

−e2l,k(n)

2σ2
k(n)

)el,k(n)uk(n)

σ2
k(n)(uk(n)Gk(n)uTk (n)) + θ

,

(21)
where σk(n) denotes adaption kernel width, θ is a regulariza-
tion parameter,Gk(n) = diag{gk,1(n), gk,2(n), ..., gk,M (n)}
has a size of M ×M , and gk,i(n) > 0, giving by

gk,i(n) =
γk,i(n)∑M
i=1 γk,i(n)

, (22)

γk,i(n) = max{εmax{δp, Sk,1(n), ..., Sk,M (n)}, Sk,i(n)},
(23)

Sk(n) = ln(1 + |wk(n)|), (24)

where ε is used to update the coefficient, which is 5
M , δp

avoids the stalling of all coefficients when Sk(n) = 0M × 1

at initialization, where M denotes the length of the AF, and
{αl,k} denotes the joint coefficient between the nodes. We
can find that the DPMCCadapt gives a proportional step size
for each coefficient to ensure that the large coefficient can
obtain a large step size for reducing the convergence time in
sparse systems.

According to above analysis, one can obtain



Φk(n) = wk(n− 1)+

µkGk(n)exp(
−e2l,k(n)

2σ2
k(n)

)el,k(n)uk(n)

σ2
k(n)(uk(n)Gk(n)uTk (n)) + θ

wk(n) =
∑
l∈Nk

αl,kΦl(n).

(25)

To well understand the proposed algorithm, Table 1 summa-
rizes the DPMCCadapt algorithm.

TABLE 1. Summary of the DPMCCadapt

Initialize: ε = 5
M

, δp = 0.2, θ = 0.01, σ0 = 2
For each iteration n
for k=1:N

el,k(n) = dk(n)−wT
k (n)uk(n);

Sk(n) = log(1 + |wk(n)|);
for i = 1 :M
γk,i(n) = max{εmax{δp, {Sk,1(n), ..., Sk,M (n)}, Sk,i(n)}};
gk,i(n) =

γk,i(n)∑M
i=1

γk,i(n)

M

;

Gk(n) = diag{gk,1(n), gk,2(n), ..., gk,M (n)};
end

σk(n) = max{(2σ0 − 1)exp(
−e2l,k(n)

2
), σ0};

Φk(n) = wk(n− 1) +
µkGk(n)exp(

−e2l,k(n)

2σ2
k
(n)

)el,k(n)uk(n)

σ2
k
(n)(uk(n)Gk(n)u

T
k
(n))+θ

;

end
for l = 1 : N

wk(n) =
∑
l∈Nk αl,kΦl(n);

end

IV. PERFORMANCE ANALYSIS

The convergence performance of the proposed DPMCCadapt
algorithm is investigated along with the following assump-
tions.
Hypothesis 1: All regression vectorsuk(n) are zero mean
Gaussian sources and are independent in space and time.
Hypothesis 2: Nonlinear error el,k(n) is independent of
uk(n).
Hypothesis 3: The mean of noise signal vk(n) is zero,
which is independent of uk(n).

As obtained data is exchanged between different nodes,
their updates are affected by the previous estimates. Thus,
the correlation between nodes should be considered to inves-
tigate the convergence performance of entire distributed net-
work. Also, some new variables are introduced, and hence,
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the proposed DPMCCadapt algorithm is redefined as
Φk(n) = wk(n− 1) + µkrk(n)Guk(n)el,k(n)uk(n)

= wk(n− 1) + ρk(n)Guk(n)el,k(n)uk(n)

wk(n) =
∑
l∈Nk

αl,kΦl(n),

(26)
where

ρk(n) = µkrk(n), (27)

rk(n) =
exp(

−e2l,k(n)

2σ2
k(n)

)

σ2
k(n)

, (28)

σk(n) = max{(2σ0 − 1)exp(−
e2l,k(n)

2 ), σ0}, (29)

Guk(n) =
Gk(n)

uk(n)Gk(n)uTk (n) + θ
, (30)

where ρk(n) is new step size.
In order to convert local variables to global variables, we

have following definitions:

T (n) = diag{ρ1(n)IM , ρ2(n)IM , ..., ρN (n)IM}NM×NM ,
(31)

h(n) = col{w1(n),w2(n), . . . ,wN (n)}NM×1, (32)

Φ(n) = col{Φ1(n),Φ2(n), . . . ,ΦN (n)}NM×1, (33)

U(n) = diag{u1(n),u2(n), . . . ,uN (n)}NM×NM , (34)

d(n) = col{d1(n), d2(n), . . . , dN (n)}NM×1, (35)

v(n) = col{v1(n), v2(n), . . . , vN (n)}NM×1, (36)

G(n) = diag{Gu1
(n),Gu2

(n), . . . ,GuN (n)}NM×NM .
(37)

Based on the definitions and discussions above, a equation
for entire distributed network is formed by considering the
relationship between the nodes

d(n) = U(n)h0 + v(n), (38)

where h0 = Ww0,k,W = col{IM , IM , ..., IM}NM×M ,
h0 denotes the global unknown parameter vector. The up-
date equation can be modified for implementing the global
network

Φ(n) =h(n− 1) + T (n)G(n)UT (n)

(d(n)−U(n)h(n− 1)),
(39)

h(n) = HΦ(n), (40)

where h(n) is the estimate vector of h0,H = Θ⊗IM , Θ is
the N ×N diffusion combination matrix with entries of αl,k,∑
l∈Nk αl,k = 1.

A. MEAN STABILITY ANALYSIS
A new global weight error vector is defined as

h̃(n) = h0 − h(n). (41)

Based on the previous analysis, Hh0 = h0. Substituting
the above formulas into (41), we have

h̃(n) =h0 − h(n)

=Hh0 −HΦ(n)

=Hh0 −H[h(n− 1) + T (n)G(n)UT (n)

(d(n)−U(n)h(n− 1))]

=Hh̃(n− 1)−H[T (n)G(n)UT (n)

(d(n)−U(n)h(n− 1))]

=Hh̃(n− 1)−H[T (n)G(n)UT (n)

(U(n)h̃(n− 1) + v(n))]

=H[INM − T (n)G(n)UT (n)U(n)]

h̃(n− 1)−HT (n)G(n)UT (n)v(n).

(42)

Then, the expectation is used on the both sides of equation
(42) to get

E[h̃(n)] = H[INM − E[T (n)G(n)UT (n)U(n)]]

E[h̃(n− 1)]−HE[T (n)G(n)UT (n)]E[v(n)].
(43)

By using the assumptions, it is found that the matrix T (n)
is independent of the matrix U(n), and hence, we can get

E[T (n)G(n)UT (n)U(n)] ∼= G(n)E[T (n)]E[UT (n)U(n)],
(44)

where RU = E[UT (n)U(n)] is the auto-correlation matrix
of U(n). Therefore, (43) can be written as

E[h̃(n)] =H[INM −G(n)E[T (n)]E[UT (n)U(n)]]

E[h̃(n− 1)]−HG(n)

E[T (n)]E[UT (n)]E[v(n)]

=H[INM −G(n)E[T (n)]RU ]E[h̃(n− 1)]

−HG(n)E[T (n)]E[UT (n)]E[v(n)].
(45)

From the hypothesis 3, the expectation of the second term
on the right side of (45) is zero, resulting in

E[h̃(n)] = H[INM −G(n)E[T (n)]RU ]E[h̃(n− 1)].
(46)

In order to achieve the stability, it should be satisfied [27]

|λmax(H[INM −G(n)E[T (n)]RU ]|
= |λmax(HZ(n))| < 1,

(47)

where Z(n) = INM −G(n)E[T (n)]RU , and λmax repre-
sents its maximum eigenvalue. According to the relationship
‖HZ(n)‖2 ≤ ‖H‖2 ‖Z(n)‖2, we can get

|λmax(HZ(n))| ≤ ‖Θ‖2 |λmax(Z(n))|. (48)

From the definition of Θ, we have ‖Θ‖2 = 1, which yields

|λmax(HZ(n))| ≤ |λmax(Z(n))|. (49)
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If the DPMCCadapt is stable, we requires

|λmax(Z(n))| < 1. (50)

If the step size satisfies (50), then, we get

0 < E[T (n)] <
1

λmax(G(n)RU )
. (51)

Then, we get

0 < E[ρk(n)] <
1

λmax(G(n)RU )
. (52)

As ρk(n) = µkrk(n), we can go further to obtain

0 < µk <
1

λmax(G(n)RU )E[rk(n)]
. (53)

B. MEAN SQUARE TRANSIENT ANALYSIS
The mean square performance of the DPMCCadapt algorithm
is studied herein. We calculate the weighted norm of (42) and
take the expectation to get

E[
∥∥∥h̃(n)

∥∥∥2

Σ
]

=E[‖H[INM − T (n)G(n)UT (n)U(n)]h̃(n− 1)−
HT (n)G(n)UT (n)v(n)‖2Σ]

=E[‖h̃(n− 1)‖2Σ′ ]+

E[vT (n)HTG(n)T (n)ΣT (n)G(n)Hv(n)],
(54)

where ΣNM×NM is a random matrix and

Σ′ =HTΣH −HTΣT (n)G(n)UT (n)U(n)H

−HTUT (n)U(n)G(n)T (n)ΣH

+HTUT (n)U(n)G(n)T (n)Σ

T (n)G(n)UT (n)U(n)H.

(55)

Since Σ′ is a random matrix, we can replace it with its mean
value (a deterministic matrix Σ∗ = E[Σ′]) [51]. Thus, we
get

E[
∥∥∥h̃(n)

∥∥∥2

Σ
]

=E[‖h̃(n− 1)‖2Σ∗ ]+

E[vT (n)HTG(n)T (n)ΣT (n)G(n)Hv(n)],

(56)

where

Σ∗ = E[Σ′] =HTΣH − E[HT

ΣT (n)G(n)UT (n)U(n)H]

−HTG(n)E[UT (n)U(n)]E[T (n)]ΣH

+HTE[UT (n)U(n)G(n)T (n)Σ

T (n)G(n)UT (n)U(n)]H.
(57)

For further analysis, the auto-correlation matrix is divided
into

RU = E[UT (n)U(n)] = QΛQT , (58)

where Λ is a diagonal matrix containing eigenvalues ofRU ,
and Q is a matrix containing the eigenvectors corresponding
to these eigenvalues. According to this decomposition, we
define new transformed variables:

h̄(n) = QT h̃(n), Ū(n) = U(n)Q, H̄ = QTHQ,

Ḡuk(n) = QTG(n)Q = G(n), Σ̄ = QTΣQ,

Σ̄
∗

= QTΣ∗Q, T̄ (n) = QTT (n)Q = T (n),

(59)

where the input of each node is regarded as independent of
each other. AsG(n) and T (n) are diagonal matrices in (59),
T̄ (n) = T (n), Ḡ(n) = G(n). Then, (56) is redefined as

E[
∥∥h̄(n)

∥∥2

Σ̄
] = E[

∥∥h̄(n− 1)
∥∥2

Σ̄∗ ]

+ E[vT (n)H̄
T
Ū
T

(n)G(n)T (n)Σ̄

T (n)G(n)Ū(n)H̄v(n)],

(60)

where

Σ̄
∗

=H̄
T
Σ̄H̄ − H̄T

Σ̄E[T (n)]G(n)

E[Ū
T

(n)Ū(n)]H̄

−E[H̄
T
Ū
T

(n)Ū(n)T (n)G(n)Σ̄H̄]

+E[H̄
T
Ū
T

(n)Ū(n)G(n)T (n)Σ̄

T (n)G(n)Ū
T

(n)Ū(n)H̄],

(61)

and we have E[Ū
T

(n)Ū(n)] = Λ. The freedom for select-
ing Σ enables us to characterize the MSD performance of the
network [51].
Definition 1: Σ can be defined as

Σ =


Σ11 Σ12 · · · Σ1N

Σ21 Σ22 · · · Σ2N

...
... · · ·

...
ΣN1 ΣN2 · · · ΣNN

 , (62)

where Σkl is an M ×M matrix, and

Σl = col{Σ1l, ...,ΣNl}, l ∈ {1, ..., N}, (63)

Σc = col{Σ1, ...,ΣN}. (64)

Converting Σkl to a column vector using the bvec operator,
we have

ϑkl = bvec{Σkl}. (65)

Then, we have

ϑl = col{ϑ1l, ...,ϑNl}, (66)

ϑ = col{ϑ1, ...,ϑN}. (67)

The matrix Σ is transformed into a vector by means of the
bevc operator ϑ = bevc{Σ}.

The block Kroncker product of two block matrices, C
and D, is defined as C� D, and its kl-block is

[C� D]kl =

Ckl ⊗ D11 · · · Ckl ⊗ D1N

...
... · · ·

Ckl ⊗ DN1 · · · Ckl ⊗ DNN

 (68)

6 VOLUME 4, 2016



for k, l ∈ 1, ..., N . bevc operator is used to get bevc{Σ̄} =
ϑ̄.

Next, we will analyze the following items

E[vT (n)H̄
T
Ū
T

(n)G(n)T (n)Σ̄T (n)G(n)Ū(n)H̄v(n)],
(69)

H̄
T
Σ̄H̄, (70)

H̄
T
Σ̄E[T (n)]G(n)E[Ū

T
(n)Ū(n)]H̄ (71)

E[H̄
T
Ū
T

(n)Ū(n)T (n)G(n)Σ̄H̄], (72)

E[H̄
T
Ū
T

(n)Ū(n)G(n)T (n)Σ̄T (n)G(n)Ū
T

(n)Ū(n)H̄].
(73)

The second item on the right hand side of (60) is written as

E[vT (n)H̄
T
Ū
T

(n)G(n)T (n)Σ̄

T (n)G(n)Ū(n)H̄v(n)]

=E[H̄
T
G(n)v(n)vT (n)G(n)H̄]

E[Ū
T

(n)T (n)Σ̄T (n)Ū(n)].

(74)

Divide (74) into two parts and vectorize them separately.
The first part is E[H̄

T
G(n)v(n)vT (n)G(n)H̄]. Vectoriz-

ing E[H̄
T
G(n)v(n)vT (n)G(n)H̄], we get

bevc{E[H̄
T
G(n)v(n)vT (n)G(n)H̄]}

= H̄
T � H̄T

bevc{E[G(n)v(n)vT (n)G(n)]}
(75)

where

χT = (H̄
T � H̄T

)bevc{E[G(n)v(n)vT (n)G(n)]}. (76)

The second part is B = E[Ū
T

(n)T (n)Σ̄T (n)Ū(n)] in
(74).
Definition 2:B is defined as

B = [B1,B2, ...,BN ], (77)

and its l-th column is

Bl = col{B1,l,B2,l, ...,Bk,l, ...,BN,l}. (78)

As a result, M -dimensionalBk,l is obtained

Bk,l =

{
ρ2
kTr(ΛkΣ̄kk), k = l

0, k 6= l,
(79)

and we vectorizeB as

= = bevc{B} = col{b1, b2, ..., bN}, (80)

and we define
bk,l = bevc{Bk,l}, (81)

bk,l =

{
bvec{IM}ρ2

kλ
T
k ϑ̄kk, k = l

0, k 6= l.
(82)

The column l of b is

bl = col{b1,l, b2,l, ..., bl,l, ..., bN,l} (83)

based on (82) and (83), and we have

bl = col{0ϑ̄1l, 0ϑ̄2l, ..., bevc{IMρ2
lλ

2
l ϑ̄ll}, ..., 0ϑ̄Nl},

(84)
and

bevc{E[vT (n)H̄
T
Ū
T

(n)G(n)T (n)Σ̄

T (n)G(n)Ū(n)H̄v(n)]}
=χT=ϑ̄.

(85)

For any three matrices C,D, Σ̄, according to [52], [53], we
have

bevc{CΣ̄D} = (DT � C)bevc{Σ̄} = (DT � C)ϑ̄. (86)

Next, we vectorized each term of equation (61), and the
first term can be written as

bevc{H̄T
Σ̄H̄} = (H̄

T � H̄T
)ϑ̄. (87)

For the second term, we have

bevc{E[H̄
T
Σ̄T (n)G(n)Ū

T
(n)Ū(n)H̄]}

=(H̄
T � H̄T

)bevc{E[INM Σ̄T (n)G(n)Ū
T

(n)Ū(n)]}

=(H̄
T � H̄T

)(Λ� INM )

bevc{E[INM Σ̄T (n)G(n)]}

=(H̄
T � H̄T

)(Λ� INM )

(E[T (n)]G(n)� INM )bevc{Σ̄}

=(H̄
T � H̄T

)(Λ� INM )

(E[T (n)]G(n)� INM )ϑ̄.
(88)

As for the third term, we have

bevc{E[H̄
T
Ū
T

(n)Ū(n)T (n)G(n)Σ̄H̄]}

= (H̄
T � H̄T

)bevc{ΛE[T (n)]G(n)Σ̄INM}

= (H̄
T � H̄T

)(INM �Λ)

bevc{E[T (n)]G(n)Σ̄INM}

= (H̄
T � H̄T

)(INM �Λ)

(INM�E[T (n)]G(n))ϑ̄.

(89)

For the fourth term, we have

bevc{E[H̄
T
Ū
T

(n)Ū(n)G(n)T (n)Σ̄

T (n)G(n)Ū
T

(n)Ū(n)H̄]}

=(H̄
T � H̄T

)bevc{E[Ū
T

(n)Ū(n)G(n)T (n)Σ̄

T (n)G(n)Ū
T

(n)Ū(n)]}
= E[T (n)]G(n)�G(n)E[T (n)]

bevc{E[Ū
T

(n)Ū(n)Σ̄Ū
T

(n)Ū(n)]}.

(90)

Definition 3: F is defined as

F =E[Ū
T

(n)Ū(n)Σ̄,

Ū
T

(n)Ū(n)],
(91)

where
F = diag{F 1,F 2, ...,FN}, (92)
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F l = {F 1l,F 2l, ...,FNl} (l ∈ 1, ..., N). (93)

According to [54], the block matrix F kl is estimated by

F kl =


[ΛkTr(ΛkΣ̄kk)

+ ξΛkΣ̄kkλk]ΛkΣ̄klΛl, k = l,

0, k 6= l

(94)

where λk = bvec{Λk}.

From the above analysis

bevc{Σ̄∗} = (H̄
T � H̄T

){IN2M2 − (Λ� INM )

(E[T (n)]G(n)� INM )

− (INM �Λ)(INM�E[T (n)]G(n))+

(E[T (n)]G(n)�G(n)E[T (n)])F }ϑ̄,

(95)

and substituting (95) into (61), the mean square behavior of
adaptive networks is described recursively as follows

E[
∥∥∥h̃(n)

∥∥∥2

ϑ̄
] = E[

∥∥∥h̃(n− 1)
∥∥∥2

Āϑ̄
] + χT=ϑ̄, (96)

where

Ā =(H̄
T � H̄T

){IN2M2 − (Λ� INM )

(E[T (n)]G(n)� INM )

− (INM �Λ)(INM�E[T (n)]G(n))+

(E[T (n)]G(n)�G(n)E[T (n)])F }.

(97)

According to the above analysis, the recursive equation of
the DPMCCadapt algorithm is derived

E[
∥∥h̄(n)

∥∥2

ϑ̄
] = E[

∥∥h̄(n− 1)
∥∥2

Ā(1)ϑ̄
] + χT=ϑ̄Ā(0),

E[
∥∥h̄(n− 1)

∥∥2

Ā(1)ϑ̄
] = E[

∥∥h̄(n− 1)
∥∥2

Ā(2)ϑ̄
] + χT=ϑ̄Ā(1),

. . .

E[
∥∥h̄(n− 1)

∥∥2

Ā(n)ϑ̄
] =

∥∥h̄(n− 1)
∥∥2

Ā(n+1)ϑ̄
+ χT=ϑ̄Ā(n),

(98)
Based on (98), the following results are obtained

E[
∥∥h̄(n)

∥∥2

Ā(n)ϑ̄
] =

∥∥h̄0

∥∥2

Ā(n+1)ϑ̄

+ χT=ϑ̄
n∑
z=0

Ā(z),
(99)

which in turn motivates the following recursion [51], the
network mean square deviation (MSD) evolve as follows:

E[
∥∥h̄(n)

∥∥2

ϑ̄
] =E[

∥∥h̄(n− 1)
∥∥2

ϑ̄
] + χT=Ā(n)ϑ̄

−
∥∥h̄0

∥∥2

Ā(n)(I−Ā)ϑ̄
.

(100)

Making η(n) = (1/N)E[‖h̄(n)‖2], ϑ̄ = 1
N bevc{INM} =

qη , we have

η(n) = η(n− 1) + χT=Ā(n)qη −
∥∥h̄0

∥∥2

Ā(n)(I−Ā)qη
.

(101)
When the convergence reaches its steady-state, the global
MSD is expressed as [51]

η(n) =
1

N
E[
∥∥h̄(n− 1)

∥∥2
], (102)

as n→∞, (96) leads to

E[‖h̄(∞)‖2[I−Ā]ϑ̄] = χT=ϑ̄, (103)

which is concluded as

η(n) =
1

N
χT=(I − Ā)−1bevc{INM}. (104)

Till now, the theoretical MSD analysis of the entire net-
work is obtained.

C. COMPUTATIONAL COMPLEXITY
In Table 2, the computational complexity of the MCC, A-
MCC (Adaptive Kernel Width MCC), S-MCC (Switch Ker-
nel Width MCC), FxRMC (Filtered-x Recursive Maximum
Correntropy), VKW-MCC (Variable Kernel Width MCC),
and MCCadapt are compared. We can see from the Table 2,
MCCadapt calculates more additions than the MCC, S-MCC,
with the same computational complexity as A-MCC, but
less than FxMCC and VKW-MCC. Additionally, MCCadapt
calculates multiplication less than S-MCC and FxMCC.

TABLE 2. Comparison of computational complexity

Algorithms Multiplication Addition
MCC 2M+6 2M

A-MCC 2M+6 2M+1
S-MCC 2M+8 2M
FxRMC 2M+4 2M+11

VKW-MCC 2M+9 2M+2
MCCadapt 2M+7 2M+1

Table 3 compares the computational complexities of the
DLMS, DLMP, DSIGN, DNSIGN, DMCC and DMCCadapt.
It can be seen from the Table 3, DMCCadapt calculates more
addition than the DLMS and DMCC, but has the same com-
putational complexity to the DLMP and DSIGN. However,
it is simpler than the DNSIGN. DMCCadapt calculates more
multiplication than the DLMS, DLMP, DSIGN and DMCC,
but it is far less than the DNSIGN.

TABLE 3. Comparison of computational complexities in non-sparse systems

Algorithms Multiplication Addition
DLMS 7M+1 6M
DLMP 7M+2 6M+1
DSIGN 7M+1 6M+1

DNSIGN 8M+2 7M
DMCC 7M+6 6M

DMCCadapt 7M+7 6M+1

Table 4 shows the comparison of computational complex-
ity of DLMS, DMCC, DMCCadapt, DPLMS, DPMCC and
DPMCCadapt algorithms in sparse system. It can be seen
from the Table 4 that the steady state performance of the
algorithm is improved when combined with the proportional
coefficient algorithm, but the computational complexity of
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FIGURE 1. Diffusion network topology with 20 nodes within a squared area of
[0, 1.2]× [0, 1.2].

the algorithm also increases correspondingly. DPMCCadapt
calculates addition and multiplication times more than other
algorithms.

TABLE 4. Comparison of computational complexity of various diffusion
algorithms in sparse system

Algorithms Multiplication Addition
DLMS 7M+1 6M
DMCC 7M+6 6M

DMCCadapt 7M+7 6M+1
DPLMS 11M+5 8M+1
DPMCC 11M+10 8M+1

DPMCCadapt 11M+11 8M+2

V. SIMULATION RESULTS
In this section, we setup simulation experiments to prove
the effectiveness of the constructed algorithms. As shown in
Fig.1, the distributed network topology consists of N = 20
nodes, and the joint parameter {αl,k} between nodes is
obtained using Metropolis criterion [55]. In this paper, uk(n)
is Gaussian white noise with zero mean, the MSD at node k
is presented by

MSD(n) = 10 log
1

N

N∑
k=1

E[‖w0,k −wk(n)‖2]. (105)

We also assumed that the noise at each node is independent
of the noise of other nodes. vk(n) at each node consists of
yk(n) and zk(n), namely vk(n) = yk(n) + zk(n), where
yk(n) ∼ N (0, σ2

yk
) is Gaussian white noise with zero mean.

zk(n) is Bernoulli impulsive noise whose model is given
by zk(n) = ρk(n)βk(n), where ρk(n) ∼ N (0, σ2

ρk
), and

βk(n) is Bernoulli noise with a probability density function
of P (βk(n) = 1) = Pr. In this paper, Pr represents the
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FIGURE 2. Non-sparse system impulse responses.

probability of pulse interference. The Signal-to-Noise Ratio
(SNR) is defined by

SNR = 10log(
σ2
dk

σ2
yk

), (106)

and the Signal-to-Interference Ratio (SIR) is defined by

SIR = 10log(
σ2
dk

σ2
zk

), (107)

where σ2
dk

is the variance of dk(n), σ2
zk

is the variance of
Bernoulli noise zk(n). Unless otherwise stated, the basic
parameters for the experiments are set in Table 5.

TABLE 5. The basic simulation parameters

Parameters Value
The length of filter M=140

The number of trails 50
The iteration number of for single system 20000
The iteration number of double channels 40000

The Signal-to-Noise Ratio (SNR) SNR=-20dB
The Signal-to-Interference Ratio (SIR) SIR=-5dB

A. FOR NON-SPARSE SYSTEM
Here, behaviors of the MCCadapt is compared with MCC, A-
MCC, S-MCC, FxRMC and VKW-MCC under 10% impulse
noise. The probability of Bernoulli process occurrence is
P (βk(n) = 1) = Pr = 0.1. The kernel width σ0 = 2 is used
for MCC, A-MCC, S-MCC and MCCadapt, and kσ = 20 is
employed in the VKW-MCC algorithm. The corresponding
step size for MCC, A-MCC, S-MCC, FxMCC, VKW-MCC
and MCCadapt are 0.1, 0.002, 0.15, 0.2, 0.1 and 0.2, respec-
tively.

In Fig.3, we observe that the MCC performs the worst. The
steady-state error of the VKW-MCC is better than A-MCC,
S-MCC, and FxMCC. However, the computational complex-
ity of these algorithm increases a lot. Also, we can see that

VOLUME 4, 2016 9
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FIGURE 3. The comparison of steady state performance for the MCC,
A-MCC, S-MCC, FxMCC, VKW-MCC and MCCadapt algorithms with 10%
impulsive noise.
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FIGURE 4. The convergence of the DMCCadapt algorithm with different σ0.

the performance of the MCCadapt algorithm is better than
other algorithms because of kernel width adaption scheme.

Figure 4 is effect of parameter σ0 on the DMCCadapt
algorithm in non-sparse system (a), where σ0 are 1, 2, 3,
and 10% impulse noise is considered in the system. The
corresponding step size are 0.006, 0.015, and 0.025. When
σ0 > 2, its influence on the DMCCadapt is not obvious.
Hereafter, σ0 = 2 is chosen.

The convergence for the DLMS, DLMP, DSIGN,
DNSIGN, DMCC and DMCCadapt under Gaussian noise is
presented in Fig.5, where a non-sparse system (a) is consid-
ered and their step sizes are 0.006, 0.025, 0.01, 0.25, 0.05
and 0.08, respectively. p is 1 for DLMP, and the kernel size
σ0 = 2 for DMCC and DMCCadapt algorithms. Obviously,
all algorithms have good convergence under Gaussian noise.
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FIGURE 5. The MSD comparison of the DLMS, DLMP, DSIGN, DNSIGN,
DMCC, DMCCadapt with Gaussian noise.

Among them, the convergence of the DLMS algorithm is
the best, while the convergence for the DLMP, DSIGN and
DNSIGN are similar. The DMCC is better than DLMP,
DSIGN, DNSIGN with respect to the convergence, but their
convergence is still worse than the DMCCadapt since the
kernel width in DMCCadapt is dynamic.

Figure 6 is the performance for estimating non-sparse
system (a) when the step sizes for the DLMS, DLMP,
DSIGN, DNSIGN, DMCC and DMCCadapt are 0.006, 0.025,
0.01, 0.25, 0.05 and 0.08, respectively. It is found that
the DLMS algorithm cannot converge, while other used
algorithms can converge well. The results for the DLMP,
DSIGN and DNSIGN are similar, while the DMCC and
DMCCadapt are better than the DLMP, DSIGN and DNSIGN
in terms of the MSD and the DMCC adapt achieves the
best performance. Due to the negative exponential term in
the MCCs, the DMCC and DMCCadapt algorithms obtains
better MSD than other algorithms in impulsive noises. The
DMCCadapt selects the kernel width dynamically, and hence,
it achieves better performance than the DMCC.

The tracking performance of different algorithms in im-
pulsive noise is compared in Fig.7, and the step sizes for the
DLMS, DLMP, DSIGN, DNSIGN, DMCC and DMCCadapt
are 0.006, 0.025, 0.01, 0.25, 0.05 and 0.08, respectively.
After 20000 iterations, the system changes from the non-
sparse system (a) to non-sparse system (b) given in Fig.2.
From the simulation results, it can be seen that when the
unknown system suddenly changes, all algorithms can track
the changes, and the DMCCadapt is the best from all the
mentioned algorithms.
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FIGURE 6. The comparison of steady state performance for the DLMS, DLMP,
DSIGN, DNSIGN, DMCC and DMCCadapt algorithms with 10% impulsive noise.
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FIGURE 7. The comparison of MSD tracking performance for the DLMS,
DLMP, DSIGN, DNSIGN, DMCC, DMCCadapt algorithms with 10% impulsive
noise.

B. FOR SPARSE SYSTEM
Figures 9, 10 and 11 present the performance under sparse
systems, where the sparse channels are presented in Fig.8.
The sparsity of the sparse system is measured by Sm =

M
M−
√
M

(1− ‖wk(n)‖1√
M‖wk(n)‖2

).
Figure 9 is convergence comparison the DLMS, DMC-

C, DMCCadapt, DPLMS, DPMCC and DPMCCadapt al-
gorithms under Gaussian noise for estimating the sparse
system (a) in Fig.8, and their step sizes are 0.006, 0.05, 0.06,
0.18, 0.98 and 0.9, respectively. The performance for the
DPMCCadapt is better than the DPMCC due to the adaptive
kernel width scheme.

Figure 10 shows the convergence performance of
the DLMS, DMCC, DMCCadapt, DPLMS, DPMCC,
DPMCCadapt under 10% impulsive noise in sparse system
(a) in Fig.8. The corresponding step sizes are 0.006, 0.05,
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FIGURE 8. System impulse responses with different sparsity
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FIGURE 9. Convergence comparison of the DLMS, DMCC, DMCCadapt,
DPLMS, DPMMC, DPMCCadapt with Gaussian noise.

0.06, 0.18, 0.98, 0.9. As can be seen from Fig.10, the perfor-
mance of the DLMS and DPLMS deteriorate under impulse
noise. DPMCC is better than DMCC and DMCCadapt, but it
is worse than the DPMCCadapt. Figure 11 shows the track-
ing ability and robustness of the algorithms in time-varying
sparse systems. After 20000 iterations, the system changes
from high sparse system (a) to moderate sparse system
(b) shown in Fig.8. In this experiment, when the unknown
system changes, all algorithms can maintain good tracking
ability, and the DPMCCadapt performs the best among the
mentioned 6 algorithms. The performance comparison of
the proposed DMCCadapt and DPMCCadapt with DLMS,
DMCC, DPLMS, DPMCC are given for different impulsive
noises in Table 4. As can be seen from Table 6, the DPMCC
has the best MSD.

At last, the theory analysis and the simulation are pre-
sented and given in Fig.12. We can see that the simulation
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FIGURE 10. The comparison of MSD performance for the DLMS, DMCC,
DMCCadapt, DPLMS, DPMCC, DPMCCadapt with 10% impulsive noise.
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FIGURE 11. The comparison of MSD tracking performance for the DLMS,
DMCC, DMCCadapt, DPLMS, DPMCC, DPMCCadapt with 10% impulsive noise.

agrees well with the theoretical analysis, which verifies the
correctness of the analysis.

VI. CONCLUSION
A kernel width adaption diffusion maximum correntropy
criterion algorithm has been derived and discussed to seek for
a solution for choosing adaptive kernel width in DMCC. The
proposed DMCCadapt algorithm uses different kernel widths
in the iterations and the DPMCCadapt incorporates the pro-
portional coefficient adjustment scheme into the DMCCadapt
algorithm to develop sparseness in the structured systems.
The theoretical analysis and simulation results have been
given and proved to demonstrate that the DPMCCadapt and
DMCCadapt algorithms with low MSD provide better con-
vergence than the traditional diffusion AF algorithms under
impulse noise and sparse system structures.

TABLE 6. Steady state MSD comparisons

Adaptive algorithms
Impulsive noise
10% 20% 30%
MSD MSD MSD

DLMS -9.1 -4.34 -3.39
DMCC -28.58 -28.93 -28.85

DMCCadapt -30.68 -30.23 -29.99
DPLMS -9.6 -6.99 -5.15
DPMCC -36.68 -36.65 -37.01

DPMCCadapt -38.73 -38.06 -38.18

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
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FIGURE 12. The comparison of steady state MSD for DPMCCadapt with varied
µ.
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