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Abstract

This paper presents a new linear optimal power flow model for three-phase unbalanced electrical distribution systems consid-

ering binary variables. The proposed formulation is a mixed-integer linear programming problem, aiming at minimizing the

operational costs of the network while guaranteeing operational constraints. Two new linearizations for branch current and

nodal voltage magnitudes are introduced. The proposed branch current magnitude linearization provides a discretization of the

Euclidean norm through a set of intersecting planes; while the bus voltage magnitude approximation uses a linear combination

of the L1 and the L[?] norm. Results were obtained for an unbalanced distribution system, in order to assess the accuracy of

the linear formulation when compared to a nonlinear power flow with fixed power injections, showing errors of less than 4\%

for currents and 0.005\% for voltages.
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Abstract—This paper presents a new linear optimal power
flow model for three-phase unbalanced electrical distribution
systems considering binary variables. The proposed formulation
is a mixed-integer linear programming problem, aiming at min-
imizing the operational costs of the network while guaranteeing
operational constraints. Two new linearizations for branch cur-
rent and nodal voltage magnitudes are introduced. The proposed
branch current magnitude linearization provides a discretization
of the Euclidean norm through a set of intersecting planes;
while the bus voltage magnitude approximation uses a linear
combination of the L1 and the L norm. Results were obtained
for an unbalanced distribution system, in order to assess the
accuracy of the linear formulation when compared to a nonlinear
power flow with fixed power injections, showing errors of less
than 4% for currents and 0.005% for voltages.

Index Terms—Linear optimal power flow, unbalanced, three-
phase, electrical distribution systems, mixed-integer linear pro-
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NOTATION

Sets

Ωb Set of nodes

Ωf Set of phases {A, B, C}
Ωg Set of nodes with distributed generation (DG) units

Ωl Set of distribution lines

Parameters

cDG
g Unitary generation cost at DG unit g [$/kW]

cES Unitary generation cost at the substation [$/kW]

Ikj Maximum current magnitude at line kj [A]

PD
k,f Active power demand at node k, phase f [kW]

Pg Maximum active power by generator at bus g [kW]

Pg Minimum active power by generator at bus g [kW]

pfg Minimum power factor at DG unit g.

QD
k,f Reactive power demand at node k, phase f [kVAr]

Rkj,f,f ′ Resistance of line kj between phases f and f ′ [Ω]

This work was partially funded by the TUe/BOOST! program and the São
Paulo Research Foundation grants 2019/01906-0 and 2015/21972-6.

V Maximum voltage magnitude [pu]

V Minimum voltage magnitude [pu]

Xkj,f,f ′ Reactance of line kj between phases f and f ′ [Ω]

Θ Defined angle range [◦]

Variables

irkj,f iikj,f Real and imaginary parts of the current at line kj,

phase f [A]

ir Dk,f ii Dk,f Real and imaginary parts of the load current at node

k, phase f [A]

ir DG
g,f ii DG

g,f Real and imaginary parts of the current at DG unit

g, phase f [A]

ir ES
k,f ii ES

k,f Real and imaginary parts of the current at the

substation bus k, phase f [A]

PES Active power injection at the substation [kW]

PDG
g QDG

g Active and reactive power generations at DG unit

g [kW, kvar]

vrk,f vik,f Real and imaginary parts of the voltage at node k,

phase f [V]

µg Unit status of DG unit at bus g

I. INTRODUCTION

The classical optimal power flow (OPF) is a nonlinear,

non-convex, optimization problem, usually containing both

continuous and discrete variables [1]. The solution of the

OPF aims at defining the participation of controllable energy

resources to the power balance, aiming at minimizing selected

objectives while satisfying technical and physical operational

limits. The inclusion of three-phase models increases the size

and the complexity of the problem. Moreover, the addition of

integer variables regarding the operating status of distributed

generator (DG) units, energy storage system (ESS), capacitor

banks, transformer’s tap position, among others; increases the

challenge of obtaining optimal solutions in polynomial time,

since solving non-convex mixed-integer nonlinear program-

ming (MINLP) models is NP-hard [2].



On the other hand, mixed-integer linear programming

(MILP) models are convex, tractable, and easier to solve;

which is why obtaining accurate approximated models has

been important to the research community for more than 50

years [3].

A compendium of optimal power flow formulations applied

to modern electrical distribution systems (EDS) is proposed

in [4] including convex and non-convex approaches. Math-

ematically equivalent convex OPF formulations are avail-

able either for meshed transmission networks [5], or for

radial distribution networks [6]. Convexification also includes

linearization techniques, focused on obtaining approximated

models which are good representations of the original non-

linear problem as in [7], where authors introduce a linear

OPF considering voltage stability constraints or in [8], where

a linearly constrained quadratic OPF is proposed. However,

all the aforementioned works only consider single-phase or

balanced configurations.

Three-phase OPF formulations for EDS have also been

studied, as in [9] where a genetic algorithm is used for solving

a non-convex MINLP. Reference [10] introduces an OPF

for unbalanced distribution systems considering stochastic

variables as a nonlinear programming model. Authors in [11]

propose a MILP model considering droop-controlled genera-

tion units, however the formulation relies on the knowledge

of previous operating conditions. A semidefinite formulation

is proposed in [12], the formulation is convex, however, it does

not consider integer variables.

This paper proposes a new MILP model for the OPF

of unbalanced three-phase EDS. The proposed formulation

accounts for dispatchable DG units only, although it can be

easily extended to include ESS, renewable energy sources,

under-load tap changers, etc. The objective function aims

at minimizing the operational cost of the network, while

respecting nodal voltage and branch current magnitude limits.

The obtained linear model is based on two new linearization

procedures for the Euclidean norm, present in voltage and

current magnitudes. The linearizations are suitable for different

operating conditions and have been tested under the partic-

ular characteristics of radial distribution networks. The new

formulation is tested using an unbalanced distribution system

of 25-buses using AMPL [13] and solved with CPLEX [14]

under default settings. The results obtained with the new MILP

model are compared with the results from a conventional

nonlinear power flow, assessing the accuracy of the introduced

approximations.

II. MINLP OPTIMAL POWER FLOW

The OPF problem can be modeled as a MINLP problem

using (1)–(15), where italic characters represent state variables,

e.g., ir
jk,f , i

i DG
g,f , PDG

g , etc. The objective function in (1) aims

at minimizing the total operational cost of the EDS regarding

the energy imported from the main grid and the energy injected

by DG units. Constraints (2)–(14) are defined for each phase,

i.e., f ∈ Ωf .

min cESP ES +
∑

g∈Ωg

cDG
g PDG

g (1)

subject to:
∑

jk∈Ωl

ir
jk,f−

∑

kj∈Ωl

ir
kj,f+

∑

g∈Ωg

ir DG
g,f + ir ES

k,f = ir D
k,f ,

∀ k ∈ Ωb

(2)

∑

jk∈Ωl

ii
jk,f−

∑

kj∈Ωl

ii
kj,f+

∑

g∈Ωg

ii DG
g,f +ii ES

k,f = ii D
k,f ,

∀ k ∈ Ωb

(3)

vr
k,f−vr

j,f =
∑

f ′∈Ωf

(

Xkj,f,f ′ir
kj,f +Rkj,f,f ′ir

kj,f

)

,

∀ kj ∈ Ωl

(4)

vi
k,f−vi

j,f =
∑

f ′∈Ωf

(

Xkj,f,f ′ii
kj,f +Rkj,f,f ′ii

kj,f

)

,

∀ kj ∈ Ωl

(5)

P ES =
∑

f∈Ωf

vr
k,f i

r ES
k,f + vi

k,f i
i ES
k,f , ∀ k ∈ Ωb | k = ES

(6)

∣

∣

∣
QDG

g

∣

∣

∣
≤ PDG

g tan

(

cos−1
(

pfg

)

)

, ∀ g ∈ Ωg (7)

µgPg ≤ PDG
g ≤ µgPg, ∀ g ∈ Ωg (8)

PDG
g /3 = vr

g,f i
r DG
g,f + vi

g,f i
i DG
g,f , ∀ g ∈ Ωg (9)

QDG
g /3 = vi

g,f i
r DG
g,f − vr

g,f i
i DG
g,f , ∀ g ∈ Ωg (10)

PD
k,f = vr

k,f i
r D
k,f + vi

k,f i
i D
k,f , ∀ k ∈ Ωb (11)

QD
k,f = vi

k,f i
r D
k,f − vr

k,f i
i D
k,f , ∀ k ∈ Ωb (12)

(

ir
kj,f

)2

+
(

ii
kj,f

)2

≤ I
2

kj , ∀ kj ∈ Ωl (13)

V2 ≤
(

vr
k,f

)2

+
(

vi
k,f

)2

≤ V
2
, ∀ k ∈ Ωb (14)

µg ∈ {0, 1} ∀ g ∈ Ωg (15)

Real and imaginary current balances are defined in (2) and

(3), with ir ES
k,f,s = ii ES

k,f,s = 0.0, if k 6= ES. Similarly, voltages

at each node are calculated using (4) and (5), fixing the voltage

from the electrical substation (ES) at vr
k,f,s + jvi

k,f,s = ejθf ,

if k = ES and θf = {0, 2π/3,−2π/3}. Three-phase active

power through the substation is calculated in (6), which is

linear since voltage at the substation is known. Similarly, (9)

and (10) represent the three-phase active and reactive power

from each DG unit. Expressions relating active and reactive

power from loads are shown in (11) and (12), respectively.

Operational limits regarding the capability curve of DG units

are considered in (7) and (8), while nodal voltage and branch

magnitude limits are considered in (14) and (13), respectively.

Finally, (15) states the binary nature of variable µg .

III. LINEARIZATION OF NONLINEAR CONSTRAINTS AND

PROPOSED MILP MODEL

Note that nonlinearities in the MINLP model are related to

the product of variables in power injections, as seen in (9)–
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Fig. 1. Branch current magnitude approximation - a) Contour of the
constraints b) Percent error.

(12), and to the calculation of magnitudes in (13) and (14).

A. Linearization of power injections

Active and reactive power injections are of the form

P x = vrir + viii and Qx = viir − vrii, respectively. Linear

expressions can be obtained using approximations based on

estimated values for the real and imaginary parts of the nodal

voltages {vr0, vi0}. The first-order approximations are:

P y
x ≈ vr0

x i
r y
x + vi0

x i
i y
x ∀x ∈ {Ωb ∪ Ωg} (16)

Qy
x ≈ vi0

x i
r y
x − vr0

x i
i y
x ∀x ∈ {Ωb ∪ Ωg} (17)

where y represents either loads (y = D) or generators

(y = DG). The estimated values {vr0, vi0} can be selected

using an initial three-phase load flow analysis, experience-

based values, or even a flat-start, as it was performed in [15].

B. Linearization of branch current magnitudes

Branch current magnitudes in (13) are handled using a

new linear approximation to the Euclidean norm. Assume

α = max{|ir
kj,f |, |ii

kj,f |} and β = min{|ir
kj,f |, |ii

kj,f |} for

all f ∈ Ωf , then:

√

(

ir
kj,f

)2

+
(

ii
kj,f

)2

≈ A(α+ βH) ∀ kj ∈ Ωl (18)

where coefficients A = 2

1+

√
4−2

√
2

and H =
(√

2− 1
)

. Note

that there are four combinations regarding the signs of α and β
considering the absolute value, and two combinations relating

the maximum and minimum values. These combinations result

in the addition of 8 |Ωl| |Ωf | linear equations. This is done to

consider the solution space where the currents are held, as seen

in the contour of the constraints in Fig. 1a, where the 8 plains,

which are product of the constraints, can be seen. Simulations

showed acceptable errors for branch currents within a wide

range, i.e., ir = ii = [−1000, 1000], as shown in Fig. 1b. It

can be seen that the maximum asymptotic error is 4%, which

implies that it does not increase further even for wider ranges.

vr

vi

Θ

-Θ

VA

VB

VC

V

V

Fig. 2. Representation of voltage magnitudes, limits, and proposed range
angle.

C. Linearization of nodal voltage magnitudes

Linearizing voltage magnitudes requires more accurate ap-

proximations, since even small errors can lead to severe volt-

age violations. Authors in [15], for example, used geometrical

relationships to limit voltage magnitudes between an angle

range. In this paper, it is proposed the use of a similar approach

using a limited angle range, based on a linear approximation to

the Euclidean norm (L2). The approximation is a function of

the L1 norm and the L∞ norm, as explained in [16]. Since

L1 ≥ L2 ≥ L∞, it is possible to express L2 as a linear

combination of the other two, as:

L2 (x) =‖x‖
2
≈ a L∞ (x) + b L1 (x) , a, b ≥ 0 (19)

where L∞ (x) = max{|xr|, |xi|} and L1 (x) = |xr|+ |xi|.
Hence, voltage magnitudes are approximated as:
∥

∥Vk,f

∥

∥

2
≈af max{|vr

k,f |, |vi
k,f |}+bf

(

|vr
k,f |+|vi

k,f |
)

∀ k ∈ Ωb

(20)

An angle range, namely ±Θ, is introduced to improve the

quality of the approximation, as shown in Fig. 2. This is

done considering that voltage angles remain between a small

deviation from the nominal angles of each phase (θf ) in

EDS. For |Θ| < 15◦ it can be shown that for each phase,

L∞ = {vr
k,A, v

i
k,B, −vi

k,C}, reducing the number of required

constraints.

Values for af and bf are obtained using regression tech-

niques. These coefficients depend on the value set for Θ as

shown in Table I, where 10,000 randomly generated points

were used for the regressions. The maximum percent error

between the linear approximations and the exact norm is

shown for each phase.

The maximum percent errors of the approximation as a

function of the voltage angles using Θ = 2.5◦ are shown

for phase A and phase B in Fig. 3a and Fig. 3b, respectively.

Phase C behaves as a mirror of phase B with negative angles.

The contours of the voltage magnitude constraints are shown

in Fig. 3c and Fig. 3d using Θ = 10◦. It can be seen that error



TABLE I
LINEARIZATION PARAMETERS AND MAXIMUM PERCENT ERRORS.

Range angle Θ◦ Phase af bf Max. percent error [%]

±2.5

A 0.97806 0.02177 0.0165

B 0.36584 0.50035 0.0648

C 0.36666 0.49983 0.0630

±5

A 0.95583 0.04353 0.0635

B 0.36577 0.50106 0.2633

C 0.36678 0.50048 0.2701

±10

A 0.91003 0.08741 0.2537

B 0.37019 0.50115 1.0319

C 0.36898 0.50193 1.0420
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Fig. 3. Maximum percent error Θ = 2.5◦: a) Phase A. b) Phase B.
Contours of constraints Θ = 10◦: c) Phase A. d) Phase B.

differences between phases are related to the location of each

phase in the complex plain, where continuous lines represent

the exact norm and dashed lines represent the approximation.

The maximum percent error obtained for different values of

Θ is shown in Fig. 4. The figure was obtained after comparing

the exact norm and the proposed approximation for 1,000
points within each range angle and selecting the biggest error

among them. The errors show a quadratic behavior, as can

be seen from the fitting equations defined as E (Θ)f ; with

a steeper growing rate for phases B and C than for phase

A. The selection of optimal values for Θ, i.e., producing

the minimum error, depends on the expected maximum angle

deviation presented in the system.

D. Proposed MILP model

The proposed OPF for unbalanced, three-phase EDS formu-

lated as an MILP model is summarized in (21).
{

min (1)

s.t. (2)–(8), (15)–(18), and (20)
(21)

IV. TEST SYSTEM AND RESULTS

The proposed linearized model was tested on an unbalanced

25-bus test system, whose load data, topology, and lines’ pa-

rameters can be found in [17]. Three DG units have been added

to the original system at buses 13, 19, and 25. Parameters for

DG units along with other system information can be found in
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)

Fig. 4. Maximum percent error of voltage magnitude linearization as a
function of the range angle.

TABLE II
VALUES AND UNITS OF PARAMETERS.

Parameter Value Unit

D
G

u
n

it
s cDG

0.04 $/kWh

pf 0.9 –

P 500 kW

P 150 kW

S
y

st
em

cES
0.03 $/kWh

I 540 A

V 1.05 pu

V 0.95 pu

Table II. Without loss of generality, parameters are arbitrarily

chosen to be the same for all DG units and current limits equal

for all feeders.

Obtained results are shown for Θ = 1.0◦ and com-

pared to a nonlinear power flow after fixing the ob-

tained power injections from all DG units. Obtained

values for voltage coefficients at the selected angle

range are af = {0.99122, 0.36566, 0.36651} and

bf = {0.00875, 0.50027, 0.49973}. Hence, according to

Fig. 4, it is expected that the maximum percent errors will be

lower than 0.003% for phase A and lower than 0.010% for

phases B and C.

Voltage magnitudes found with the nonlinear power flow are

shown in Fig. 5a. It can be seen that the voltage magnitudes

at buses 15 and 17 are the ones closer to the lower voltage

limit. In fact, voltage at bus 15 for phase B is 4.75× 10−5 pu

lower than the predefined limit. The percent error between

the obtained voltage magnitudes using the proposed MILP

model and the nonlinear power flow is shown in Fig. 5b. It

can be seen that errors for all phases are lower than 0.006%.

Specifically for bus 15, the error at phase B is approximately

0.005% which matches with the small voltage violation seen

in Fig. 5a.

Current magnitudes from the nonlinear power flow are

shown in Fig. 6a. It can be seen that all branch current

magnitudes were held within the maximum current limit. The

percent error between the obtained current magnitudes with

the linear approximated model and the nonlinear power flow

is shown in Fig. 6b. It can be seen that errors for all phases



0 5 10 15 20 25

0.94

0.95

0.96

0.97

0.98

0.99

1
Phase A

Phase B

Phase C

15
0.9498

0.94985

0.9499

0.94995

0.95

0.95005

0.9501

0.95015

0.9502

0.95025

0

1

2

3

4

5

6
x10

-3

Phase A

Phase B

Phase C

0 5 10 15 20 25

V
o
lt

ag
e

m
ag

n
it

u
d
e

[p
u
]

P
er

ce
n
t

er
ro

r
[%

]

Bus numberBus number

a) b)

Fig. 5. a) Bus voltage magnitudes - nonlinear power flow. b) Percent error

0

100

200

300

400

500

600

0

0.5

1

1.5

2

2.5

3

3.5

4

Phase A

Phase B

Phase C

Phase A

Phase B

Phase C

2
-3
2
-6
3
-4
3
-1
8

1
-2

4
-5
4
-2
3

6
-7
6
-8
7
-9
7
-1
4

7
-1
6

9
-1
0

1
0
-1
1

1
1
-1
2

1
1
-1
3

1
4
-1
5

1
4
-1
7

1
8
-2
0

1
8
-2
1

2
0
-1
9

2
1
-2
2

2
3
-2
4

2
4
-2
5

2
-3
2
-6
3
-4
3
-1
8

1
-2

4
-5
4
-2
3

6
-7
6
-8
7
-9
7
-1
4

7
-1
6

9
-1
0

1
0
-1
1

1
1
-1
2

1
1
-1
3

1
4
-1
5

1
4
-1
7

1
8
-2
0

1
8
-2
1

2
0
-1
9

2
1
-2
2

2
3
-2
4

2
4
-2
5

C
u
rr

en
t

m
ag

n
it

u
d
e

[A
]

Branch busesBranch buses

P
er

ce
n
t

er
ro

r
[%

]

a) b)

Fig. 6. a) Branch current magnitudes - nonlinear power flow. b) Percent error.

are lower than 4%. Most branch currents in Phase B show the

biggest errors compared the errors at phases A and C; this is

due to the particular angle of the current flowing through the

branches at each phase, as can be inferred by Fig. 1.

Although the observed voltage violation is small

(4.75× 10−5 pu), it could be managed by obtaining more

conservative solutions, e.g., using V < 0.95 for the MILP

model. Another way of solving this problem is reducing the

error of the approximation for phases B and C by performing

a linear rotation, for example. The last solution could be

implemented in future work. The selection of the optimum

value for Θ to reduce the error of the approximation demands

a previous expectation of the maximum angle deviation in the

system. This can be obtained by running a previous power

flow or by historical data.

The approximation for branch current magnitudes presents

a maximum percent error of 4%. Although not desirable, small

overloads can be accepted during short periods of time in

overhead distribution lines. On the other hand, reducing the

approximation error is also possible by increasing the amount

of intercepting planes. This would, however, increase the size

of the problem.

A second test is performed, this time only fixing the

binary variables µg found with the MILP and allowing the

nonlinear formulation to find the respective dispatches. Ob-

jective function costs are displayed in Table III for different

range angles along with the percent error between the linear

approximation and the nonlinear power flow. It can be seen

that the error increases with the range angle, as expected. It

can also be seen that the objective function for Θ = 10◦

presents a different configuration, involving the commitment

and dispatch of another DG unit. This last statement can be

seen also from Fig. 7, where the power dispatch is shown for

every DG unit depending on the range angle used. It can be

inferred that the approximation errors are reflected in the units

committed and the dispatches of these units.

V. CONCLUSIONS

A new linear OPF model for three-phase unbalanced EDS

considering binary variables was proposed in this paper. The

proposed formulation has been conceived as an MILP prob-
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Fig. 7. a) Active reactive power injected by DG units. b) Reactive power injected by DG units.

TABLE III
OBJECTIVE FUNCTION VALUE AND PERCENT ERRORS.

Range angle Model Objective function [$] Percent error [%]

Θ = 1
◦ Nonlinear 107.777

0.045
Approximation 107.729

Θ = 2.5
◦ Nonlinear 107.777

0.069
Approximation 107.702

Θ = 5
◦ Nonlinear 107.777

0.207
Approximation 107.554

Θ = 10
◦ Nonlinear 108.025

0.204
Approximation 107.804

lem, aiming at minimizing the operational costs of the network

while respecting operational constraints.

Two new linearizations for branch current and nodal voltage

magnitudes were introduced. The proposed branch current

magnitude linearization provides a discretization of the Eu-

clidean norm through a set of intersecting planes; while the bus

voltage magnitude approximation uses a linear combination of

the L1 and the L∞ norm. The maximum expected errors using

both approaches were discussed, as well as the effect of the

introduced angle range, Θ. Results were satisfactory in terms

of the accuracy of the linear approximations when compared

to a nonlinear power flow with fixed power injections. The

effect of different values for Θ regarding the value of the

objective function and the error with the nonlinear approach

was also discussed. The proposed linearizations can be adapted

to several other planning/operation problems in EDS, such as

reconfiguration, energy management, Volt/Var control, expan-

sion planning, among others.

Future work can be done towards including ESS, capacitor

banks, voltage regulators, renewable energy sources, and the

stochasticity of exogenous parameters.
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