
P
os
te
d
on

20
F
eb

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
18
53
27
3.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/T

C
S
II
.2
01
9.
29
38
10
5

Lp-Stability of a Class of Volterra Systems

Anton van Wyk 1 and Guanrong Chen 2

1The University of the Witwatersrand
2Affiliation not available

October 30, 2023

Abstract

This paper presents some new and explicit stability results for Volterra systems from two different approaches. The first

approach is based on monomial domination of the Volterra system’s memoryless output nonlinearity and the second on its

Lipschitz-norm. The former yields more widely applicable results, but introduces nonconvexity in the signal spaces for certain

parameter values.
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Abstract—This paper presents some new and explicit stability
results for Volterra systems from two different approaches. The
first approach is based on monomial domination of the Volterra
system’s memoryless output nonlinearity and the second on its
Lipschitz-norm. The former yields more widely applicable results,
but introduces nonconvexity in the signal spaces for certain
parameter values.

Index Terms—Lipschitz-norm, Lp-norm, nonconvex set, stabil-
ity, Volterra series, Volterra system.

I. INTRODUCTION

The stability of Volterra systems has been a focal research
topic for both natural scientists [1] and engineers [2]– [4],
with a renewed interest when novel applications and results
emerge [5]. A state-of-the-art review on the use of Volterra
series for modeling of nonlinear systems is presented in [6],
which seems to suggest a declining interest in the stability
analysis of Volterra systems in recent years.

This paper communicates new and explicit stability results
for Volterra systems. Specifically, the Lp-stability of a general
continuous-time nonlinear system, described by a Volterra se-
ries expansion, is studied. The equivalent discrete-time results
follow in a straightforward manner by standard modifications
to those for the continuous-time versions.

Following the seminal work of Boyd and Chua [7], on
Volterra systems with fading memory, we are able to derive
concise stability criteria. When a fading-memory Volterra
system’s memoryless output nonlinearity is not continuous,
its Lipschitz-norm may not exist. However, it might still
be bounded by some Lipschitz-continuous mapping, enabling
one to derive a stability criterion. For the case of monomial
domination, this approach produces nonconvex ε-balls in the
signal spaces of interest for certain parameter values. On
the other hand, imposing the more stringent requirement of
Lipschitz-continuity on the output nonlinearity ensures the
existence of its Lipschitz-norm, thus preventing nonconvex
sets from entering the analysis. The stability criterion so
obtained necessarily applies to a smaller class of systems.
These two approaches yield different stability bounds, thus
providing more versatility by allowing selection of the more
appropriate of the two, for a given application.
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II. Lp-STABILITY OF VOLTERRA SYSTEMS

This paper focuses on the class of fading-memory Volterra
systems, which includes a vast range of engineering appli-
cations. Furthermore, their specific structure allows concise
analytical expressions to be obtained.

First, three distinct cases are considered: a monomial non-
linearity, a general monomially dominated nonlinearity and
a Lipschitz-continuous nonlinearity. After a discussion of the
results obtained, three more general cases are presented to
pave the way toward analysis of multiple-input, multiple-
convolution and multiple-output Volterra systems.

Case 1: Consider the following single-input single-convolution
Volterra system: a Linear Time-Invariant (LTI) system with
input signal x and impulse response g ∈ L1[0,∞) that feeds
into a memoryless nonlinearity of the form (·)v , for a given
0 < v <∞. Its output is described by

y = (g ∗ x)v , (1)

where ∗ represents convolution. Even though the power func-
tion is memoryless, the output y possesses memory with
respect to x due to the convolution featuring in (1). Young’s
convolution inequality [8, Th. 9.1] states that

‖g ∗ x‖p ≤ ‖g‖1 ‖x‖p , (2)

for all 1 ≤ p ≤ ∞, with ‖·‖p the standard Lp-norm on [0, ∞).
Using inequality (2), one obtains

‖y‖
1
v
q ≡ ‖(g ∗ x)v‖

1
v
q =

(∫ ∞

0

|(g ∗ x)v(τ)|q dτ
)1/vq

=
(∫ ∞

0

|g ∗ x|vq(τ) dτ
)1/vq

≡ ‖g ∗ x‖vq
≤ ‖g‖1 ‖x‖vq ,

for all 1 ≤ vq ≤ ∞, or alternatively, 1/v ≤ q ≤ ∞. It follows
that the Volterra system, described by (1), is finite-gain input-
output stable from Lvq[0,∞) to Lq[0,∞) for every v > 0 and
every q satisfying 1/v ≤ q ≤ ∞, both fixed.

It is interesting to note that, for v > 1, the lower bound of
q, namely 1/v, is less than one. However, for 1/v < q < 1,
the Lq-norm’s triangle inequality is violated, causing every
ε-ball in the output signal space Lq[0,∞) to be nonconvex
[9], [10]. On the other hand, if q is taken to be greater than
or equal to one, then, for sufficiently small 0 < v < 1, it
follows that vq < 1 so that every ε-ball in the input signal
space Lvq[0,∞) is nonconvex.

The consequences of a Lebesgue exponent1 strictly between
zero and one are far reaching concerning the operator theory

1Parameter p is called the Lebesgue exponent of the Lebesgue space Lp.
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applicable to this Lebesgue space (see [11]). For example, any
linear functional on this Lebesgue space is identically zero
[12], implying that only nonlinear functionals on this space
are worth studying.

Case 2: Consider a more general single-input single-
convolution Volterra system, with a memoryless output non-
linearity described by a bounded and measurable real-valued
function h(·) that is dominated by the monomial (·)v, that is,

|h(u)| ≤ |u|v, for all u ∈ R .

This implies that h(0) = 0 and so it follows immediately that

‖h(g ∗ x)‖q ≤ ‖g‖v1 ‖x‖vvq , (3)

for all 1 ≤ vq ≤ ∞, based on the results derived for Case 1
above.

Interestingly, in this last inequality, the norm of the non-
linear function h(·) does not appear on the right-hand side.
From (3), it follows that the single-input single-convolution
Volterra system with memoryless output nonlinearity being
any measurable function h(·), dominated by the power-v
function, is finite-gain input-output stable from Lvq[0,∞) to
Lq[0,∞) for every v > 0 and every 1/v ≤ q ≤ ∞, both fixed.

Note that the above remarks about the nonconvexity of
ε-balls in the Lebesgue spaces also apply here.

Case 3: To further extend the previous results, assume h(·) to
be a Lipschitz-continuous memoryless nonlinearity. Consider
the Lipschitz-norm defined by

‖h‖Lip(p,q) = ‖h‖∞ + sup
u1 6=u2

‖h(u1)− h(u2)‖q
‖u1 − u2‖p

,

for fixed 1 ≤ p, q ≤ ∞, where ‖ · ‖∞ denotes the standard
sup-norm [13], [14]. Here, the subscript Lip(p, q) is introduced
merely to explicitly indicate this norm’s dependency on the
domain and range spaces of h(·).

For every constant function h(·), the first term in ‖·‖Lip(p,q)
satisfies ‖h‖∞ = |h(0)| while the second term there, i.e. the
slope of h(·), is identically zero.2 This yields the following
expression for the Lipschitz-norm:

‖h‖Lip(p,q) = |h(0)|+ sup
u1 6=u2

‖h(u1)− h(u2)‖q
‖u1 − u2‖p

.

For the purpose of the discussion that follows, it is noted that

‖h‖Lip(p,q) ≥ |h(0)|+
‖h(u1)− h(u2)‖q
‖u1 − u2‖p

,

for arbitrary but fixed arguments u1 and u2 on the right-hand
side of the inequality, yielding

‖h(u1)− h(u2)‖q
≤
(
‖h‖Lip(p,q) − |h(0)|

)
‖u1 − u2‖p . (4)

2The quotient, in the expression for the Lipschitz-norm ‖h‖Lip(p,q) of
h(·), is a seminorm, which vanishes for every constant function h(·).

Since the intermediate signals, u1 and u2, are the result of
convolutions, the above inequality can be expressed as

‖h(g ∗ x1)− h(g ∗ x2)‖q
≤
(
‖h‖Lip(p,q) − |h(0)|

)
‖g ∗ x1 − g ∗ x2‖p

=
(
‖h‖Lip(p,q) − |h(0)|

)
‖g ∗ (x1 − x2)‖p (Linearity)

≤
(
‖h‖Lip(p,q) − |h(0)|

)
‖g‖1‖x1 − x2‖p , (5)

for some input signals x1 and x2, after applying (2).
For the case of h(0) = 0, with h(·) not necessarily power-v

dominated, by setting x2 = 0, one has

‖h(g ∗ x1)‖q ≤ ‖h‖Lip(p,q) ‖g‖1 ‖x1‖p , (6)

for all 1 ≤ p, q ≤ ∞. Therefore, for arbitrary but fixed 1 ≤
p, q ≤ ∞, a single-input single-convolution Volterra system
with a memoryless output nonlinearity h(·) that has a finite
Lipschitz-norm ‖·‖Lip(p,q) and h(0) = 0, but is not necessarily
dominated by the power-v function, is finite-gain input-output
stable from Lp[0,∞) to Lq[0,∞).

At this juncture, a caution is not to underestimate the role
of the assumption h(0) = 0. To see this, note that assuming
h(0) 6= 0 and x2 ≡ 0 in (5) gives

‖h(g ∗ x1)− h(0) 1(·)‖q
≤
(
‖h‖Lip(p,q) − |h(0)|

)
‖g‖1 ‖x1‖p , (7)

where 1(t) := 1 for all t ∈ [0,∞). If one now attempts to
apply the norm inequality ‖z1‖ − ‖z2‖ ≤ ‖z1 − z2‖, derived
from the triangle inequality, to the left-hand side, then

‖h(g ∗ x1)‖q − |h(0)|‖1(·)‖q
≤ ‖h(g ∗ x1)− h(0)1(·)‖q . (8)

This is problematic because, for the standard Lq[0,∞) space,
when q 6=∞, one would have that ‖1(·)‖q =∞ because 1(·)
is not in the space Lq[0,∞). Therefore, one cannot isolate the
term ‖h(g ∗ x1)‖q by combining (5), (7) and (8) in the hope
of deriving an upper bound for it.

However, for the case of q = ∞, one has ‖1(·)‖∞ = 1
and, therefore, one can now isolate the term ‖h(g ∗x1)‖∞ by
combining (5), (7) and (8), so as to obtain

‖h(g ∗x1)‖∞
≤
(
‖h‖Lip(p,∞) − |h(0)|

)
‖g‖1 ‖x1‖p + |h(0)| .

Consequently, the Volterra system considered here is finite-
gain input-output stable, even for h(0) 6= 0.

Now, returning to (6), with h(0) = 0 therein, and setting
p = q, one obtains

‖h(g ∗ x)‖q ≤ ‖h‖Lip(q,q) ‖g‖1 ‖x‖q , (9)

for an arbitrary input signal x ∈ Lq[0,∞) with 1 ≤ q ≤ ∞.
Comparing (9) with (3), it can be seen that the root (or

powers) of v has been eliminated by including the factor
consisting of the Lipschitz-norm of h(·) on the right-hand side.
It is important to note that (9) and (3) give two alternative
but not equivalent criteria for assessing the Lp-stability of
a Volterra system. In fact, (3) does not require h(·) to be
Lipschitz-continuous; it even applies to the extreme case of
h(·) being Lq-integrable but nowhere-differentiable.
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Case 4: Consider a two-input two-convolution Volterra system
described by the equation

y := h(g1∗ x1 , g2 ∗ x2) ,

where the real-valued memoryless nonlinearity h(·, ·) is as-
sumed to be Lipschitz-continuous and g1, g2 ∈ L1[0,∞). The
Lipschitz-norm considered here is

‖h‖Lip(p1,p2,q) := |h(0, 0)| +

+ sup
(u1,s1)6=(u2,s2)

‖h(u1, s1)− h(u2, s2)‖q
‖(u1, s1)− (u2, s2)‖p1,p2

,

for fixed 1 ≤ p1, p2, q ≤ ∞, and the direct-sum norm3

‖ · ‖p1,p2
, taken to be

‖(u1, s1)− (u2, s2)‖p1,p2 := ‖u1 − u2‖p1 + ‖s1 − s2‖p2 .

For arbitrary direct-sum signals (u1, s1) and (u2, s2), one has

‖h(u1, s1)− h(u2, s2)‖q ≤(
‖h‖Lip(p1,p2,q)− |h(0, 0)|

)(
‖u1 − u2‖p1

+ ‖s1 − s2‖p2

)
.

Substituting

ui := g1 ∗ x1i and si := g2 ∗ x1i , i = 1, 2 ,

into this inequality then yields

‖h(g1∗ x11 , g2 ∗ x21)− h(g1∗ x12 , g2 ∗ x22)‖q
≤
(
‖h‖Lip(p1,p2,q)− |h(0, 0)|

)(
‖g1‖1 ‖x11 − x12‖p1

+ ‖g2‖1 ‖x21 − x22‖p2

)
,

where the linearity of convolution and inequality (2) were
used.

Now, assuming that h(0, 0) = 0 holds and then setting
x12 = x22 ≡ 0, finally gives

‖h(g1 ∗ x1 , g2 ∗ x2)‖q ≤ ‖h‖Lip(p1,p2,q) ‖g1‖1 ‖x1‖p1

+ ‖h‖Lip(p1,p2,q) ‖g2‖1 ‖x2‖p2
, (10)

for arbitrary input signals x1 ∈ Lp1
[0,∞) (1 ≤ p1 ≤ ∞,

fixed) and x2 ∈ Lp2
[0,∞) (1 ≤ p2 ≤ ∞, fixed) and for

arbitrary 1 ≤ q ≤ ∞, fixed. Thus, if the Lipschitz-norm of h(·)
is finite, then this Volterra system is finite-gain input-output
stable from the direct-sum space Lp1 [0,∞) ⊕ Lp2 [0,∞) to
Lq[0,∞).

Case 5: If the inputs are joined by setting x2 = x1 in Case 4,
then one obtains a single-input two-convolution Volterra sys-
tem. From (10), it then follows that

‖h(g1 ∗ x1, g2 ∗ x1)‖q ≤ ‖h‖Lip(p1,p2,q) ‖g1‖1 ‖x1‖p1

+ ‖h‖Lip(p1,p2,q) ‖g2‖1 ‖x1‖p2
,

where, in general, p1 6= p2. Under the assumption that h(·)
has a finite Lipschitz-norm, the resulting Volterra system is
finite-gain input-output stable from Lp1

[0,∞) ∩ Lp2
[0,∞) to

Lq[0,∞). If, in addition p2 = p1 ≡ p, then (10) reduces to

‖h(g1 ∗ x1 , g2 ∗ x2)‖q
≤ ‖h‖Lip(p1,p2,q)

(
‖g1‖1 + ‖g2‖1

)
‖x1‖p

and this Volterra system is finite-gain input-output stable from
Lp[0,∞) to Lq[0,∞).

3There are many other direct-sum norms to choose from.

Now, imposing power-v domination extends the earlier
results.

Case 6: The last two more general cases easily generalize to a
Volterra system with an arbitrary number of inputs, an arbitrary
number of convolutions associated with each input, and an
arbitrary number of outputs for both the cases of power-v
domination and of Lipschitz-continuity of the output nonlinear
memoryless mapping.

Finally, note that the exact same arguments presented above
apply to the discrete-time case, thus producing equivalent
results.

III. CONCLUSION

This paper presented some new and explicit stability results
for Volterra systems when the output nonlinearity possesses
a Lipschitz-norm as well as for the more general case of a
measurable, monomially dominated output nonlinearity. These
two approaches yield alternative but not equivalent stability
criteria, thus providing more versatility by allowing selection
of the more appropriate of the two for a given application.
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