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Abstract

Decentralized edge computing techniques have been attracted strongly attentions in many applications of intelligent internet

of things (IIoT). Among these applications, intelligent edge surveillance (LEDS) techniques play a very important role to

recognize object feature information automatically from surveillance video by virtue of edge computing together with image

processing and computer vision. Traditional centralized surveillance techniques recognize objects at the cost of high latency,

high cost and also require high occupied storage. In this paper, we propose a deep learning-based LEDS technique for a specific

IIoT application. First, we introduce depthwise separable convolutional to build a lightweight neural network to reduce its

computational cost. Second, we combine edge computing with cloud computing to reduce network traffic. Third, we apply the

proposed LEDS technique into the practical construction site for the validation of a specific IIoT application. The detection

speed of our proposed lightweight neural network reaches 16 frames per second in edge devices. After cloud server fine detection,

the precision of the detection reaches 89\%. In addition, the operating cost at the edge device is only one-tenth of that of the

centralized server.
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Abstract—Decentralized edge computing techniques have been
attracted strongly attentions in many applications of intelligent
internet of things (IIoT). Among these applications, intelligent
edge surveillance (LEDS) techniques play a very important
role to recognize object feature information automatically from
surveillance video by virtue of edge computing together with
image processing and computer vision. Traditional centralized
surveillance techniques recognize objects at the cost of high
latency, high cost and also require high occupied storage. In this
paper, we propose a deep learning-based LEDS technique for a
specific IIoT application. First, we introduce depthwise separable
convolutional to build a lightweight neural network to reduce its
computational cost. Second, we combine edge computing with
cloud computing to reduce network traffic. Third, we apply the
proposed LEDS technique into the practical construction site for
the validation of a specific IIoT application. The detection speed
of our proposed lightweight neural network reaches 16 frames
per second in edge devices. After cloud server fine detection, the
precision of the detection reaches 89%. In addition, the operating
cost at the edge device is only one-tenth of that of the centralized
server.

Index Terms—Intelligent surveillance systems, target detection,
deep learning, edge computing, cloud computing, lightweight
neural network.

I. INTRODUCTION

The fifth-generation (5G) wireless communication networks
provide great convenience for supporting big data video
processing platforms [1]. High-bandwidth, low-latency, and
large-scale low-power networks make video surveillance more
mature. Video devices based internet of things (IoT) has
expanded from personal applications to large-scale scenarios
[2], such as smart cities [3] and Industry 4.0 [4]. With the
development of communication networks, video surveillance
technology has been widely used. It plays an important role
in many areas such as national security [5], social security
[6], traffic monitoring [7], because it can be more intuitive
to obtain information from surveillance video. However, the
approach of the obtaining information is usually low efficiency.
At present, most video surveillance systems get information
by playing back the saved surveillance video after an abnormal
situation occurs. This method cannot timely detect and prevent
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the occurrence of abnormal events or accidents. There are also
some video surveillance systems that set up a monitoring room
to concentrate dozens or even hundreds of surveillance video
together, which is watched by full-time workers. Once an
abnormal event occurs, the relevant workers will make alarm.
This method can prevent the occurrence of abnormal events to
a certain extent, but it is limited by the number of monitors,
and often ignores some key behavior information. A more
serious problem is that due to the reduced attention caused by
visual fatigue, monitoring personnel cannot keep focusing on
monitors. Real-time observation and analysis of massive video
data pose a big challenge to conventional video surveillance
systems, and even post-recording queries are extremely labor
intensive and difficult to obtain all important information.

Fortunately, with the development of computer vision
technologies, machine learning empowered computers have
the ability to analyze video intelligently. In the early
years, people searched the area to be detected by sliding
window method, and then detected the target by hand-
designed features. Haar-like feature [8] combined with
adaptive boosting (Adaboost) [9] and cascade [10] is its
typical approach. However, this method has a high time
complexity and redundancy. In addition, the hand-designed
features lack robustness thus they cannot adapt to many real-
world scenarios. In 2006, G. E. Hilton, et al. [11] proposed
the concept of deep learning (DL), which has been utilized
in many applications such as big data analysis [12]–[14],
computer vision [15], [16], and wireless communications [17]–
[25]. Motivated by the ubiquitous applications, many state-
of-the-art deep neural networks (DNN) have been proposed,
such as convolutional neural networks (CNN) [26]–[28]. In
2015, K. He, et al. [29] proposed deep residual network
(ResNet) to solve the problem of vanishing gradient and
exploding gradient when the number of network layers was
deepened. In order to improve the accuracy of DNN, the
number of layers of the network is increasing, and the network
structure is becoming more and more complicate, which
makes DNN only run on centralized GPU or cloud servers.
However, the centralized GPU processing method has the
following disadvantages, such as high computational cost, high
transmission cost, and high system delay, and hence it is hard
to utilize in IoT applications. In order to solve this problem,
many researchers focus on lightweight neural networks, which
allows these intelligent methods to run on embedded devices or
edge devices [30]–[34], and its development process is shown
in Fig. 1.

At present, there are four mainstream lightweight neural
networks. J. Luo, et al. [35] proposed a parameter pruning
and weight sharing method to reduce the redundancy of DNN.
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Fig. 1. The development process of neural networks.

W. Wen, et al. [36] proposed a low-rank factorization method
to decompose the convolutional kernel in the original CNN.
M. Sandler, et al. [33] proposed a compact convolutional
computing unit method to compresses the storage of the
model and reduces the computational complexity. J. Li, et al.
[37] proposed a knowledge distillation method, which guides
the training of small neural networks through large neural
networks, to reduce the complexity of the network. Y. Wang
et al. [38] proposed a light automatic modulation recognition
method using DL and compressive sensing. All of above
proposed light DL-based methods have made significantly
contributions for realistic applications while there the related
techniques are required to develop in the IoT applications.

In this paper, we propose a lightweight DL based intelligent
edge surveillance (LEDS) method for intelligent internet of
things (IIOT) applications. Based on the smart construction
site system, this paper proposes a joint computing method that
combine edge computing and central computing. Compared
with the conventional DL methods, our proposed method
has the following two advantages: Less network resource
occupancy: Most of the existing intelligent surveillance
systems directly process the video collected by the camera.
Limited by the powerful computing capabilities required for
DL, videos must be transmitted to a cloud server platform,
which will consume a lot of network resources. The method
of combine edge computing and cloud computing proposed
in this paper reduces the occupation of network resources by
sharing the computing burden to the edge notes. Less system
response delay: Surveillance systems usually have hundreds
of cameras. In addition to the occupation of network resources,
cloud servers cannot process these videos in a timely manner,
which will cause delays or even crashes to the system. Our
proposed method can process video at the edge notes, and
the cloud server is used for secondary confirmation and video
storage, so that the system can achieve real-time response.

The rest of this paper is organized as follows. Section
II introduces the smart construction site system, including
system requirements, system principles, and system models.
Section III provides the system operating environment, dataset
production, and experimental results. Finally, we conclude this
paper in Section IV.

II. SYSTEM MODEL

In this section, we take smart construction site system as
an example to introduce our LEDS. As shown in [16], smart
construction site system needs to analyze the video captured by
the camera to determine whether the worker wears a helmet.

We have implemented this function in [16]. However, we have
encountered many problems in practical applications. Since
there are hundreds of cameras in the construction site, if the
original central computing method is adopted, all the collected
video data is transmitted to the cloud server for processing,
which brings the following problems. First, in order to ensure
the accuracy of neural network model detection, we need to
transmit high-definition video, which takes up a lot of network
resources. Second, transmitting so many videos can cause
huge delay for the entire system. Third, even the cloud server
cannot process the video from hundreds of cameras at the
same time, causing the system to crash. Finally, transmitting
the original video directly to the cloud server leaked users
privacy. These are the motivations for us to study the new
system. By adopting a combination of edge computing and
cloud computing, we solve the above problems very well. The
basic framework of the LEDS system is described in Fig. 2
and the functions of each part of the system are presented in
Fig. 3.

Fig. 2. Illustration of the basic framework of LEDS.

Fig. 3. Briefly introduction of the functions of each part of the LEDS, where
three main parts are camera, edge node and cloud server.

A. System Framework

In this section, we introduce a framework of the system. The
basic framework of the LEDS is shown in Fig. 2. It consists
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of five components: camera, edge note, router, core network,
and cloud computing center. According to its function, we can
divide it into three parts, as shown in Fig. 3. First, the camera
collects the video data of the construction site and transmits
it to the edge node. At the edge node, we use a lightweight
neural network to pre-detect the captured video. Based on the
detection results, we only transmitted video clips containing
un-wearing helmet workers to the cloud computing center.
This not only can effectively save network resources, but also
can effectively alleviate the computing burden of the cloud
computing center. In order to occupy less network resources,
we also encode the video at the edge node and select the user
datagram protocol (UDP). On the cloud computing server side,
we first decode the received video and then use the large neural
network to fine-tune the video. Finally, the test result is passed
back to the edge node. In the remainder of this section, we
will describe in detail the construction of neural networks and
the choice of transport protocols.

B. Lightweight Neural Network at the Edge Node

This section introduces the lightweight neural networks
which are used in the smart construction site system. As we
all know, it is difficult to make a fair comparison between the
two detection networks. The quality of the detection neural
network often depends on the actual requirement and it is a
trade-off between accuracy and detection speed. In the smart
construction site system, the speed of detection is paramount,
so we choose the one-stage detection neural network. You
only look once (YOLO) and single shot multiBox detector
(SSD) are the most famous in the one-stage detection network,
with fast detection speed and high detection accuracy. By
simplifying their backbone network structure, this paper
proposes Tiny-YOLO and MobileNetV2-SSD. The detailed
introduction is as follows.

1) The structure of MobileNetV2-SSD: In image process-
ing, the standard convolutional layer plays a crucial role in
extracting image features. It is widely used in [26]–[28]. The
structure of standard convolutional layer is shown in Fig. 4.
Suppose the input of standard convolutional layer is a feature
map of size Di × Di ×M , and the output is a feature map
of size Do×Do×N . The computational cost of the standard
convolutional is

Di ×Di ×Dk ×Dk ×M ×N (1)

where Di is the size of the input feature map; M , N are
the number of channels of the input and output feature map,
respectively; Dk is the size of the convolutional kernels.

Fig. 4. The structure of standard convolutional layer with three parts: 1)
Input: feature map of size Di × Di ×M ; 2) Convolutional kernels of size
Dk ×Dk ×M ; 3) Output: feature map of size Do ×Do ×N .

In order to reduce the computational cost and speed up the
operation of the network, depthwise separable convolutional
is proposed in [31]. The structure of depthwise separable
convolutional layer is shown in Fig. 5. It integrates the standard
convolutional into two steps: depthwise convolutional and
pointwise convolutional.

The structure of the depthwise convolutional is shown in the
left half of Fig. 5. A feature map of size Do×Do×M can be
obtained by depthwise convolutional. The computational cost
of the depthwise convolutional is,

Di ×Di ×Dk ×Dk ×M (2)

The structure of the pointwise convolutional is shown in the
right half of Fig. 5. The computational cost of the pointwise
convolutional is,

Do ×Do × 1× 1×M ×N (3)

The computational cost of the depthwise separable convolu-
tional is,

Di ×Di ×Dk ×Dk ×M +Do ×Do × 1× 1×M ×N (4)

By comparing the computational cost of the standard
convolutional and the depthwise separable convolutional, we
can get the following ratio,

Ratio =
Di ×Di ×Dk ×Dk ×M +Do ×Do ×M ×N

Di ×Di ×Dk ×Dk ×M ×N

≈ 1

N
+

1

D2
k

≈ 1

D2
k

,

(5)

suppose that Di = Do, and N is much larger than D2
K .

The size of the convolutional kernel is usually 3 × 3, so the
computational cost of the depthwise separable convolutional
is one-ninth of the standard convolutional.

On the basis of MobileNetV1 [31], MobileNetV2 [33]
further improves performance by introducing an Inverted
residual block structure and a linear activation function. Due
to the limitation of its own calculation, depthwise separable
convolutional cannot determine the number of channels. If
the number of output channels in the upper layer is small,
depthwise separable convolutional can only extract features
in low-dimensional space, which affects its performance. So
MobileNetV2 adds a layer of pointwise convolutional before
the depthwise convolutional, its purpose is to improve the
dimension. In addition, MobileNetV2 changed the non-linear
activation function of the second pointwise convolutional
layer to a linear activation function. Because the non-linear
activation function can effectively increase non-linearity in
a high-dimensional space, but it can destroy features in a
low-dimensional space, and its performance is not as good
as a linear activation function. The structure comparison of
standard convolutional, MobileNetV1, MobileNetV2 is shown
in Fig. 6.

The network structure of MobileNetV2-SSD is shown in
Fig. 7. Unlike SSD, MobileNetV2-SSD replaced VGG16 as
the backbone network with MobileNetV2. Compared with
other one-stage neural network, the biggest bright spot of SSD
is that it uses shallow layers to detect small targets and deep
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Fig. 5. The structure of depthwise separable convolutional layer with four parts: 1) Input: feature map of size Di ×Di ×M ; 2) Depthwise convolutional
layer with convolutional kernels of Dk ×Dk × 1; 3) Pointwise convolutional layer with convolutional kernels of 1× 1×M ; 4) Output: feature map of size
Do ×Do ×N .

Fig. 7. The structure of MobileNetV2-SSD. The feature extraction network of MobileNetV2-SSD is composed of MobileNetV2, which composed of bottleneck
layers. The additional convolutional layer is used to deepen the neural network to increase detection accuracy. MobileNetV2-SSD detects images from six
different feature scales. In addition, it uses non-maximum suppression (NMS) to eliminate redundant prediction boxes.

TABLE I
THE STRUCTURE OF BOTTLENECK LAYER

Input Operator Output

h× w × c 1× 1 Conv2d,ReLU6 h× w × tc

h× w × tc 3× 3 Dwise,ReLU6 h
s
× w

s
× tc

h
s
× w

s
× tc Linear 1× 1 Conv2d h

s
× w

s
× tc′

layers to detect large targets. Superficial neurons have more
detailed information is more effective for small targets. Deep
neurons have larger receptive fields and more abstract semantic
information is more effective for large targets. SSD proposes
to use both low-level feature maps and high-level feature
maps for detection. As shown in Fig. 7, MobileNetV2-SSD
detect on six different scales feature maps, thereby improving
the accuracy of detection. In order to avoid using too low-
level features, six layers of convolutional layers are added
behind MobileNetV2. In addition, MobileNetV2-SSD uses the
concept of anchor box in region proposal network (RPN) [39]
to avoid using region proposals, which greatly reduces the
amount of calculation.

Fig. 7 shows the structure of MobileNetV2-SSD, which
consists of an input layer, 7 convolutional layers, and 16
bottleneck layers. The structure of each bottleneck layer is
shown in Table I, where h and w are the size of the input

feature map; c is the number of channels of the input feature
map; c′ is the number of channels of the output feature map;
t is the magnification of the inverse residual (6 is selected
here), and s is the stride of convolutional. The activation
function of the first pointwise convolutional and depthwise
convolutional is ReLU6, as shown in Eq. 6. The second
pointwise convolutional uses a linear activation function,

fReLU6(x) = min(max(x, 0), 6) ∈ [0, 6] (6)

Suppose that the dataset of MobileNetV2-SSD is represented
as T = {gi, classi}Ni=1, where gi is the position parameter of
ground truth, classi is the class of ground truth and N is the
number of training samples for each picture. The loss function
of MobileNetV2-SSD is given as follows

LMobileNetV 2−SSD(T ; Θ) =
1

N
(Lloc(T ; Θ) + λLconf (T ; Θ))

(7)

where Lloc(T ; Θ) is the localization loss of ground truth
as shown in Eq. 8 ; Lconf (T ; Θ) is the confidence loss of
ground truth as shown in Eq. 10; Θ is the trainable neural
network parameter and λ is used to adjust the importance of
localization loss and confidence loss,

Lloc(T ; Θ) =

N∑
i=1

fsmoothL1
(gi − ĝi) (8)
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(a) (b)

(c) (d)

Fig. 6. (a) Standard convolutional layer with batch normalization and ReLU6;
(b) Depthwise separable convolutional with batch normalization and ReLU6
for MobileNetV1; (c) Convolutional blocks for MobileNetV2 with stride = 1;
(d) Convolutional blocks for MobileNetV2 with stride = 2.

fsmoothL1
(x) =

{
1
2x

2, if |x| < 1
|x| − 1

2 , if |x| ≥ 1
(9)

where gi is the position parameter of ground truth; ĝi is the
prediction of the position parameter. We use fsmoothL1

to
calculate the loss between the ground truth and the prediction
as

Lconf (T ; Θ) = −
N∑
i=1

log(fsoftmax(cij)) (10)

fsoftmax(x) =
exp(x)∑S

j=0 exp(xj)
(11)

where cij is the class confidence that the i-th ground truth
belongs to the j-th class; S is the number of class and c0
represents the background. We use softmax function fsoftmax

to calculate the class confidence, as shown in (11).
2) The structure of Tiny-YOLO: At the edge notes, we also

tried another lightweight neural network called Tiny-YOLO,
which network structure is shown in Fig. 8. There are 24 layers
in Tiny-YOLO. Compared with 107 layers in YOLOV3, the
number of layers is greatly reduced. Its network structure is
simple, with a small amount of calculation, which is very
suitable for running on the edge notes. Tiny-YOLO detects
from two feature maps of different scale, which improves the
detection accuracy of the network. It is worth noting that in

Algorithm 1 Algorithm description of the MobileNetV2-SSD.
Input: Annotated datasets for different construction site;
Output: The MobileNetV2-SSD for smart construction site system;
1: Data cleaning and data augmentation for datasets;
2: Randomly assign training dataset and validation dataset accord-

ing to 7 : 3;
3: Build the botttleneck layer according to Table I for feature

extraction;
4: Build the MobileNetV2-SSD structure according to Fig. 7 for

multi-scale feature fusion;
5: Initialize the neural network and train the network weights;
6: Set a proper λ, calculate the loss according to (7) and minimize

it;
7: Save weights and verify;
8: return MobileNetV2-SSD.

Fig. 8. The structure of Tiny-YOLO. The convolutional layers are used to
extract features; The pooling layers are used to reduce the size of the feature
map; The connected layer is used to classification; Softmax is used to calculate
confidence. In addition, Tiny-YOLO detects images from two different feature
scales.

the detection phase, it uses the convolutional layer to take the
fully connected layer, which greatly reduces the calculation
amount.

Due to different detection principles, the loss functions of
Tiny-YOLO and MobileNetV2-SSD are different. The loss
function of Tiny-YOLO is given as follows.

LTiny−Y OLO(T ; Θ) = Lloc(T ; Θ)

+ Lobj(T ; Θ) + Lconf (T ; Θ)
(12)

fSSE(x) =

N∑
i=1

(xi − x̂i)2 (13)

where Lloc(T ; Θ) is the localization loss of ground truth as
shown in (14) ; Lobj(T ; Θ) is the object confidence loss
of ground truth as shown in (15); Lconf (T ; Θ) is the class
confidence loss of ground truth as shown in (16); We use
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sum of the squared errors function fSSE to calculate the loss
between the ground truth and the prediction, as shown in (13).

Lloc(T ; Θ) =

N∑
i=1

(gi − ĝi)2 (14)

Lobj(T ; Θ)) =

N∑
i=1

(Ci − Ĉi)
2 (15)

Lconf (T ; Θ) =

S∑
j=0

(cj − ĉj)2 (16)

where gi is the position parameter of ground truth; Ci is the
object confidence; cj is the class confidence; ĝi, Ĉi, ĉi are
their prediction, respectively; S is the number of class and c0
represents the background.

Algorithm 2 Algorithm description of the Tiny-YOLO.
Input: Annotated datasets for construction site;
Output: The Tiny-YOLO for smart construction site system;
1: Data cleaning and data augmentation for datasets;
2: Datasets format conversion;
3: Randomly assign training dataset and validation dataset accord-

ing to 7 : 3;
4: Build the Tiny-YOLO structure according to Fig. 8;
5: Initialize the neural network and train the network weights;
6: Calculate the loss according to Eq. 12 and minimize it;
7: Save weights and verify;
8: return Tiny-YOLO.

After the lightweight neural network completes the pre-
detection, the edge node will determine which piece of video
needs to be transmitted. The specific method is that the
lightweight neural network only needs to detect three frames
of pictures per second. If all three frames are detected that the
worker is not wearing a helmet, the video in this period of
time is transmitted. In order to further reduce the transmission
burden of the network traffic, the video is also compressed
and encoded before transmission.

C. Transmission Protocol Selection

In this section, we introduce the choice of transmission
protocol. As all we know, if you want to transfer information
between different networks, you must abide by the transport
layer protocol. The transport layer protocols mainly include
two protocols, transmission control protocol (TCP) and user
datagram protocol (UDP). Their respective flowcharts are
shown in Fig. 9.

The Fig. 9(a) is the TCP flowchart. TCP provides
connection-oriented services. It is a reliable transport layer
communication protocol. To ensure its stability, TCP needs a
three-way handshake to establish a connection and a four-way
handshake to terminate the connection. In addition, it also has
functions such as congestion control, timeout retransmission,
and flow control. The Fig. 9(b) is the flowchart of UDP. UDP
provides datagram-oriented services, which is an unreliable
transport layer communication protocol. Therefore, it has the
characteristics of simple structure, and does not perform any
splitting and splicing operations on data messages. It always

(a) TCP

(b) UDP

Fig. 9. The flowchat of the transmission process of two different protocols:
(a) TCP; (b) UDP.

sends data at a constant speed, which is very conducive
to video transmission. Through the above analysis, UDP is
selected for the smart construction site system.

D. Neural Network at the Server Side

On the server side, when the video transmitted from the
edge side is received, the video is decompressed and decoded
first. According to the requirements of smart construction site
systems, a neural network with high detection accuracy needs
to be selected. We chose YOLOV3 neural network, which
network structure is shown in Fig. 10. The principle and
network structure of YOLOV3 have been analyzed in detail
in [16]. Its excellent detection accuracy and detection speed
meet the system requirements.

III. EXPERIMENTAL RESULTS

In this section, the experimental environment, experimental
process, and experimental results are described. At the edge
node, we chose NVIDIA Jetson TX2 as the edge device.
At the server side, our calculations are accelerated by the
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Fig. 10. The structure of YOLOV3. The feature extraction network of
YOLOV3 is DarkNet53, which composed of residual modules. It can eliminate
vanishing gradient and exploding gradient. YOLOV3 detects images from
three different feature scales. In the detection phase, YOLOV3 uses the
convolutional layers instead of the connected layer to reduce the amount of
parameters.

NVIDIA GTX 1080Ti graphics card. Their specific parameters
are shown in Table II. Both the server and edge operating
systems are ubuntu16.04 and the programming language is
Python.

TABLE II
THE EDGE NOTE AND SERVER SIDE DEVICE PARAMETERS

Edge note Server side

GPU NVIDIA PascalTM, 256 CUDA cores NVIDIA PascalTM, 3584 CUDA cores

CPU HMP Dual Denver 2/2 MB L2 +
Quad ARM A57/2 MB L2 Intel Xeon E5-2630

Memory 8 GB LPDDR4 128 GB LPDDR3

Data storage 32 GB 3 TB

Power 7.5 W 600 W

A. Dataset preparation

Due to the requirements of smart construction site systems,
we need datasets of pedestrians and helmets, but existing
public datasets do not include helmets. Therefore, we adopt
the method of manual labeling, collecting site video through
the camera and picking typical scenes. After data cleaning,
we have adopted some data augmentation methods such as flip
change, random crop, color jittering, shift transformation, scale
transformation, contrast transformation, add gaussian noise
and reflection transformation. Through the above processing,
we have built a huge dataset of 100, 000 levels.

B. Experimental results

The model loss during MobileNetV2-SSD and Tiny-YOLO
training is shown in Fig. 11. Due to the different definitions of
the loss function, we cannot compare their accuracy directly

by the loss value. But through the loss graph, we can find
that the convergence speed of MobileNetV2-SSD is faster
than Tiny-YOLO. When batchsize = 512, MobileNetV2-SSD
has completed convergence after about 600 epochs, while
Tiny-YOLO requires 1, 000 epochs. The detection speed and
detection accuracy of YOLOV3, MobileNetV2-SSD and Tiny-
YOLO are shown in Table III.

Fig. 11. The model loss during MobileNetV2-SSD and Tiny-YOLO training.

Fig. 12. Some detection results of smart construction site system.

TABLE III
THE DETECTION SPEED AND DETECTION ACCURACY

Operating equipment NVIDIA GTX 1080Ti NVIDIA Jetson TX2

Neural network YOLOV3 MobileNetV2-SSD Tiny-YOLO MobileNetV2-SSD

mAP 0.89 0.68 0.73 0.68

Frame rate(f/s) 18 83 12 16

IV. CONCLUSION

In this paper, we have proposed a lightweight DL
based LEDS for the IIoT applications, which combine
edge computing and cloud computing. This system has the
advantages of low system delay and low network resource



8

occupancy. In addition, this method is ten times cheaper than
the centralized method. We use the smart construction site
system as an example to display how to implement the system.
However, the experimental results show that there is still room
for improvement in detection accuracy. In the future, we will
combine federated learning (FL) [40] to solve the problem of
weak system robustness and improve detection accuracy.
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