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Abstract

The mathematical foundations of the generalized current Green’s function formalism are spelled out for the first time for the

case of coupled N-body systems where each element can be either PEC or dielectric.
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Abstract. We provide an explicit generalisation of the antenna current Green’s
function (ACGF) formalism from the perfect electric conducting (PEC) to generic
coupled N -body systems composed of arbitrarily shaped PEC and dielectric
objects, with general permitivity and permeability tensors. Assuming only
electromagnetic reciprocity and typical regularity conditions, we construct the
current Green’s function using the surface equivalence theorem and a combination
of other methods involving Riemannian geometry, distribution theory, functional
analysis, and the electromagnetic boundary-value problem. The formalism is
more complicated than the standard PEC formulation published before due to
the need to explicitly account for the interaction between the magnetic field and
material interfaces on one hand, and the electric field contribution to conducting
parts of the system. For the case of N -body system, the ACGF becomes a large
tensor array. While its numerical values depend on the coordinate system on the
manifolds supporting the electromagnetic boundary conditions, the construction
eventually produces coordinate-independent integral expressions for the induced
current. Using the ACGF formalism, it is now possible to treat arbitrary N -body
coupled PEC-dielectric configurations as space-frequency linear systems using
exact and rigorous response function, the current Green’s function itself. While
the derivation is very general, it still leaves open questions regarding whether
the ACGF can be constructed for nonreciprocal systems or using volume integral
equations.

1. Introduction

The current Green’s function of a material electromagnetic system is defined as the
surface current distribution transfer function dictating how an induced current is
generated in response to an external electromagnetic field [1]. The concept itself is
rooted in earlier circuit representations of antennas as “admittance transfer matrices”
(a discrete approximation) [2, 3] and is formally identical to the nonlocal response
by low-dimensional materials to external electromagnetic fields, for example, light-
matter interactions in nanotubes, graphene, and other novel nano-surfaces [4–6]. In
conventional classical electrodynamics, radiation by mico- or macro-sources is often
described by the dyadic Green’s function of free space where a given radiating current
J(r) is taken as an input while the electromagnetic fields E(r) and H(r) produced by
this source are the output (the “radiating electromagnetic system.”) [7–12]. Following
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a proposal originally stated by Schelkunoff within the framework of transmission
line circuit theory [13] but not rigoursly implemented within exact electromagnetic
theory till very recently, it was shown that radiation of electromagnetic system is
much better described as the cascade of two distinct linear electromagnetic processes,
Modes A and B, where in Mode A we first induce a current J(r) by an external
field excitation Eex(r), e.g., the antenna source or the illumination field in scattering
problems, while in Mode B this induced current is allowed to radiate according to the
classical dyadic Green’s function. The former process, Mode A, is described by a new
dyadic Green’s function, often denoted by F(r, r′) [14–16]. If the traditional radiation
dyadic Green’s function is given by G(r, r′), then the two dyadic Green’s functions
F(r, r′) and G(r, r′) together constitute a complete space-frequency representation
of the electromagnetic radiation problem describing how a macroscopic material
structure responds to an external field by producing another field. This formulation
is more natural because it allows a uniform treatment of a wider class electromagnetic
problems as input-output systems with the same signal type present at both the
excitation and response “terminals”: i.e., electromagnetic fields [1]. Applications
of the ACGF method in engineering spans topics like mutual coupling analysis
[17], mutual coupling compensation [18–20], fast EM computation of large system
[21–23], alternative methods to compute the near-field response [24], and wireless
communications [25–27] (more applications are discussed in [1].) Most research has
been focusing so far on applications with little emphasis on the theoretical, physical,
and mathematical foundations, especially for general radiating systems. This paper
will be leaning more toward the fundamental theoretical aspects of the generalized
ACGF formalism. Readers interested in numerical and experimental results can
consult the references quoted above but also see Sec. 3 and the references quoted
therein.

From the viewpoint of mathematical physics, the current Green’s functions
represent a new species of Green’s function fundamentally different from other types
like those associated with the heat kennel or the wave function, though significant
similarities also exist in several other aspects. The most important technical difference
is that the current Green’s function is the Green’s function of the inverse of a global
integro-differential operator, while the traditional Green’s functions of mathematical
physics are those associated with the inversion of a differential – hence local –
operators. This makes the analysis inherently more complicated and less concrete
since no exact analytical expressions in the case of the current Green’s function
are available and one must resort to a creative – rather nontrivial – combination of
analytical and numerical methods. However, the ultimate mathematical foundations
of the antenna current Green’s function (ACGF) formalism itself were made available
by means of a mixture of functional analysis, distribution theory, and Riemannian
geometry [1,15]. Careful analysis has also revealed recently that because of the global
nature of the inverse operator associated with the ACGF, considerations related to
causality enters into the picture of spacetime electromagnetic systems [27]. Some
additional differences include that the ACGF is essentially a Green’s function on a
curved Riemannian manifold, while the Green’s functions of mathematical physics
are typically constructed on flat Euclidean spaces. While an extensive mathematical
theory of operators on manifolds and the partial differential equations living on them
already exists in the literature, e.g., see [28,29], we note that most of these researches
focus on differential operators on manifolds. The case of nonlocal operators globally
defined on the entire manifold is more complex since it requires careful analysis of
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the topology of the underlying manifold. Indeed, the global geometry of the radiating
surface enters into the behaviour of the response function at every point. It has
been already suggested in [15,16] that this deep connection between the topology and
geometry of the radiating surface and the electromagnetic response is one of the most
fundamental applications of the ACGF formalism to the physics of electromagnetic
systems.

Even though the ACGF formalism has been utilized in the analysis and design of
various antenna systems [1, 14–16, 20, 21, 24, 27, 30], including mixed PEC-dielectric
configurations [18, 22, 23], to the best of our knowledge there currently exists no
published account of how the formalism can be derived and formulated for the general
case of multiple PEC and dielectric objects existing simultaneously in the system.
Moreover, even the single-dielectric type case, i.e., one all-dielectric inhomogeneous
domain in PEC-free system, has never been treated in print anywhere. This is in direct
contrast to the extreme importance of mixed PEC-dielectric radiating (and receiving)
systems, most prominently of course printed antenna systems such as patches and
planner dipoles, and volumetric-type dielectric resonator antennas. In addition, high-
power radiators like horn antennas are sometimes loaded with dielectric media in order
to control their radiation characteristics, making them another example of antenna
types that need to be handled using an expanded or generalized ACGF formalism going
beyond the now standard PEC-based ACGF theory. This paper focuses exclusively on
the purely mathematical aspects of the generalized ACGF formalism, in addition to
extended discussion of the physical and conceptual aspects related to the mathematical
relations derived here. No detailed discussion of the computational and experimental
applications will be given here since these have been treated at length elsewhere.
However, we provide toward the end of this paper (Sec. 3) a brief discussion of the
literature on the computational implementation of the ACGF method and how it is
related to some applications. Readers more interested in applications may consult Part
4 in the book [1], in addition to some of the more recent literature, such as [19,25,27].
Our mathematical treatment will be schematic and the rigid formal theorem-proof
format will not be followed here to increase the accessibility of the work to wider
audience.

2. Exact Derivation of the Generalized ACGF Tensor Array in Generic
PEC-Dielectric Systems

2.1. Background Preparation: The Operator Formalism of Minimal Coupled
PEC-Dielectric Systems

Throughout this paper, we assume a time harmonic excitation of the form exp(iωt).
In other words, we develop here a frequency-domain (space-frequency) current Green’s
function formalism, while the generalization to spacetime is left for future work. Let
us first consider the minimal system composed of two material types, one PEC, and
the other electric-magnetic type described by electric permitivity function ε(ω) and
permeability µ(ω), where both are allowed to be functions of the operating frequency
ω.‡ The system is depicted in Fig. 1, where the externally applied fields Eex(r) and
Hex(r), while Es(r) and Hs(r) are the secondary (scattered) fields. The total fields

‡ Here, with the risk of abusing the common terminology, we include magnetic properties in those
material domains we called ‘dielectric’.
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are given by
E(r) = Eex(r) + Es(r), H(r) = Hex(r) + Hs(r). (1)

For simplicity, throughout this paper each dielectric domain is assumed to be
homogeneous, so we drop out any possible dependence of the material profiles on
position within each sub-region.§ The region supporting the dielectric medium is
denoted by Vd with enclosing surface Sd, while the PEC region has the corresponding
Vc and Sc, respectively. All enclosing surfaces are assumed to enjoy enough regularity
to allow the use of standard vector calculus and function analysis, e.g., see [31, 32].
Associated with each closed 2-manifold Sd and Sc is a smooth normal unit vector field
û(r), with r in either Sc of Sd, which is always clear from the context. All regions
will be embedded into an infinite free space exterior domain Vext := R3 − Vd − Vc,
with permitivity and permeability ε0 and µ0. We will assume the applicability of
the radiation condition at infinitely, and hence the surface S∞ is not mentioned here.
In what follows, the relevant integral representation theorems [33] will be used in
conjunction with this radiation condition since we are interested in working with
scattering/radiation problems.

û(r)

û(r)

ε, µ

Sd

VdPEC

Sc

Vc Je(r) Jm(r)

Jc(r)

Eex
c (r)

Eex
e (r)

Hex
m(r)

Eex(r)

Hex(r)

ε0, µ0

Es(r),Hs(r)

Es(r),Hs(r)

Figure 1: Minimal coupled PEC-dielectric system composed of exactly one PEC
subdomain Vc enclosed by surface Sc = ∂Vc, and exactly one dielectric subdomain Vd
with boundary Sd = ∂Vd. The dielectric subdomain electric and magnetic properties
are described by permitivity and permeability tensors ε(ω), µ(ω), respectively, and
these are assumed to be reciprocal. The surfaces Sc and Sd are modeled as oreintable
differential manifold with the Riemannian metric inherited from the embedding
ambient Euclidean space R3. We note that the total fields

The electromagnetic boundary conditions are [10,34]

û(r)×E(r) = 0, r ∈ Sc, (2)

for the PEC domain, and the following continuity relations of the tangential electric
and magnetic fields, respectively, for the dielectric domains:

û (r)×E
(
r+
)

= û (r)×E
(
r−
)
, û (r)×H

(
r+
)

= û (r)×H
(
r−
)
, r ∈ Sd − Sc. (3)

§ That does not constitute a serious loss of generality since we will later generalize the formalism to
deal with arbitrary number of sub-domains. Since inhomogeneous regions can be approximated (at
least in first attempts) by a finite number of smaller humongous microdomains, the generic N -domain
formalism of this paper should be sufficient for a large number of practical applications.
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From these boundary conditions and using the standard surface equivalence theorem
[10,35], we introduce three types of currents in this system: conducting currents Jc(r),
electric currents Je(r), and magnetic currents Jm(r) given by [35–37]

Jc(r) :=

{
û(r)×H(r), r ∈ Sc,

0, otherwise.
, (4)

Je(r) :=

{
û(r)×H(r), r ∈ Sd,

0, otherwise.
, Jm(r) :=

{
−û(r)×E(r), r ∈ Sd,

0, otherwise.
. (5)

The first type is supported only at the PEC surface Sc and vanishes everywhere else,
while the remaining two are supported on the surfaces Sd. Each of these currents
will radiate both electric and magnetic field components into the interior and exterior
domains of the problem. In other words, we are using the special form of Schelkunoff’s
surface equivalence theorem [37] implied in (4) and (5), which gives correct fields only
in the exterior region (our main domain of interest in this paper, which focuses on
radiation problems), while the internal fields are zero (Love’s Principle [36].) However,
for this to happen, the entire space of the problem, the unbounded domain R3 must
be treated as free space ε0, µ0 (or the same as the properties of the exterior domain
in the original problem if the radiation is not in free space.) This is the exterior
domain formulation depicted in Fig. 2 where the presence of the primary external
(excitation) fields is included in the exterior domain (but they can also be present
in the interior domain with obvious modifications.) On the other hand, the surface
equivalent currents −Je(r) and−Jm(r) will radiate null fields in the exterior domain
but produce the correct fields in the interior region Vd provided the entire unbounded
domain is filled with the medium having ε, µ as depicted in Fig. 3. In this formulation,
the exterior domain fields E+(r),H+(r) in Fig. 2 are identical to the correct original
fields E(r),H(r), the latter due to the system Fig. 1 and defined by (1), but only
for r ∈ R3 − Vd, while the interior domain fields E−(r),H−(r) in Fig. 3 are equal to
the original fields (1) for r ∈ Vd. Finally, using the principle of linear superposition,
the total exterior-domain electric and magnetic fields, denoted by E(r) and H(r),
respectively, are given by

E(r) = Eex(r) + Ee(r) + Em(r) + Ec(r)︸ ︷︷ ︸
Es(r)

,H(r) = Hex(r) + He(r) + Hm(r) + Hc(r)︸ ︷︷ ︸
Hs(r)

,

(6)
Here, Eex(r) and Hex(r) are the same as the externally supplied excitation in Fig. 1,
which are assumed to exist in the exterior region only. In the remaining field symbols,
each subscript indicates which source current type contributed to the production of
the field component under consideration. For example, Em(r) is the electric field
produced by the magnetic current Jm(r), Hc(r) is the magnetic field produced by the
conducting current Jc(r) etc. Using this notation, the total exterior and interior fields
may be expressed as

E+ = Eex + E+
e + E+

m + E+
c , H+ = Hex + H+

e + H+
m + H+

c ,

E− = E−e + E−m, H− = H−e + H−m.
(7)

where the convention that Eex(r) = Hex(r) = 0 for r ∈ Vd was used here. Also note
that Ec = Hc = 0 since Jc = 0 for the interior problem Fig. 3.
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û(r)

û(r)

Sd

Vd

Sc

Vc Je(r) Jm(r)

Jc(r)

Eex
c (r)

Eex
e (r)

Hex
m(r)

Eex(r)

Hex(r)

E(r) = 0,
H(r) = 0

ε0, µ0

ε0, µ0

ε0, µ0

E(r) = 0,
H(r) = 0

E+(r),H+(r)

Figure 2: Exterior (radiation) problem reformulation using the surface equivalence
theorem (Love-Schelkunoff [37] Principle).

û(r)

û(r)

Sd

Vd

Sc

Vc −Je(r) −Jm(r)

E(r) = 0,
H(r) = 0

E(r) = 0,
H(r) = 0

E−(r),H−(r)

ε, µ

ε, µ
ε, µ

ε, µ

Figure 3: Interior (radiation) problem reformulation using the surface equivalence
theorem (Love-Schelkunoff [37] Principle).

Under such conditions of the surface equivalence theorem, the field integral
representation theorems can be used to express the total interior and exterior electric
and magnetic via the operator relations [9, 10,32–35,38,39]

E±e (r) = G±ee(r, r′)Je(r
′), H±m(r) = G±mm(r, r′)Jm(r′),

E±c (r) = G±ec(r, r′)Jc(r
′), H±e (r) = G±me(r, r

′)Je(r
′),

E±m(r)=G±em(r, r′)Jm(r′), H
±
c (r) = G±mc(r, r

′)Jc(r
′),

Here, the operator G±ab(r, r′), a ∈ {e,m}, b ∈ {e,m, c}, is defined by the integral relation
(Green’s function operator)

G±ab(r, r
′)Jb(r

′) :=

∫
S(b)

ds′ G
±
ab(r, r

′) · Jb(r
′), (8)

where

S(b) :=

{
Sc, b = c,

Sd, b = e,m.
(9)

The quantities G
+

ab(r, r
′) and G

−
ab(r, r

′) are the dyadic Green’s functions for the infinite
and unbounded domains filled with materials having (ε0, µ0), (ε, µ), respectively. They
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connect a current excitation of the type Jb with either the electric field when Not

all of them are independent; e.g., it is obvious that G
±
ac(r, r

′) = G
±
ae(r, r

′) for all
a = e,m, c. Moreover, other dyadic Green’s functions are strongly related to each
due to the symmetry (duality) relations. Since we will not need the specific forms
of these functions in what follows, such additional relations will not be listed here
since they are readily available in the literature.‖ It is significant to note that the
field produced by each current source is obtained via nonlocal relation, i.e., Green’s
functions operators (8), which are essentially integro-differential operators that can
be defined on some convenient Banach or Sobolev space, see [32, 33]. We denoted a
generic such operator by the symbol G±ab, where a ∈ {e,m}, b ∈ {e,m, c}, which can
be physically interpreted in the following manner: An entity expressed by G+em, for
example, denotes the radiation operator responsible of the production of the exterior
electric field component Ee due to the magnetic current Jm when radiating into
an infinite domain filled with ε0, µ0, etc. Most advanced classical electromagnetic
theory books present derivations of these nonlocal operators, which we will not give
here, but see [9, 10, 32, 33, 35, 38–41] for extensive further details and discussion
regarding the mathematical theory and the computational aspects of these radiation
operators. For the case of generic anisotropic media, the Green’s function are less
well understood and their computation is considerably more complicated. In general,

no close-form expressions exist for G
−
ab(r, r

′) in the anisotropic medium scenario, in

contrast to the case with G
+

ab(r, r
′) where the latter are very well understood since

they possess a relatively simple analytical form. It is also worth mentioning that in the
engineering community, the dyadic Green’s functions of inhomogeneous media, mainly
stratified domains, have received very extensive attention and are often formulated and
computed efficiently, e.g., see [9, 12,38].

Let us now define the surface excitation fields, i.e., the pertinent illumination
fields interacting with the system, which originate from an external source. These are
constructed in terms of which surface they interact with. As will become apparent
immediately, in the generalized ACGF formalism, it is absolutely essential that fields
interacting with different boundary types are distinguished from each other. Mostly
conspicuous is the case of electric fields, where whether they interact with PEC surface
or material interface makes a fundamental difference in the mathematical formulation.
The detailed definitions are

Eex
e (r) := Eex(r)ψ(r;Sd),Hex

m(r) := Hex(r)ψ(r;Sd),Eex
c (r) := Eex(r)ψ(r;Sc), (10)

where the surface membership function ψ : S → R, denoted by ψ(r;S), is given by

ψ(r;S) :=

{
1, r ∈ S,
0, otherwise.

(11)

Remember that the magnetic field does not contribute to the ACGF for PEC objects
[1]. The use of the membership function (11) is usually replaced in differential topology
and mathematical analysis by the process of restriction of the function domain [42].
We may now put together all these notations and general theorems and combine
them with the boundry conditions (2) and (3) in conjunction with the two surface

‖ We also further note that since in the interior problem of Fig. 3, Jc = 0, the operators G−ac will
not be actually used in what follows.
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equivlance problems dpecited in Figs. 2 and 3. Using (8) in the electromagnetic
boundary conditions (2) and (3), we find

û(r)×
[
Eex(r) + E+

e (r) + E+
m(r) + E+

c (r)
]

= 0, r ∈ Sc

û(r)×
[
Eex(r) + E+

e (r) + E+
m(r) + E+

c (r)
]
+

= û(r)×
[
E−e (r) + E−m(r)

]
− , r ∈ Sd

û(r)×
[
Hex(r) + H+

e (r) + H+
m(r) + H+

c (r)
]
+

= û(r)×
[
E−e (r) + H−m(r)

]
− , r ∈ Sd.

(12)
Here, the subscripts ’+’ and ’-’ indicate attached to the brackets in the second and
third equations indicate that we will be approaching the surface Sd from the outside
and inside, respectively. In general, jump conditions, which depend on the Green’s

functions G
±
ab(r, r

′) being used, must be employed to further simplify the system of
equation (12). Moreover, several combination of electric and magnetic type boundary
conditions might be used, leading to electric field integral equations (EFIE), magnetic
field integral equation (MFIE), and combined electric-magnetic field integral equation
(CIE) [38]. All such cases can be put in the following extremely general system of
operator equations [10,35,38,40,43–45]

Lee(r, r
′)Je(r

′) + Lem(r, r′)Jm(r′) + Lec(r, r
′)Jc(r

′) = û(r′)×Eex
e (r′), r ∈ Sd

Lme(r, r
′)Je(r

′) + Lmm(r, r′)Jm(r′) + Lmc(r, r
′)Jc(r

′) = û(r′)×Hex
m(r′), r ∈ Sd

Lce(r, r
′)Je(r

′) + Lcm(r, r′)Jm(r′) + Lcc(r, r
′)Jc(r

′) = û(r′)×Eex
c (r′), r ∈ Sc.

(13)
In this system, the unknowns are the three current distributions Je(r), Jm(r), and
Jc(r), while the input excitation (forcing term) are the fields Eex

e (r′), Hex
m(r′), and

Eex
c (r′) defined by (10). The exact form of the operators Lab, a, b ∈ {e,m, c}, depends

on the jump conditions and which surface integral equation was used. For the
generalized ACGF formalism, as long as the system is solvable the exact details of
these sub-operators are not needed, hence the powerful generality of the method.
Note that by the way we defined the unit normal vector field û(r), which has a support
only on the manifolds Sc and Sd, the RHS of (13) is ensured to be nonzero only on
either a PEC surface or a material interface. In other words, from the perspective
of linear system theory, the equations (13) express the antenna/scattering problem
as a linear response problem where input excitation fields, Eex and Hex interact only
with 2-manifolds, here Sc and Sd, in spite of the fact that the interacting fields are 3-
dimensional spacetime processes. This dimensional change is one of the main reasons
why the current Green’s function formalism requires extreme care when formulating
its main equations and results as was originally noted in [15].

The three linear operator equations in (13) must be solved for the unknown
currents simultaneously, very much like in ordinary linear algebraic equations [38,40].
This amounts to inverting the global operator of the system, denoted by L(r, r′), which
is defined by the following operator relation

L(r, r′) · [J(r′)] = [Vex(r)], (14)

where

[J(r)]9×1 :=

Je(r)

Jm(r)

Jc(r)

 (15)
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is a compact form of the three unknown vector current distributions, while

[Vex(r)]9×1 := û(r)×

Eex
e (r)

Hex
m(r)

Eex
c (r)

 (16)

is the corresponding form of the excitation fields. In component form, the global
integro-differential operator of the PEC-dielectric system can be expressed as

L(r, r′;ω, S, ε, µ) :=Lee(r, r
′;ω, S, ε, µ) Lem(r, r′;ω, S, ε, µ) Lec(r, r

′;ω, S, ε, µ)

Lme(r, r
′;ω, S, ε, µ) Lmm(r, r′;ω, S, ε, µ) Lmc(r, r

′;ω, S, ε, µ)

Lce(r, r
′;ω, S, ε, µ) Lcm(r, r′;ω, S, ε, µ) Lcc(r, r

′;ω, S, ε, µ)

 ,

(17)
where we emphasize here the frequency dependence (which will be drop out most of
the time in this paper.) The sub-operators appearing in (17) are all functions of the
material composition tensors ε and µ as well as the geometry of the interface manifolds
S, but mention of this dependence will be also dropped out to simplify the notation
though implied.

2.2. Exact Derivation of the Generalized ACGF Tensor Array in Minimal
PEC-Dielectric Systems

We are ready now to construct the current Green’s function of the mixed PEC-
dielectric system using the techniques proposed in [15]. It will be seen that similar
to the PEC case, the ACGF of the PEC-dielectric configuration is not an ordinary
function, but a distribution, i.e., a generalized function [42, 46, 47]. A Green’s
function is a response function representing how a linear system reacts to influences
or external inputs [42]. However, not every linear system can automatically possess a
Green’s function, but in each case the Green’s function must be explicitly shown to
exist [42, 48]. In mathematical physics, since most physical processes of interest are
described by differential equations (partial or ordinary), an extensive literature on the
subject of Green’s functions for linear partial differential equations has been developed,
especially for the most important cases of first and second order systems [49]. In our
case, the linear operator system (13) is quite different since the operators appearing
in (8) composing the global operator (17) are integro-differential operators, hence
not strictly speaking local. This implies that the existence of the current Green’s
function in this case is not obvious and requires explicit construction. To do so, we
follow the same path proposed earlier in [1] where a specialized surface delta function
is first defined then later deployed to prove the existence of the ACGF by actually
constructing one.

Generalized functions like the Green’s function or the Dirac delta function are
defined with respect (or found to be equivalent) to equivalence classes of sequences
of ordinary functions satisfying certain properties [42, 46, 47, 49–51]. A surface delta
function δS(r, r′) is a delta function living only on the smooth manifold S. It is defined
as the generalized function [15]

δS(r, r′) :
g.f
=
(
d1(r, r′;S) d2(r, r′;S) · · · dn(r, r′;S) · · ·

)
, (18)
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where the equality is not point-like as in ordinary function, but to be understood in
the sense of equivalence class-type of equality [46, 47, 50]. The functions dn, however,
are all ordinary smooth functions by design. Explicit expressions for the function
sequence dn(r, r′), n = 1, 2, · · · , were given in [1, 15], where the Riemannian metric
tensor field g(r), describing the inner product on two tangent vectors at r, enters
into the definition of δS . Moreover, due to the inhomogeneous nature of the space
described by the smooth manifold S, the delta function is not shift-invariant and
hence cannot be written as function of r − r′ as in the case with the more familiar
Dirac delta functions on Euclidean spaces Rn for positive integers n [47]. It can be
shown that [1, 15]

V (r) = lim
n→∞

∫
S

ds′dn(r, r′;S)V (r′) (19)

is valid for any smooth scalar field V (r) on S. In fact, one may consider (19) the
defining relation of the surface delta function δS of which the form (18) is merely its
rigorous rendering via distribution theory. Indeed, both (18) and (19) are combined
into

V (r) =

∫
S

ds′δS(r, r′)V (r′), (20)

which is the formal relation usually invoked in textbooks as the definition of the Dirac
delta function (the sifting property.)

Next, we need to “vectorize” the surface delta function in order to fit the specific
needs of the mixed PEC-dielectric ACGF construction under consideration. To do so,
let us introduce the vector array

[δexS (r)] :=

 α̂e δSd
(r, r′)

α̂m δSd
(r, r′)

α̂c δSc
(r, r′)

 . (21)

It captures in a compact form the three independent excitation fields pertinent to
the system’s current Green’s function. Here, the three vectors α̂e, α̂m, and α̂c are
independent unit vectors encoding the source polarization data, while the impulsive
nature of these excitation inputs is represented by the surface delta defined on the
proper 2-manifold corresponding to each source. Using (18), the delta source array
(21) can be explicated as

[δexS (r)] :
g.f
=
(

[f ex1 (r;S)] [f ex2 (r;S)] · · · [f exn (r;S)] · · ·
)
, (22)

where the regular source (ordinary) fields are

[f exn (r;S)] :=

 α̂edn(r, r′;Sd)

α̂mdn(r, r′;Sd)

α̂cdn(r, r′;Sc)

 . (23)

The surface vector field function (23) represent a manageable ordinary excitation
function on which one may apply the normal rules of calculus and functional analysis,
in particular the traditional boundary-value problem and its functional analytic
formulation as will be seen shortly.
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From classical electromagnetic theory, it can be shown that the general operator
relation (14) is invertible under very reasonable restrictions. The details can be
found in [32, 33, 38]. Indeed, the mixed PEC-dielectric system under illumination by
smooth fields, with regularity conditions imposed on the geometry – already ensured
by assuming that S possesses a differential (smooth) manifold structure – is a well-
posed boundary-value problem with the proper existence and uniqueness theorems
applicable to it. Under these circumstances, we write

[J(r)] = L−1(r, r′) · [V(r′)], (24)

where L−1 is the inverse L−1 := (L)−1 of the global operator (17) given by

L−1(r, r′) =

L
−1
ee (r, r′) L−1em(r, r′) L−1ec (r, r′)

L−1me(r, r
′) L−1mm(r, r′) L−1mc(r, r

′)

L−1ce (r, r′) L−1cm(r, r′) L−1cc (r, r′)

 . (25)

Therefore, like the forward global operator, the inverse operator must be an array
of nine sub-operators, here denoted by L−1ab (r, r′), a, b ∈ {e,m, c}. It should be
immediately noted that

L−1ab (r, r′) 6= (Lab(r, r
′))
−1
, ∀a, b ∈ {e,m, c}. (26)

In other words, it is not possible to obtain the elements of the individual sub-operators
composing L−1 by simply inverting the corresponding original forward operators
Lab(r, r

′) appearing in (17). This observation is important because it can be easily
overlooked. The confusion may arise from the fact that the various forward sub-
operators Lab(r, r

′) possess expressions independent (formally) from each other, and
hence one may indeed mathematically invert the individual operators. However, since
the three equations (13) must be satisfied simultaneously to ensure the correctness of
the proper electromagnetic boundary conditions of the system under consideration, it
is necessary to invert the entire operator array (17).

Following [1,14,15], we define the current Green’s function (ACGF) of the PEC-
dielectric system by the relation

[F(r, r′)] := L−1(r, r′) · [δexS (r′)] . (27)

It should be clear by now that this definition must be ultimately understood in the
sense of generalized functions. Hence, by invoking the distributional definition of the
excitation field (22), we introduce

[Fn(r, r′)] := L−1(r, r′) · [f exn (r′)] . (28)

which is defined as the nth level distributional approximation of the ACGF. As can
be readily verified, the elements of the function sequence [Fn(r, r′)], n = 1, 2, · · · , are

(i) ordinary smooth functions, and

(ii) tensorial fields defined on the 2-dimensional Riemannian manifold S.

Fact (i) implies that all rules of normal vector analysis applies when we work with the
distributional approximation functions [Fn(r, r′)], n = 1, 2, · · · ,∞. In particular, this
implies that ordinary full-wave numerical methods in computational electromagenetics
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(CEM) can be deployed to calculate these level functions themselves. This observation
was heavily exploited in [1] in order to approximate the ACGF of various PEC
systems. Moreover, fact (ii) says that the approximating functions [Fn(r, r′)], and
hence the ACGF itself, have acquired an additional structure, that of a tensor
on 2-manifold. Therefore, [F(r, r′)] represents a Green’s tensor living in a curved
Riemannian manifold S. We will come again to the explicit form of this Green’s
tensor shortly. Putting in all these information together, we may now construct a
formal distributional definition of the ACGF through

[F(r, r′)] :
g.f
=
(

[F1(r, r′)] [F2(r, r′)] [Fn(r, r′)] · · ·
)
. (29)

This is the fundamental distributional constructive definition of the generalized ACGF.
Everything to follow is based on it.

With the help of (25), the definition (27) implies that the generalized ACGF
should be expanded into an array of nine sub-ACGFs, i.e., [F(r, r′)] possesses the
form

[F(r, r′)] =


Fee(r, r

′) Fem(r, r′) Fec(r, r
′)

Fme(r, r
′) Fmm(r, r′) Fmc(r, r

′)

Fce(r, r
′) Fcm(r, r′) Fcc(r, r

′)

 . (30)

In details, the individual ACGFs composing this generalized ACGF array are given
by the following expression

[F(r, r′)] =



L−1ee (r, r′)α̂eδSd
(r, r′)︸ ︷︷ ︸

Fee(r,r′)

L−1em(r, r′)α̂mδSd
(r, r′)︸ ︷︷ ︸

Fem(r,r′)

L−1ec (r, r′)α̂cδSc
(r, r′)︸ ︷︷ ︸

Fec(r,r′)

L−1me(r, r
′)α̂eδSd

(r, r′)︸ ︷︷ ︸
Fme(r,r′)

L−1mm(r, r′)α̂mδSd
(r, r′)︸ ︷︷ ︸

Fmm(r,r′)

L−1mc(r, r
′)α̂cδSc

(r, r′)︸ ︷︷ ︸
Fmc(r,r′)

L−1ce (r, r′)α̂eδSd
(r, r′)︸ ︷︷ ︸

Fce(r,r′)

L−1cm(r, r′)α̂mδSd
(r, r′)︸ ︷︷ ︸

Fcm(r,r′)

L−1cc (r, r′)α̂cδSc
(r, r′)︸ ︷︷ ︸

Fcc(r,r′)


,

(31)
Each ACGF is in itself a tensor on its associated 2-dimensional Riemannian manifold
S. In order to effectively describe the structure of this tensor. i.e., in a coordinate-
independent manner, we need to work with the differential atlas associated with the
manifold S on which the ACGF tensor is defined. Let (Ui, ϕi), i ∈ I, be such an atlas,
where ϕi : Ui → R2 is the ith coordinate system associated with the open set Ui ⊂ S,
while I is the index set. The coordinates themselves are given by xn = ϕn

i (r), with
n = 1, 2 to account for the two degrees of freedom on a 2-dimensional manifold. The
manifold itself is the union S = ∪i∈IUi with possible overlap between individual Ui.
The tangent vector at each point r ∈ Ui ⊂ S can be expressed using the coordinates
of that patch using the relation [49,52]

α̂(r) = α1(r)
∂

∂x1
+ α2(r)

∂

∂x2
. (32)

This is the expression of the tangent vector α at r in terms of local (intrinsic)
coordinate systems. But we can also expand the same vector in terms of external
global Cartesian coordinate system associated with the ambient space R3 into which
S is embedded, so we write α̂1 and α̂2 as the Cartesian form for α1 and α2, respectively.
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The two vectors are clearly linearly independent but they are not generally required
to be orthogonal. For convenience, in this paper we assume that they are further
orthonormal, i.e., we have

α̂n(r) · α̂m(r) = δnm, (33)

where δnm is the Kronecker delta function. Based on this geometric formulation, the
ACGF can be readily expanded into dyadic basis in the form α̂i(r) ⊗ α̂j(r

′). If we
drop the tensor product sign ⊗ for simplicity, we obtain

Fab(r, r
′) =

2∑
i,j=1

α̂i(r)α̂j(r
′)F ij

ab(r, r
′)

=

(
α̂1(r)α̂1(r′)F 11

ab (r, r′) α̂1(r)α̂2(r′)F 12
ab (r, r′)

α̂2(r)α̂1(r′)F 21
ab (r, r′) α̂2(r)α̂2(r′)F 22

ab (r, r′)

)
,

(34)

where a, b ∈ {e,m, c}. In Appendix B, all of the concrete generalized ACGF array
component expressions are listed in order to spell out which manifolds (Sd or Sc) are
relevant to each ACGF.

The final – and most crucial – step in the derivation of the generalized ACGF
formalism involve demonstrating an analog to the sifting property (20) valid for the
current distribution array response [J(r)]. Here, as in [15], it turns out that the
proof of the main relation must use reciprocity (consequent on the self-adjointness
of the relevant operators). Let us start by considering the n-level distributional
approximation of the surface current

[Jn(r)] =

∫
S

ds′ [Fn(r, r′)] · [V(r′)]. (35)

Here, the n-level ACGF approximation [Fn(r, r′)] can be computed with the help of

[Fn(r, r′)]

=

L
−1
ee (r, r′)α̂edn(r, r′;Sd) L−1em(r, r′)α̂mdn(r, r′;Sd) L−1ec (r, r′)α̂cdn(r, r′;Sc)

L−1me(r, r
′)α̂edn(r, r′;Sd) L−1mm(r, r′)α̂mdn(r, r′;Sd) L−1mc(r, r

′)α̂cdn(r, r′;Sc)

L−1ce (r, r′)α̂edn(r, r′;Sd) L−1cm(r, r′)α̂mdn(r, r′;Sd) L−1cc (r, r′)α̂cd(r, r′;Sc)

 .

(36)
where (18),(22),(23),(31) are used. The integral (35) is in fact a global integral defined
over the entire surface S. It is originally written in terms of the local coordinates ϕi on
the patch Ui. Afterwards, the partition of unity technique [52] is used to aggregate all
the local patches in order to give the total coordinates. The details of this construction
are straightforward but rather technical so a summary of the background is relegated
to Appendix A. Using that material, the expression (35) can be expanded as

[Jn(r)] =
∑
j∈J

∫
ϕj(Uj)

(
ψj(r

′)
√
|g(r′)|[Fn(r, r

′
)] · [V(r′)]

)
◦ ϕ−1j d2x′. (37)

Here, g(r′) is the Riemannian metric tensor field on the particular 2-manifold being
integrated over, i.e., the surface Sc or Sd. Each of the individual integrals in the
RHS of (37) is performed over a local Euclidean patch of the entire surface, namely
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ϕ(Ui) ⊂ R2, i.e., the coordinate patch corresponding to the the geometric piece Ui

over which the integration will be numerically preformed. Note that the infinitesimal
surface differential element d2x′ is mapped by the function ϕ−1j to the global language
(intrinsic geometric) representation of points as r, r′ ∈ S. In what follows, all global
integrals must be understood in the geometric sense given above and the values
obtained are always independent of which coordinate system was used. However,
for the sake of brevity, we will not spell out fine-grained expressions like (19) every
time an integral over an entire manifold Sd or Sc is written.

Because all of the media in our system are assumed to be reciprocal, the global
operator L in (17) is itself reciprocal and hence Lorenz reciprocity theorem is valid
for our case [7,9,10,35]. Using a technical argument identical to the one developed in
details in [1, 15], it can be shown that the actual current response array [J(r)] is the
limit of the n-level approximation [Jn(r)], that is, we have

[J(r)] = lim
n→∞

[Jn(r)] = lim
n→∞

∫
S

ds′ [Fn(r, r′)] · [V(r′)]. (38)

Since the limit in the RHS can be further pushed inside the integral (the exchange of
limit and operators is proved based on reciprocity [15]), it can be concluded that

[F(r, r′)] = lim
n→∞

[Fn(r, r′)], (39)

which is paramount to saying that the generalized ACGF of the system is the
distributional limit of the sequence of n-level ordinary tensorial functions [Fn(r, r′)].
In other words, we may write

[F(r, r′)] :
g.f
=
(
F(r, r′) F(r, r′) · · · Fn(r, r′) · · ·

)
. (40)

The details of the proof of the above mentioned limit-operator order exchange, already
implicit in the statement of distributional approximation (39), are quite lengthy and
identical to the PEC case treated in [1] and so will not be given here.¶ It now
immediately follows from (38) and (39) that

[J(r)] =

∫
S

ds′ [F(r, r′)] · [V(r′)]. (41)

This is the main relation in the generalized ACGF formalism. If we expand it in
details, we find

Je(r) =

∫
Sd

ds′ Fee(r, r
′) ·Eex

e (r′) +

∫
Sd

ds′ Fem(r, r′) ·Hex
m(r′)

+

∫
Sc

ds′ Fec(r, r
′) ·Eex

c (r′),

(42)

Jm(r) =

∫
Sd

ds′ Fme(r, r
′) ·Eex

e (r′) +

∫
Sd

ds′ Fmm(r, r′) ·Hex
m(r′)

+

∫
Sc

ds′ Fmc(r, r
′) ·Eex

c (r′),

(43)

¶ However, the reader should notice that it is not currently known whether the ACGF can be
constructed in nonreciprocal systems.
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Jc(r) =

∫
Sd

ds′ Fce(r, r
′) ·Eex

e (r′) +

∫
Sd

ds′ Fcm(r, r′) ·Hex
m(r′)

+

∫
Sc

ds′ Fcc(r, r
′) ·Eex

c (r′).

(44)
The relations (41), (42), (43), and (44) provide a complete space-frequency
representation of a composite PEC-dielectric system response to external field
illuminations Eex(r) and Hex(r). They are valid for arbitrary inhomogeneous
configuration composed of reciprocal domains in which the interfaces can be modeled
by orientable smooth 2-manifolds. Further discussion of these final results will be
briefly outlined in Sec. 3.

2.3. Generalization to Generic PEC-Dielectric Systems

We end this section by the generalization to the case of arbitrary number of PEC and
dielectric domains. The main derivation is identical to the minimal case of one PEC
and one dielectric domain developed in details above. We merely expand each surface
type into the set-theoretic union of the corresponding sub-surfaces as follows:

S = Sc ∪ Sd, Sc =

Nc⋃
i=1

Si
c, Sd =

Nd⋃
i=1

Si
d, (45)

where Nc and Nd are the numbers of conducting and dielectric subdomains,
respectively. Since each of these sub-surfaces constitutes by itself a smooth
Riemannian manifold, the set S = Sc ∪ Sd is also a Riemannian manifold, as well as
Sc and Sd taken individually. Each PEC/dielectric subdomain is enclosed by Sc/Sd,
respectively. Furthermore, it is clear that (15) and (16) can be recast into larger arrays
with structures

[J(r)](2Ne+Nc)×1 :=

 [Je(r)]Ne×1

[Jm(r)]Ne×1

[Jc(r)]Nc×1

 , [Vex(r)](2Ne+Nc)×1 := û(r)×

[Eex
e (r)]Ne×1

[Hex
m(r)]Ne×1

[Eex
c (r)]Nc×1

 .

(46)
Here, the components of these augmented arrays are

[Je(r)]Ne×1 =
[
Ji
e(r)

]
i=1,··· ,Ne

,

[Jm(r)]Ne×1 =
[
Ji
m(r)

]
i=1,··· ,Ne

,

[Jc(r)]Nc×1 =
[
Ji
c(r)

]
i=1,··· ,Nc

,

(47)

where the individual currents with superscript i indexes the currents on the surfaces
Si
c or Si

d. Similarly, we have[
Eex,i

e (r)
]
Ne×1

=
[
Eex,i

e (r)
]
i=1,··· ,Ne

,[
Hex,i

m (r)
]
Ne×1

=
[
Hex,i

m (r)
]
i=1,··· ,Ne

,[
Eex,i

c (r)
]
Nc×1

=
[
Eex,i

c (r)
]
i=1,··· ,Nc

.

(48)
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The pattern is now clear. We will not give the analog to all intermediate relations, but
mention the generalized ACGF augmented array, which in the most generic scenario
acquires the form

[F(r, r′)](2Ne+Nc)×(2Ne+Nc)

=


[Fee(r, r

′)]Ne×Ne [Fem(r, r′)]Ne×Ne [Fec(r, r
′)]Ne×Nc

[Fme(r, r
′)]Ne×Ne

[Fmm(r, r′)]Ne×Ne
[Fmc(r, r

′)]Ne×Nc

[Fce(r, r
′)]Nc×Ne

[Fcm(r, r′)]Nc×Ne
[Fcc(r, r

′)]Nc×Nc

 .
(49)

Here, each element of the augmented generalized ACGF array [F(r, r′)] is written as

F
ij

ab, itself a tensor on the appropriate 2-manifold, with data structure conforming to

[F(r, r′)](2Ne+Nc)×(2Ne+Nc) =
[
F

ij

ab(r, r
′)
]
a,b∈{e,m,c};i,j∈{1,··· ,max(Nc,Ne)}

. (50)

The detailed forms for all these sub-components are listed in Appendix C, which
must be consulted in order to correctly implement the generalized ACGF tensor array

[F(r, r′)]. Note further that each tensor sub-component F
ij

ab is itself expressible in
terms of one of the formulas listed in Appendix B. Consequently, combining the
expressions in both the latter Appendix with those found in Appendix C, the global
generalized ACGF tensor array can be ultimately traced back to individual scalar
components that might be implemented numerically or measured in the lab. Based
on this notation, the final generalized ACGF relation becomes

[J(r)](2Ne+Nc)×1 =

∫
S

ds′ [F(r, r′)](2Ne+Nc)×(2Ne+Nc)
· [V(r′)](2Ne+Nc)×1. (51)

In details, the various currents flowing on the sub-surfaces Si
c and Si

d an be expressed
in terms of all other excitation field through the relations

Ji
e(r) =

Ne∑
j=1

∫
Sj
d

ds′ F
ij

ee(r, r
′) ·Eex,j

e (r′) +

Ne∑
j=1

∫
Sj
d

ds′ F
ij

em(r, r′) ·Eex,j
m (r′)

+

Nc∑
j=1

∫
Sj
c

ds′ F
ij

ec(r, r
′) ·Eex,j

c (r′),

(52)

Ji
m(r) =

Ne∑
j=1

∫
Sj
d

d3r′ F
ij

me(r, r
′) ·Eex,j

e (r′) +

Ne∑
j=1

∫
Sj
d

ds′ Fmm(r, r′) ·Eex,j
m (r′)

+

Nc∑
j=1

∫
Sj
c

ds′ Fmc(r, r
′) ·Eex,j

c (r′),

(53)



17

Ji
c(r) =

Ne∑
j=1

∫
Sj
d

ds′ F
ij

ce(r, r
′) ·Eex,j

e (r′) +

Ne∑
j=1

∫
Sj
d

ds′ F
ij

cm(r, r′) ·Eex,j
m (r′)

+

Nc∑
j=1

∫
Sj
c

ds′ F
ij

cc(r, r
′) ·Eex,j

c (r′).

(54)
The three relations (52)-(44) represent the most general form possible of the current
Green’s function method in generic composite PEC-dielectric systems and is stated
and derived here for the first time but under the assumption that the media composing
the system are reciprocal.

3. Discussion of the Results and Further General Remarks

We provide in this last section a set of general observations and remarks with the
goal to situate the fundamental mathematical formulation presented above within the
general context of both theory and applications. First, we would like to compare the
coupled PEC-dielectric formalism with the previously published PEC ACGF method
[1]. It is immediately noticed that while there are several similarities, for example
the formal structure of the superposition integral (51), there are also fundamental
differences. The most important, in our view, is the considerable increase in complexity
due to the need to take into account the magnetic field interaction. Indeed, the
magnetic field will contribute at every point in the surface Sd, and even the conduction
current Ji

c(r), where r ∈ Si
c, will receive contribution from not only the electric fields at

all other surfaces sjd, but also the magnetic fields there. This curious situation shows
that mixed PEC-dielectric systems are inherently more complex. Mutual coupling
exists between every two domains, and this coupling is taken into account through

coupling Green’s functions of the form F
ij

ab(r, r
′).

Next, we note not only the formal complexity of the generalized ACGF method,
but also anticipated considerable increase in computational demands. This is already
clear in the generic formulas treated in Sec. 2.3 where each tensor was replaced by an
array. In fact, the generalized ACGF of a generic composite PEC-dielectric appearing
in (49) is an (2Ne + Nc) × (2Ne + Nc) square array, where Ne and Nc are the total
numbers of dielectric and PEC sub-domains, numbers that can easily increase with
complicated antenna types like multi-layered microstrip antennas [53] or multiple-
scattering systems [9, 10]. Now every “element” of this array, i.e., the generic term

F
ij

ab(r, r
′), is itself a tensor, or simply a dyad, with representation in a chosen (local)

coordinate system on the 2-manifold on which this dyad is def ind giving rise to a 2×2
matrix as per the detailed expressions in Appendix B and Appendix C. Therefore,
the generalized ACGF array is effectively a rather complicated and involved matrix of
(4Ne + 2Nc)× (4Ne + 2Nc) scalar functions. This matrix is coordinate dependent in
the sense that the its entries’ exact numerical values depend on the coordinate system
under consideration. However, since we use local charts (intrinsic manifold language),
the final results, the current induced on the surface S after interaction with incident
excitation fields, as given by the integral (51), is independent of the coordinate system.
In fact, a concrete calculus for transforming ACGF tensors was derived in [1] and can
be also developed here with minor changes. Since the idea is the same but the details
are lengthy, this method will not be given here but the reader need to be aware that
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the ACGF as constructed here is like all tensors a geometric quantity, i.e., not attached
to a specific coordinate system.+

Few remarks on the range of validity of the derived formalism. It is important
to note that technically the existence of the generalized ACGF depends crucially
on the assumption that the system is reciprocal. This, however, is a character in
our particular construction. It is currently an open question whether a different
approach can be applied to construct the ACGF for nonreciprocal systems. It is
in general believed that Green’s functions and reciprocity are intimately related to
each other, but since our constructive method is not unique, we prefer to leave
the question of whether ACGFs exists in nonreciprocal radiating systems for future
investigations. Another restriction that must be noted is that our use of the surface
equivalence theorem to construct the generalized ACGF formalism formulates the
problem exclusively in terms of surface currents. It is currently an open question
whether the ACGF can also be constructed using volume integral equations, leading
to to volume current response. That will lead to substantial modification (if the
formulation indeed is possible) since the use of Riemannian geometry will become less
warranted as in our case where surface integral equations has been selected as the
ultimate foundations of the method right from the start.

We finally say few words about the numerical implementation of the ACGF
formalism. Strictly speaking, the ACGF technique was originally introduced
essentially as an alternative numerical method in electromagnetics, with applications
to the analysis of wire antennas [30]. After developing some of the theoretical
foundations in [14,15], a direct computational technique using the Method of Moment
(MoM) was proposed in [16], which is similar to [30]. The basic idea is to use
MoM with specialized mesh to model an increasing number of n-level distributional

approximations of the ACGF, namely the Fn appearing in (28). This idea was
investigated numerically in [24,54] and experimentally in [18] for mixed PEC-dielectric
type antennas (strongly coupled microstrip antennas backed by dielectric substrate
and ground plane), without, however, explicit mention or derivation of the integal
formulas (51). Afterwards, this MoM-based approach has been further systematized
and integrated with more applications, e.g., see [1]. However, it is very important
to note that the MoM-based approach to the ACGF method is not the only option
available as we will discuss shortly. In fact, the ACGF, being more fundamental than
the discrete mesh approximation upon which all numerical methods like the MoM are
based, can be even measured directly in the lab, though to the best of our knowledge
this has not been accomplished yet. The problem with MoM-based estimation is
that it is very expensive and may lead to convergence problems. Indeed, each n-level

approximation Fn(r, r′) requires a dense, most often nonuniform, MoM discretization
mesh in order to properly model the physics of the progressively narrowing excitation
dn(r, r′) that approximate in turn the surface delta function as per (18). Since the
MoM is well known to suffer from convergence problems when the matrix to be inverted
becomes denser [55], this direct approach via the distributional approximation relation
(39) may become prohibitively expensive or even simply not convergent if the original
(exact) limit is replaced by a MoM-based operator approximation. Unfortunately, not
much has been published on the pure numerical issue of convergence rate and speed

+ In practical applications to complex antennas that involve closed surfaces this is important since
full-wave numerical simulators tend to use local (geometric) coordinate systems, e.g., the curvilinear
coordinates of the old Gaussian theory of 2-surfaces, e.g., see [39,40].
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in the MoM-based approach to the ACGF method.
It is interesting to note that in recent years two alternative techniques have

been proposed to estimate the ACGF. One technique is in fact as old as the ACGF
method itself, and was already used in the earliest publications [30]. This is the
proposal to use the spatial singularity expansion method (S-SEM) to approximate
the ACGF as a finite series of complex exponentials, in a way that resembles the
well known eigenfunction expansion method or singularity expansion method in the
time domain [56]. While the spatial SEM itself was developed systematically only
very recently in [57], it had been already applied to estimate the ACGF of printed
antennas in [58–60]. This method rely on measuring some near- or far- field and
then using machine learning to perform inverse source modeling to determine the
unknown current on the radiator using the S-SEM expansion as learning model to be
trained with available data [61,62]. The second new method alternative to MoM-based
approximation is the infinitesimal dipole model (IDM) approach, which is referred to
here as the ACGF-IDM framework. The IDM method is a very general strategy
in computational electromagnetics aiming at replacing a complex radiating current
by an equivalent small number of concentrated Dirac-like sources [63]. The method
intersects a large number of applications in areas as diverse as imaging, geo-sensing,
radars, wireless communications, tomography, and others.∗ It was shown recently
that a combination of the ACGF and IDM methods can effectively model complex
radiating systems using measured far-field data [23]. This approach was applied there
with experimental and numerical results to conformal microstrip antenna arrays, which
also involve composite PEC-dielectric objects. Finally, we mention also some hybrid
methods involving a combination of hybrid ACGF and physical optics approach as
in [21,22]. To summarize, aside from direct lab measurement of the ACGF itself (not
realized yet), so far four different numerical methods have been used to implement the
ACGF technique:

(i) The direct (dense) full-wave method approximation (most often using the MoM).

(ii) The ACGF-SEM method (based on measured field data).

(iii) The ACGF-IDM method (based on measured field data).

(iv) Hybrid methods combining the full-wave numerical approximation approach to
the ACGF with other approximations such as ray tracing, physical optics, etc.

The state of research on the computational efficiency of the proposed ACGF formalism
as an alternative method in CEM is still evolving and we hope more work on this will
be published in the present new decade.

4. Conclusion

Starting from surface integral equations, we provided an extensive rigorous
mathematical investigation into the foundations and derivation of the main tenets of
the antenna current Green’s function (ACGF) formalism for coupled PEC-dielectric
systems, filling an existing gap in the literature where most investigations using
the ACGF method has focused so far on numerical and experimental aspects. In
fact, previously only the perfect-electric conducting (PEC) case was investigated
mathematically at the fundamental level. It was found that in contrast to the
PEC ACGF formalism, including dielectric domains with possible magnetic properties

∗ See the literature quoted in [64] for some recent survey on the IDM method.
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brings both electric and magnetic fields into the picture, i.e., not only the electric field
as in the PEC case. Also, both electric and magnetic currents are introduced at
dielectric interfaces and the needed general surface integral relations in terms of the
ACGF (Green’s kernel) were derived. The construction of the mixed PEC-dielectric
ACGF gave rise to a higher-order tensor array, considerably more complicated than
the PEC’s tensor. Our derivation depends crucially on assuming reciprocity in
additional to linearity and it is currently unknown if the ACGF can be constructed
for nonreciprocal systems or whether the ACGF can be constructed based on volume
integral equations.

Appendix A. Coordinate-Independent Extension of Integrals from Local
to Global Manifold Domains

Let (M, g) be an n-dimensional riemannian manifold with topological manifold M
and metric tensor field g. An atlas on M is given by Ui, ϕi, i ∈ I. We say that
[Uj , ϕj(r), ψj(r)], j ∈ J, r ∈ M, is a partition of unity subordinate to Ui, ϕi, i ∈ I,
when:

(i) The collection of functions ψj : M → R on M constitutes a smooth partition of
unity subordinate to the covering Ui, i ∈ I.

(ii) (Uj , ϕj), j ∈ J , in itself constitutes an atlas on M .

(iii) For any j ∈ J , the support of of ψj(r) is contained within Uj , i.e., supp(ψj) ⊂ Uj .

It can be shown that for any atlas there exists a partition of unity subordinate to it
in the sense given above [52]. Now, since x = ϕj(r) is in Rn, then we can immediately
invoke the classic Lebesgue measure on Euclidean spaces to write integrals with respect
to x, which will be in the form

∫
dnx. We then define Riemannian measure integral

on a given function f : M → R by the formula∫
M

dvf :=
∑
j∈J

∫
ϕj(Uj)

(
ψj

√
|g|f

)
◦ ϕ−1j dnx, (A.1)

where |g| is the determinant of the metric tensor g when its components are expressed
in terms of the local coordinate system of the jth patch. In this way, the integral
defined globally over the entire manifold is expanded into the aggregation of smaller
integrals over the local patches Uj which when pieced up together give back the total
manifold M . We note that for definition to work, we assume that the integrated
function has a compact support, a condition automatically satisfied in our case because
all manifolds dealt with in this paper, namely Sc and Sd are compact. Finally, it can
be shown that the construction (A.1) is independent of which coordinate system was
used [52]. In our case, the surface definition corresponding to n = 2 is the only one
needed.

Appendix B. Tensorial Expansions for all Global Generalized ACGF
Components

Fee(r, r
′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
ee(r, r′), r′ ∈ Sd, r ∈ Sd,

0, elsewhere.
. (B.1)
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Fem(r, r′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
em(r, r′), r′ ∈ Sd, r ∈ Sd,

0, elsewhere.
. (B.2)

Fec(r, r
′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
ec(r, r′), r′ ∈ Sc, r ∈ Sd,

0, elsewhere.
. (B.3)

Fme(r, r
′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
me(r, r

′), r′ ∈ Sd, r ∈ Sd,

0, elsewhere.
. (B.4)

Fmm(r, r′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
mm(r, r′), r′ ∈ Sd, r ∈ Sd,

0, elsewhere.
. (B.5)

Fmc(r, r
′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
mc(r, r

′), r′ ∈ Sc, r ∈ Sd,

0, elsewhere.
. (B.6)

Fce(r, r
′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
ce(r, r′), r′ ∈ Sd, r ∈ Sc,

0, elsewhere.
. (B.7)

Fcm(r, r′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
cm(r, r′), r′ ∈ Sd, r ∈ Sc,

0, elsewhere.
. (B.8)

Fcc(r, r
′) =

{∑2
i,j=1 α̂i(r)α̂j(r

′)F ij
cc (r, r′), r′ ∈ Sc, r ∈ Sc,

0, elsewhere.
. (B.9)

Appendix C. Structure of the Generalized ACGF Array Components for
Multiple Coupled PEC-Dielectric Systems

[Fee(r, r
′)]Ne×Ne

=
[
F

ij

ee(r, r
′)
]
i,j=1,··· ,Ne

, (C.1)

[Fme(r, r
′)]Ne×Ne =

[
F

ij

me(r, r
′)
]
i,j=1,··· ,Ne

, (C.2)

[Fem(r, r′)]Ne×Ne =
[
F

ij

em(r, r′)
]
i,j=1,··· ,Ne

, (C.3)

[Fmm(r, r′)]Ne×Ne =
[
F

ij

mm(r, r′)
]
i,j=1,··· ,Ne

, (C.4)

[Fec(r, r
′)]Ne×Nc

=
[
F

ij

ec(r, r
′)
]
i=1,··· ,Ne;j=1,··· ,Nc

, (C.5)

[Fce(r, r
′)]Nc×Ne

=
[
F

ij

ce(r, r
′)
]
i=1,··· ,Nc;j=1,··· ,Ne

, (C.6)

[Fcm(r, r′)]Nc×Ne
=
[
F

ij

cm(r, r′)
]
i=1,··· ,Nc;j=1,··· ,Ne

, (C.7)

[Fmc(r, r
′)]Ne×Nc

=
[
F

ij

mc(r, r
′)
]
i=1,··· ,Ne;j=1,··· ,Nc

, (C.8)

[Fcc(r, r
′)]Nc×Nc

=
[
F

ij

cc(r, r
′)
]
i,j=1,··· ,Nc

. (C.9)
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