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Abstract

Abstract The integration of cognitive radio with e-healthcare systems assisted by wireless body sensor networks (WBSNs) has

been regarded as an enabling approach for a new generation of pervasive healthcare services, to provide differentiated quality

of service requirements and avoid harmful electromagnetic interference to primary medical devices (PMDs) over the crowded

radio spectrum. Due to the sharing spectrum bands with PMDs in e-healthcare scenario using cognitive WBSNs (CWBSNs),

efficient transmit power control and optimization strategies for resource-constrained secondary wearable biosensors (SWBs)

play a key role in controlling the inter-network interference and improving the energy efficiency. This paper investigates the

problem of dynamic power optimization for SWBs in e-healthcare leveraging CWBSNs with practical limitations, e.g., imperfect

spectrum sensing and quality of physiological data sampling. We develop a distributed optimization framework of dynamic

power optimization via the theory of differential game, by jointly considering utility maximization and quality of physiological

data sampling for every SWB, while satisfying the evolution law of energy consumption in SWB’s battery. With the non-

cooperation and cooperation relations for all SWBs in mind, we transform the differential game model into two subproblems,

namely, utility maximization problem and total utility maximization problem. Utilizing Bellman’s dynamic programming, we

derive a non-cooperative optimal solution for power optimization as a Nash equilibrium point for the utility maximization

problem posed by competitive scenario. By exploiting Pontryagin’s maximum principle, a cooperative optimal solution is

obtained for the total utility maximization problem, wherein all SWBs fully cooperate to obtain the highest total utilities.

Building upon the analytical results, the actual utility distributed to each SWB is compared between the non-cooperative and

cooperative schemes. Extensive simulations show that the proposed optimization framework is indeed an efficient and practical

solution for power control compared with the benchmark algorithm.
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Abstract

The integration of cognitive radio with e-healthcare systems assisted by wireless body sensor networks (WBSNs) has
been regarded as an enabling approach for a new generation of pervasive healthcare services, to provide differentiated
quality of service requirements and avoid harmful electromagnetic interference to primary medical devices (PMDs) over
the crowded radio spectrum. Due to the sharing spectrum bands with PMDs in e-healthcare scenario using cognitive
WBSNs (CWBSNs), efficient transmit power control and optimization strategies for resource-constrained secondary
wearable biosensors (SWBs) play a key role in controlling the inter-network interference and improving the energy
efficiency. This paper investigates the problem of dynamic power optimization for SWBs in e-healthcare leveraging
CWBSNs with practical limitations, e.g., imperfect spectrum sensing and quality of physiological data sampling. We
develop a distributed optimization framework of dynamic power optimization via the theory of differential game, by
jointly considering utility maximization and quality of physiological data sampling for every SWB, while satisfying the
evolution law of energy consumption in SWB’s battery. With the non-cooperation and cooperation relations for all
SWBs in mind, we transform the differential game model into two subproblems, namely, utility maximization problem
and total utility maximization problem. Utilizing Bellman’s dynamic programming, we derive a non-cooperative
optimal solution for power optimization as a Nash equilibrium point for the utility maximization problem posed by
competitive scenario. By exploiting Pontryagin’s maximum principle, a cooperative optimal solution is obtained for
the total utility maximization problem, wherein all SWBs fully cooperate to obtain the highest total utilities. Building
upon the analytical results, the actual utility distributed to each SWB is compared between the non-cooperative and
cooperative schemes. Extensive simulations show that the proposed optimization framework is indeed an efficient and
practical solution for power control compared with the benchmark algorithm.

Keywords:
E-healthcare, Wireless body sensor networks, Cognitive radio, Imperfect spectrum sensing, Physiological data
sampling, Power optimization

1. Introduction

With the rapid development of Internet of Things (IoT), artificial intelligence, wireless communications, mobile edge
cloud, smart devices, blockchain, wearable computing, big data, etc, electronic healthcare (e-healthcare) technologies
are gradually replacing traditional paper-based healthcare systems as a new generation of pervasive healthcare solutions
in medicine and public health [1, 2, 3]. Instead of relying on on-site face-to-face healthcare, e-healthcare has potentials
to bring multiple benefits to patients and healthcare providers, such as more time savings, improved information
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sharing, reduced medical errors, enhanced point of care, improved personalized patient experience, better utilization
of healthcare resources, etc.

As one of the primary technologies for ubiquitous IoT, the use of wireless body sensor networks (WBSNs), also
known as wireless body area networks (WBANs), has been recognized as a promising solution to provide a flexible
infrastructure tailored for e-healthcare and telemedicine systems [4, 5, 6]. In a WBSN, a set of resource-constrained
body-centric radio biosensors (e.g., physiological, biokinetic, and ambient sensors [7]) can be attached on, in close
proximity to, or implanted in a patient at home or in hospital to collect the patient’s physiological data continuously,
including electrocardiogram (ECG), electroencephalogram (EEG), electromyogram (EMG), blood oxygen saturation
(SpO2), etc. By the aid of 5G and short-range wireless technologies, the collected data is then transmitted to
medical servers or physicians via a coordinator, which is capable of data fusion and decision making. In this way,
the integration of sensing, computing, and communications into e-healthcare makes it feasible to enable continuous,
reliable, non-intrusive remote health monitoring and point of patient care.

In spite of the advantages of e-healthcare by using WBSNs, electromagnetic interference generated by wireless
transmissions of various medical devices in hospital settings and many different biosensors in WBSNs is more and
more severe, which will seriously affect system performance1 [8, 9]. Particularly, many medical devices are more
susceptible to the electromagnetic interference problem incurred by wireless transmissions. Even worse, because of
the interference effect on electrical circuits, a mistake or malfunction can occur in a medical device, which may be
harmful to the patient who is currently using that device. Moreover, in realistic hospital settings, a large number of
medical devices operate in the unlicensed Industrial, Scientific and Medical radio bands which are also overlapped with
the frequency bands used by most of legacy short-range wireless technologies. Therefore, limited spectrum available for
usage is another major concern for e-healthcare applications due to coexistence of medical devices and other wireless
devices. Beyond that, from the perspective of medical-grade mission-critical e-healthcare applications, differentiated
types of medical devices in hospital settings and biosensors should have different quality of service (QoS) requirements,
i.e., different levels of priorities, to obtain channel access [8, 7]. For instance, a medical device (e.g., anesthesia machine)
with high priority has the privilege to access the wireless channel in comparison with an ordinary biosensor with low
priority, e.g., wearable motion detection sensor. As a result, effective channel access for multiple medical devices and
biosensors over the crowded radio spectrum to avoid harmful electromagnetic interference to medical devices while
meeting the QoS constraints with differentiated priorities has been the focus of future e-healthcare.

One of the most promising and enabling approaches to solve the aforementioned challenges is to integrate cognitive
radio into WBSN-assisted e-healthcare systems, to design an e-healthcare framework leveraging cognitive WBSNs
(CWBSNs) [8, 9, 7, 10, 11]. In a traditional cognitive radio system, unlicensed secondary users are allowed to
opportunistically access the idle band of spectrum temporarily unused by licensed or primary users without interfering
with them. For an emerging e-healthcare framework leveraging CWBSNs, patient-centric biosensors with low priority
acting as secondary users are permitted to sense, identify, and access the spectrum opportunities while incurring no
harmful interference to the coexisting primary users, i.e., primary medical devices (PMDs) with higher priority. The
resulting e-healthcare based on the cognitive radio idea has been envisioned as a new solution for next generation
healthcare services, and also has the potential to improve the spectrum efficiency performance of system. Fig. 1
illustrates a typical application scenario of our proposed e-healthcare system in a hospital environment including a
hospital room and a central monitoring room. In the considered scenario, four underlay CWBSNs are coexisting with
a primary system sharing the authorized spectrum simultaneously in the hospital room. The primary system consists
of four protected PMDs, i.e., wireless ECG monitor, infusion pump, anesthesia machine, and telemetry monitor,
which are sensitive to the electromagnetic interference effect. In intra-CWBSN, several secondary wearable biosensors
(SWBs) are attached on a patient to sense his or her physiological data, and further send the collected data to a
near-body secondary coordinator (SC) through uplink transmission. To obtain the spectrum opportunities for SWBs,

1In what follows, unless otherwise stated, we use the terms “electromagnetic interference” and “interference” interchangeably.
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Figure 1: Illustration of the application scenario of e-healthcare framework leveraging CWBSNs in a hospital envi-
ronment.

there is a highly capable cognitive gateway (CG) located in the hospital room to perform spectrum sensing over the
entire licensed channels continuously. According to the spectrum sensing results (SSR), the CG can make a global
decision on the occupancy status of licensed band for allocating the idle channel to every CWBSN. Additionally, the
CG also has capability to forward the collected physiological data sent by SCs to medical servers or physicians by
means of cloud-assisted e-healthcare system in the central monitoring room [12].

Based on the proposed e-healthcare framework, the SC not only gathers all the physiological data sampled by
every SWB in intra-CWBSN, but also transmits the physiological data to the CG. Although the harmful electromag-
netic interference to PMDs is well mitigated via cognitive radio approach, there still exists additional inter-CWBSN
interference caused by overlapped transmission ranges among multiple nearby CWBSNs under the hospital room sce-
nario. Such inevitable inter-CWBSN interference leads to the drop of signal-to-interference-plus-noise ratio (SINR)
and more losses of packets with critical physiological data, which seriously threatens the life of patients. A lower SINR
subsequently reduces the throughput or uplink capacity of every CWBSN, thereby leading to decreased transmission
reliability and efficiency. The resulting electromagnetic interference in inter-CWBSN is one of the top technical chal-
lenges that severely deteriorate the performance of e-healthcare system. On the other hand, battery-powered SWBs
attached to the patient have limited resource and energy and in many cases it is either impossible or difficult to replace
the batteries [13]. Hence, energy efficiency is one of crucial issues for prolonging the lifetime of light-weighted energy-
constrained SWBs. High energy consumption operations due to increased transmit power of radio transceivers in
SWBs as well as unreliable data transmissions caused by larger packet losses and more inter-CWBSN electromagnetic
interference are main hurdles for the migration to the proposed e-healthcare framework.

Admittedly, these challenges motivate the need for better understanding the impact of inter-CWBSN electromag-
netic interference and energy efficiency on the performance of the proposed e-healthcare system, which typically require
a trade-off between SWB’s transmit power and total system capacity. Firstly, to mitigate inter-CWBSN interference
coexisting with other SWBs, an effective transmit power control method is necessary for every SWB. By optimizing
the transmit power, the power supply for each SWB can be coordinated to improve the energy efficiency and maintain
the long-term low-power operations. Secondly, uplink capacity between any SWB and its associated SC in a CWBSN
is a concave function of transmit power of this SWB and channel conditions [14]. Although uplink capacity can be
improved by allocating higher transmit power to every SWB, inter-CWBSN interference will also increase, resulting
in lower total system capacity. Overall, proper design of transmit power control and optimization schemes is vital to
ensure reasonable performance of the proposed e-healthcare framework.
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Table 1: Summary of key acronyms used in our proposed e-healthcare system.

Attribute Acronym Meaning

Network Level
CWBSN Cognitive Wireless Body Sensor Network
WBAN Wireless Body Area Network
WBSN Wireless Body Sensor Network

Node Level

CG Cognitive Gateway
PMD Primary Medical Device
SC Secondary Coordinator
SWB Secondary Wearable Biosensor

Physiological Data

ECG Electrocardiogram
EEG Electroencephalogram
EMG Electromyogram
SpO2 Blood Oxygen Saturation

Spectrum Sensing SSR Spectrum Sensing Results

To the best of our knowledge, existing works on transmit power control for interference mitigation in WBANs and
WBSNs, although providing precious insights into the impact of inter-network interference and energy efficiency on
the system performance, have one common limitation: most of them considered only pure WBAN or WBSN settings
without capturing the integration of cognitive radio with such system scenarios. Despite existing efforts such as [8, 10],
building a clear understanding of preferred integration of cognitive radio and WBSNs, spectrum sensing performed
by secondary wireless devices is assumed to be fully reliable or perfect without taking spectrum sensing errors into
account. With the hardware limitations, sensing errors are inevitable, i.e., false alarm and miss detection, in practical
hospital scenarios [15, 16]. Additionally, transmit power should be allocated and optimized for all SWBs locally in a
distributive manner due to lack of global information for the SC to achieve the centralized schedule. In this regard,
the objective of power optimization for every SWB is to achieve its own utility maximization. Note that the utility
functions of SWBs are typically conflicting and their decisions are interactive. Moreover, because of complex and
dynamic environment, the CWBSN configuration can be extended to a more general scenario by relaxing the discrete
time constraint to the continuous time model. With the continuous time setup in mind, it would be interesting to
investigate a distributed dynamic power optimization, which can capture the feature of practical dynamic interactive
process among all SWBs. This motivate us to resort to the continuous-time differential game theory rather than
other static game frameworks and decentralized optimization approaches for modeling the problem of transmit power
control and optimization in our proposed e-healthcare system.

In this paper, we investigate the problem of dynamic power optimization for SWBs in the proposed e-healthcare
system, aiming to mitigate inter-CWBSN co-channel interference and improve the energy efficiency for SWBs. As
opposed to existing studies in the literature where spectrum sensing is assumed to be perfect, we capture the unre-
liable spectrum sensing of the CG. To this end, we develop a distributed optimization framework of dynamic power
optimization for SWBs based on the theory of differential game and demonstrate how this proposed framework can
be implemented in our proposed e-healthcare system with imperfect spectrum sensing. The main contributions of this
paper can be summarized as follows:

• We propose a distributed optimization framework of dynamic power optimization for SWBs, by jointly con-
sidering utility maximization posed by the competitive and cooperative scenarios, imperfect spectrum sensing,
and the quality of physiological data sampling in e-healthcare leveraging CWBSNs. Particularly, the proposed
framework not only mitigates the inter-CWBSN co-channel electromagnetic interference, but also achieves a
trade-off between transmit power of every SWB and total system capacity.

• We formulate the problem of dynamic power optimization for SWBs in our proposed e-healthcare system as
a differential game model, which maximizes the utility function throughout a continuous time interval while
satisfying the evolution law of energy consumption in the battery of every SWB. To achieve the optimal allo-
cation of the player’s individual utility, we then transform the game model into two subproblems, i.e., utility
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maximization problem and total utility maximization problem, in terms of the competitive and fully cooperative
scenarios for each SWB under the proposed game framework.

• For the utility maximization problem in the competitive scenario, the non-cooperative optimal solution for
power optimization is derived as a unique Nash equilibrium (NE) point via Bellman’s dynamic programming.
Meanwhile, we further obtain the cooperative optimal solution for power optimization with respect to the
total utility maximization problem in cooperative scenarios by invoking Pontryagin’s maximum principle. We
also analyze the performance of dynamic power optimization according to the non-cooperation and cooperation
relations for SWBs. Our analysis provides quantitative insights on the impact of non-cooperation and cooperation
relations on the optimal power and the actual utility gained by each player.

The key acronyms and main notations used throughout this paper are summarized in Table 1 and Table 2 for the
ease of reference. The remainder of this paper is organized as follows. In Section 2, we provide an overview of the
related work. Section 3 presents the system model including system configuration, imperfect spectrum sensing model,
and physiological data sampling model. In Section 4, we propose the dynamic power optimization framework, and
derive the non-cooperative and cooperative optimal solutions. Moreover, we discuss and analyze the utilities of the
non-cooperative and cooperative dynamic power optimization. Simulation results are provided in Section 5, and we
conclude the paper in Section 6.

2. Related Work

In the past few years, a number of studies have investigated the problem of transmit power control in WBANs and
WBSNs for interference management from different perspectives, including link quality [17, 13, 18], energy harvesting
[19], and relay selection [20, 21].

By analyzing the properties of link states via the received signal strength indicator (RSSI), Kim and Eom in [17]
proposed a link-state-estimation-based power control scheme, which enables the transceiver of sensor node to adapt
its transmit power level and target the RSSI threshold range. In [13], Zang et al. developed an accelerometer-aided
transmit power control mechanism by incorporating the impact of human body movement on link quality measured by
the receiving RSSI value. The local accelerometer as a common WBAN device was utilized to acquire the periodic link
quality information without generating additional costs. With the aid of the hybrid strategy by jointly considering
closed-loop control and posture/motion detection, Fernandes et al. in [18] devised a proactive power control method,
which uses the RSSI value and the acceleration signal to predict the fading signal and to determine the position of
wearable devices during the gait cycle of human body, respectively.

Different from the link quality-aware power control approaches, Liu et al. in [19] proposed a two-phase resource
allocation scheme, to jointly optimize the allocation of transmit power, source rate, and time slots in the context of
energy harvesting-powered WBANs. On the basis of the time-varying and heterogeneous energy harvesting states, the
long- and short-term QoS performances in two adopted phases were markedly improved by analyzing the statistical
knowledge of energy harvesting. In [20], Dong and Smith presented an integrated scheme of joint two-hop relay
selection and power control by taking advantage of channel prediction, to strike a desired balance in the trade-off
between power saving and interference mitigation. In [21], a relay-aided transmit power control method was designed,
which can automatically switch the transmitter’s transmission strategy between direct transmission and relay-aided
transmission according to the on-body channel conditions. All the above works in [13, 17, 18, 19, 20, 21], even though
they provide valuable insights on the potential of bringing power control into WBANs and WBSNs, do so without
capturing the integration of dynamic spectrum access with the considered system scenarios, to protect the primary
devices with high priority from harmful interference.

Alternatively, there have been some existing researches in the literature analyzing the performance of power control
in WBANs by using machine learning, to enable adaptive learning and intelligent decision making. To combat the
jamming attacks, Chen et al. [22] developed a reinforcement learning-based power control scheme for in-body sensors.
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Table 2: Summary of main notations.

Notation Description

NC = {1, 2, · · · , nC} Set of licensed channels
NP = {1, 2, · · · , nP} Set of PMDs
NW = {1, 2, · · · , nW} Set of CWBSNs
Nm,S = {1, 2, · · · , nS} Set of SWBs in CWBSN m

Ak (t) Set of current active SWB working over channel k at time t
sm,k (t) Current active SWB in CWBSN m over channel k at time t
Cm SC located near human body in CWBSN m

DSlot Duration of each time slot assigned to each SWB
tT Duration of physiological data transmission phase
WC Bandwidth of licensed channel
Cm,i,k (t) Uplink capacity between SWB i and SC Cm in CWBSN m over channel k at time t
γm,i,k (t) Received SINR of SC Cm in CWBSN m over channel k at time t
pm,i,k (t) Transmit power of SWB i in CWBSN m over channel k at time t
Pmax
m,i Maximum transmit power of SWB i in CWBSN m

P0 Reference power at a reference distance d0
ηm,i Power reduction efficiency for SWB i in CWBSN m

Imax
n,k Interference temperature limit of PMD n over channel k

Em,i,k (t) Energy consumption value of SWB i in CWBSN m over channel k at time t
ER
m,i,k (t) Residual energy in the battery of SWB i in CWBSN m over channel k at time t

dm,i Distance between SWB i and SC Cm in CWBSN m

gm,i,k Channel gain from SWB i and SC Cm in CWBSN m over channel k
ω Path-loss exponent factor
Γ Constant processing gain factor over channel k
φk Priori probability that channel k is occupied by PMDs
φdk Detection probability detecting the status of channel k for CG
φfk False alarm probability detecting the status of channel k for CG
Ψm,i,k Average number of transmitted bits of physiological data for SWB i in CWBSN m over channel k
Xm,i,k,α (`) Physiological data sampling value for attribute α acquired by SWB i in CWBSN m over channel k
P
[
Xm,i,k,α (`)

]
Approximate probability distribution of sampling value Xm,i,k,α (`)

P̂
[
Xm,i,k,α (`)

]
Statistical probability distribution of sampling value Xm,i,k,α (`)

Dm,i,k,α
(
Xm,i,k,α (`)

)
Relative divergence between approximate and statistical probability distribution

E
[
dm,i,k

]
Weighted average relative divergence for SWB i in CWBSN m over channel k

wm,i,k,α Weight of sampled attribute α monitored by SWB i in CWBSN m over channel k
r Discount factor
λRm,i,k Revenue pricing factor for power reduction for SWB i in CWBSN m over channel k

λCE Cost pricing for the energy consumption per unit of time for each SWB
Um,i,k

(
pm,i,k, Em,i,k

)
Utility function of SWB i in CWBSN m over channel k

Particularly, a hotbooting-Q-learning was adopted to assist the coordinator for optimizing the transmit power without
considering the in-body channel states and the utility models of other sensor nodes. In [23], Kazemi et al. further
employed a reinforcement Q-learning to obtain dynamic power optimization for power controller in WBANs, which
can explicitly learn from the environment and improve the performance, i.e., substantial saving in energy consumption.
However, the machine learning-based power control method in [22, 23] applies only to the scenario of WBANs and
does not apply to the emerging e-healthcare framework leveraging CWBSNs.

Game theoretic approach for power allocation and optimization within a WBAN setup has received significant
interest recently. With the design of a cost function with QoS requirement and energy constraint for sensor node,
Zhao et al. in [24] formulated the problem of power control as a non-cooperative game model, and also derived a NE as
the optimal power allocation. By the assistance of dynamic social interaction information for inter-WBAN relations,
Zhang et al. in [25] proposed a power control game to maximize the network utility while minimizing the total power
consumption, and further proved the existence of a NE point of the game. In [26], Moosavi et al. also utilized the
non-cooperative game theoretic approach to tackle the problem of joint relay selection and power control, aiming to
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obtain the maximized energy efficiency and meet the QoS requirements. Similarly, the idea of using non-cooperative
game framework as an analytical method to optimize the transmit power in WBANs has been further explored in
[27, 28]. However, the game theoretic models presented in the these works [24, 25, 26, 27, 28] were just focused on
the non-cooperative scenarios, without capturing the potential benefits of designing cooperative power optimization
strategies. Moreover, the existing game theoretic methods using the static game framework cannot exactly capture
how to dynamically optimize the transmit power with respect to the current instant time in a more realistic and
dynamic environment. By contrast, we extensively consider the actual behaviors of individual game players in terms
of the competitive and cooperative scenarios, and investigate their impacts on the performance of dynamic power
optimization.

To date, only rare few efforts have been devoted to address the issue of power allocation and optimization in
e-healthcare systems by tightly integrating cognitive radio with WBSNs, to protect PMDs from harmful interfer-
ence. Considering the issues of harmful interference to primary medical devices and differentiated QoS requirements,
Phunchongharn et al. in [8] demonstrated the potential advantages of using cognitive radio in the design of wire-
less communication systems, particularly for e-healthcare applications in a hospital environment. With this idea,
to obtain the effective channel access, an interference-aware time slotted handshaking protocol was designed for the
primary and secondary medical devices with desired QoS differentiation. The proposed protocol only extended the
traditional carrier sense multiple access with collision avoidance mechanism to the cognitive radio based e-healthcare
scenario. This paper is quite attractive and instructive, although it does not investigate the power optimization issue
that reveals an interplay between transmit power of low priority medical devices and total system capacity. In [10],
Naeem et al. focused on a modern automated hospital scenario with various wireless devices, e.g., wireless sensor
devices, personal wireless hubs, central controllers, etc, in healthcare facilities. By applying the cognitive radio idea,
a limited set of unlicensed secondary wireless devices (i.e., wireless sensor devices and personal wireless hubs) was
allowed to exploit the unused spectrum that was assigned to the licensed primary wireless devices, including all other
healthcare equipments. Depending on these settings, the authors presented a framework of interference-aware joint
power control and assignment of multiple personal wireless hubs, which can maximize the total transmission data
rate under the acceptable interference constraints. Despite its novel insights, the joint optimization framework in
[10] is formulated bearing in mind an ideal assumption of perfect spectrum sensing carried out by secondary wireless
devices. Nevertheless, perfect spectrum sensing with none of spectrum sensing errors is extremely difficult to achieve
in practical CWBSN-based e-healthcare systems. To that end, the work presented in this paper adopts more practical
limitations, e.g., imperfect spectrum sensing and the quality of physiological data sampling, to investigate the issue
of transmit power control and optimization in the proposed e-healthcare system.

To sum up, although a lot of works have been carried out on the power control problem in pure WBAN/WBSN
scenarios extensively as well as only limited efforts have focused on the attempts at a coupling of cognitive radio and
e-healthcare, there still seems to be a gap between e-healthcare systems and efficient integration of cognitive radio
with WBSNs. To be more concrete, there exist several fundamental technical difficulties to deal with:

• Most of the existing studies involve the static game framework without capturing the practical constraints of
dynamic interactive actions among all the sensor nodes subject to the dynamic time-varying transmit power
adjustment in WBANs. From practical view points, the update of transmit power level for each sensor node
should be continuous in time. Hence, it is imperative to develop a general optimization framework to achieve
dynamic power control via the continuous-time differential game theory.

• In practice, sensing errors for spectrum sensing conducted by secondary wireless devices in e-healthcare systems
that considering the integration of cognitive radio and WBSNs are actually unavoidable as a result of the
limitation on hardware. However, it is a widespread assumption in the existing works that spectrum sensing
is fully reliable or perfect without any explicit errors. Hence, it is necessary to reconsider spectrum sensing to
adapt to the practical environment.
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Figure 2: The time-slotted frame structure.

In this paper, we tackle the above issues by providing a distributed optimization framework of dynamic power
control for SWBs in our proposed e-healthcare system with imperfect spectrum sensing.

3. System Model

3.1. System Configuration

Consider an application scenario of e-healthcare framework leveraging CWBSNs in a hospital environment with
a central monitoring room and a hospital room as shown in Fig. 1. We concentrate on one CG and nW underlay
CWBSNs, denoted by NW = {1, 2, · · · , nW}, coexisting with a primary system in a hospital room sharing the autho-
rized spectrum in the same frequency band simultaneously. The whole authorized spectrum band is divided into nC
licensed channels with equal bandwidth WC, denoted by NC = {1, 2, · · · , nC}. We assume that the CG is equipped
with an omnidirectional antenna, a predefined common control channel, and an energy detector that continuously
senses the entire licensed channels through local real-time measurements. Based on the SSR, the CG makes decision
to determine whether or not the licensed channels are vacant, for allocating the unoccupied channel to each CWBSN
via the common control channel. The primary system consists of nP PMDs, denoted by NP = {1, 2, · · · , nP}, which
have the full privilege of accessing the licensed channels from time to time. Particularly, the occupation time length
of every licensed channel assigned to a PMD follows an independent and identically distributed (i.i.d.) alternating
ON-OFF process. The OFF state indicates the idle state where unoccupied channel can be freely accessed by each
CWBSN.

We use a time-slotted frame structure, as illustrated in Fig. 2, where a cognitive frame with duration TF for the
CG is divided into four time slots with different duration, i.e., a spectrum sensing phase with duration τS, a SSR
reporting phase with duration τR, a physiological data receiving phase with duration τDR, and a physiological data
transmission phase with duration τDT. If one licensed channel is sensed to be idle in the spectrum sensing phase, the
CG allocates the unoccupied channel to each CWBSN in the SSR reporting phase, and then receives and transmits
the physiological data in the subsequent phases. Otherwise, if all the licensed channels are sensed to be busy, the CG
keeps silent in the subsequent phases.

Let us assume that the unoccupied channel allocated to each CWBSN in the SSR reporting phase is denoted by
channel k, for k ∈ NC. For CWBSN m, there are one near-body SC denoted by Cm and nS SWBs, which are located
on the patient to transmit the sampled physiological data including patient’s vital signs and movements to SC Cm

over channel k, for m ∈ NW. Let Nm,S = {1, 2, · · · , nS} be the set of SWBs in CWBSN m. Based on the collected
physiological data via uplink transmission, every SC performs data fusion and decision making. Under the uplink
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Figure 3: SC coordination mechanism for every SWB in the corresponding CWBSN based on TDMA-based co-channel
media access policy.

transmission in intra-CWBSN, all SWBs are coordinated by the SC using a time-division multiple access (TDMA)
based co-channel media access scheme, where each SWB has its exclusive time slot to transmit without any intra-
network contention and collision, as shown in Fig. 2. Intuitively, coordination mechanism of the SC includes two
access methods, i.e., ordered channel access and disordered channel access, aiming to schedule each SWB to access
to the associated time slot. As exhibited in Fig. 3(a), ordered channel access is a deterministic approach wherein
the SWBs with the same function of physiological data sampling in all CWBSNs can access to the same time slot.
However, disordered channel access can be viewed as a stochastic approach that allows the SWBs with the different
sampling functions to access to the same slot (see Fig. 3(b))2. It should be admitted that TDMA-based transmission
scheduling helps to avoid the intra-CWBSN interference problem.

Once the corresponding time slot has been obtained no matter what type of coordination mechanism, the SWB
will enter a physiological data sampling phase with duration tD and a physiological data transmission phase with
duration tT. To simplify analysis, we assume that SC Cm employs both the SSR reporting phase and the physiological
data receiving phase in cognitive frame to allocate time slots with equal duration DSlot to nS SWBs in CWBSN m.
Apparently, the duration of each time slot assigned to each SWB in CWBSN m can be expressed as:

DSlot = tD + tT =
τR + τDR

nS
. (1)

Under the constraint of equal slot duration, we adopt the continuous time model to represent each SWB’s operation
duration which is characterized by time interval [t0, t0 +DSlot], where t0 denotes the initial time of time slot. Because
of the adopted TDMA-based access policy, there is only one active SWB for each CWBSN within time interval
[t0, t0 +DSlot]. Note that the SWB is an active node when it can currently access to the associated time slot by using
ordered channel access or disordered channel access. Without losing generality, we turn to define a nW-tuple Ak (t)
as follows to describe a current active SWB set wherein each SWB refers to an active node working over channel k at
time t ∈ [t0, t0 +DSlot]:

2Noticing that a detailed discussion on the design of the stochastic access mechanism in disordered channel access is beyond the scope
of this work.
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Ak (t) = {s1,k (t) , s2,k (t) , · · · , sm,k (t) , · · · , snW,k (t)} , ∀m ∈ NW,∀k ∈ NC, (2)

where sm,k (t) is the current active SWB in CWBSN m over channel k at time t. For the notational brevity, we
denote the current active SWB in CWBSN m over channel k at time t by SWB i, i.e., i , sm,k (t), for i ∈ Nm,S and
sm,k (t) ∈ Ak (t). We further use t′0 to stand for an initial time of the physiological data transmission phase for every
SWB as shown in Fig. 2. Thus, the duration of the physiological data transmission phase can be specified by time
interval [t′0, t0 +DSlot]. Apparently, we can easily have tT = DSlot + t0 − t′0. To deal with co-channel electromagnetic
interference problem in inter-CWBSN, we turn our attention to the uplink transmission by exploring transmit power
optimization mechanism for the current active SWB during the physiological data transmission phase. In fact, the
transmit power pm,i,k (t) of SWB i in CWBSN m over channel k at time t ∈ [t′0, t0 +DSlot] is adjusted in a continuous
way but is also limited by a maximum value Pmax

m,i . Based on the Friis formula in free space, similar to [29, 30], the
maximum transmit power of SWB i in CWBSN m can be approximately given by:

Pmax
m,i (dBm) = P0 (dBm)− 10ω log10

(
dm,i
d0

)
, (3)

where P0 (in dBm) is the receiving reference power by SC Cm at a reference distance d0, dm,i is the distance between
SWB i and SC Cm in CWBSN m, and ω ≥ 2 is the path-loss exponent. We assume that the uplink wireless channel
state is expected to be unchanged during time interval [t′0, t0 +DSlot], and is subject to the distance dependent power
attenuation. Thereby, we can use a slow flat fading channel model to characterize the channel gain from SWB i to
SC Cm in CWBSN m over channel k, which is given as gm,i,k = d−ωm,i. In terms of the current active SWB set, the
received SINR of SC Cm in CWBSN m over channel k at time t ∈ [t′0, t0 +DSlot] is formulated as:

γm,i,k (t) =
pm,i,k (t) gm,i,k

nW∑
j=1,j 6=m

pj,sj(t),k (t) gj,sj(t),k + n0

, (4)

where pj,sj(t),k (t) is the instant transmit power of SWB sj,k (t) in CWBSN j over channel k at time t, gj,sj(t),k is the
interference gain from SWB sj,k (t) in CWBSN j to SC Cm over channel k, and n0 is the background noise power
spectral density at SC Cm. According to Shannon’s capacity formula, the uplink capacity (in bps) between SWB i

and SC Cm in CWBSN m over channel k at time t can be calculated by:

Cm,i,k (t) =WC log2 (1 + Γγm,i,k (t)) , (5)

where Γ = −β1/ log2 (β2 · BER) is the constant processing gain factor with constants β1 and β2 depending on accept-
able bit error rate (BER), modulation strategy, and coding scheme over channel k. Although the overall spectrum-
utilization efficiency has been improved, the uplink transmission for each SWB in an opportunistic way during the
physiological data transmission phase may also generate the extra interference to PMDs. In this case, the interference
power constraint should be imposed to protect PMDs from unavoidable electromagnetic interference caused by all
SWBs. For PMD n, the accumulated interference caused by the current active SWB set working over channel k at
time t must be kept below the interference temperature limit Imax

n,k given as follows [31]:

nW∑
m=1

pm,sm,k(t),k (t) gn,sm,k(t),k ≤ I
max
n,k , ∀n ∈ NP,∀m ∈ NW, (6)

where pm,sm,k(t),k (t) is the transmit power of SWB i in CWBSN m over channel k at time t, and gn,sm,k(t),k is the
channel gain from SWB i in CWBSN m to PMD n over channel k.
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Table 3: Four different cases for spectrum sensing carried out by the CG.

Case Actual state Sensing result Probability value Remark CWBSN action

Case 1 HI
k (Idle) H̃I

k (Vacant) ρ1,k = Pr
{
HI
k

∣∣∣H̃I
k

}
Perfect Normal transmission

Case 2 HI
k (Idle) H̃B

k (Occupied) ρ2,k = Pr
{
HI
k

∣∣∣H̃B
k

}
False alarm Keep silent

Case 3 HB
k (Busy) H̃I

k (Vacant) ρ3,k = Pr
{
HB
k

∣∣∣H̃I
k

}
Miss detection Collision with the PMD

Case 4 HB
k (Busy) H̃B

k (Occupied) ρ4,k = Pr
{
HB
k

∣∣∣H̃B
k

}
Perfect Keep silent

3.2. Imperfect Spectrum Sensing Model

Recall that the CG performs spectrum sensing during the spectrum sensing phase via local real-time measurements
to identify the occupation status of licensed channels. Spectrum sensing can be formulated as a binary hypothesis
testing problem in which there are two hypotheses based on the presence and absence of the PMD over channel k,
denoted by HB

k (busy) and HI
k (idle), respectively. We denote the sensing result that channel k is occupied by the

PMD with the probability H̃B
k and the sensing result that channel k is vacant with the probability H̃I

k. We also
assume that the signal of the PMD follows an i.i.d. random process, and the noise is an i.i.d. circularly symmetric
complex Gaussian at the CG with zero mean and variance σ2. Let εk denote a decision threshold recognized by the
CG to decide whether the licensed channel is occupied by the PMD. For the CG, the detection probability φdk and
the false alarm probability φfk detecting the status of channel k during the spectrum sensing phase with duration τS
can be exactly expressed as [32]:

φdk = Q

(( εk
σ2
− γk − 1

)√ fSτS
2γk + 1

)
, ∀k ∈ NC, (7)

φfk = Q
(
(εk − 1)

√
fSτS

)
, ∀k ∈ NC, (8)

where γk is the received average SINR from the PMD at the CG over channel k, fS is the signal sampling frequency
over channel k, and Q (x) is the standard Gaussian Q-function defined by Q (x) = 1√

2π

∫ +∞
x

e−
v2

2 dv.

In practical scenarios, the CG cannot purely guarantee perfect spectrum sensing due to varying channel and fading.
As such, imperfect spectrum sensing should be fully considered. In general, two kinds of spectrum sensing errors are
inevitable: false alarm which means the CG may detect channel k as occupied by the PMD but it is actually idle, and
miss detection which means the CG detects channel k as vacant when it is truly busy. Particularly, miss detection will
cause the severe co-channel interference to the PMD, while false alarm will lead to the situation that each CWBSN
may miss the transmission opportunity. It is clear that imperfect spectrum sensing of the CG will seriously degrade the
performance of CWBSNs. By taking into account the combination relationship between actual state and sensing result
of the CG, there are four different cases for spectrum sensing, which are summarized in Table 3. More specifically,
for Case 1 and Case 4, the CG makes the correct decisions on the occupancy status of the licensed channel. However,
Case 2 is a false alarm in which the CG and each CWBSN keep silent until the next cognitive frame, and Case 3 is a
miss-detection in which the transmission of sampled physiological data for each SWB will come into collision with the
PMD. By using the Bayes’ rule, the probabilities of Cases 1, 2, 3, and 4 for channel k can be summarized as follows:

ρ1,k = Pr
{
HI
k

∣∣∣H̃I
k

}
=

Pr
{
HI
k

}
Pr
{
H̃I
k

∣∣HI
k

}
Pr
{
HI
k

}
Pr
{
H̃I
k

∣∣HI
k

}
+ Pr

{
HB
k

}
Pr
{
H̃I
k

∣∣HB
k

}
=

(1− φk)
(
1− φfk

)
(1− φk)

(
1− φfk

)
+ φk

(
1− φdk

) ,
(9)
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ρ2,k = Pr
{
HI
k

∣∣∣H̃B
k

}
=

Pr
{
HI
k

}
Pr
{
H̃B
k

∣∣HI
k

}
Pr
{
HI
k

}
Pr
{
H̃B
k

∣∣HI
k

}
+ Pr

{
HB
k

}
Pr
{
H̃B
k

∣∣HB
k

}
=

(1− φk)φfk
(1− φk)φfk + φkφdk

,

(10)

ρ3,k = Pr
{
HB
k

∣∣∣H̃I
k

}
=

Pr
{
HB
k

}
Pr
{
H̃I
k

∣∣HB
k

}
Pr
{
HB
k

}
Pr
{
H̃I
k

∣∣HB
k

}
+ Pr

{
HI
k

}
Pr
{
H̃I
k

∣∣HI
k

}
=

φk
(
1− φdk

)
φk
(
1− φdk

)
+ (1− φk)

(
1− φfk

) ,
(11)

ρ4,k = Pr
{
HB
k

∣∣∣H̃B
k

}
=

Pr
{
HB
k

}
Pr
{
H̃B
k

∣∣HB
k

}
Pr
{
HB
k

}
Pr
{
H̃B
k

∣∣HB
k

}
+ Pr

{
HI
k

}
Pr
{
H̃B
k

∣∣HI
k

}
=

φkφ
d
k

φkφdk + (1− φk)φfk
,

(12)

where φk is the priori probability that channel k is occupied by the PMD. Based on the probabilities of Cases 1, 2, 3,
and 4 and the CWBSN actions as listed in Table 3, we notice that there is only Case 1 achieving normal transmission
during the SSR reporting phase and the physiological data receiving phase. Here, we focus on the uplink transmission
of collected physiological data in each CWBSN. Let Ψm,i,k, Ψm,k, and Ψk represent the average number of transmitted
bits of physiological data for SWB i in CWBSN m, for CWBSN m, and for nW CWBSNs over channel k, respectively.
For SWB i in CWBSN m over channel k, the average number of transmitted bits of physiological data within equal
slot duration DSlot assigned to each SWB can be approximately calculated as follows [33]:

Ψm,i,k = DSlotWC log2 (1 + Γγm,i,k (t)) Pr
{
HI
k

∣∣∣H̃I
k

}
. (13)

Likewise, the average number of transmitted bits of physiological data for CWBSN m and nW CWBSNs over channel
k, can be derived as Ψm,k =

nS∑
i=1

Ψm,i,k and Ψk =
nW∑
m=1

nS∑
i=1

Ψm,i,k, respectively.

3.3. Physiological Data Sampling Model

We assume that the physiological data sampling phase with duration tD is divided into K equal sampling intervals
for each SWB, and there will be one physiological data sampling operation in each sampling interval. Conceptually,
each SWB can sample one or many attributes. As for sampling interval `, the physiological data sampling value with
respect to sampled attribute α acquired by SWB i in CWBSN m over channel k is defined as:

Xm,i,k,α (`) , xm,i,k,α

(
tD
2K

(2`− 1)

)
, ` = 1, 2, · · · ,K, α = 1, 2, · · · , A, (14)

where A is the number of sampled attributes of physiological data for SWB i in CWBSN m, for i ∈ Nm,S. For
K sampling intervals, the sampling values acquired by SWB i in CWBSN m over channel k in terms of sampled
attribute α can be given by a sampling value vector xm,i,k,α = (Xm,i,k,α (1) , · · · ,Xm,i,k,α (K)). Afterwards, the
collected physiological data sampling values for SWB i in CWBSN m over channel k during the physiological data
sampling phase can be expressed by a sampling value matrix as follows:
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Algorithm 1 Approximate Probability Distribution Generation Algorithm
Input: Sampling value vector xm,i,k,α = (Xm,i,k,α (1) , · · · ,Xm,i,k,α (K)).
Output: Approximate probability distribution P [Xm,i,k,α (`)] = {ym,i,k,α (1) , · · · , ym,i,k,α (l) , · · · , ym,i,k,α (Lm,i,k,α)}.
1: Sort sampling values within xm,i,k,α in an ascending order:

i) Set ℘m,i,k,α (1) = min {Xm,i,k,α (1) , · · · ,Xm,i,k,α (K)}.
ii) Set ℘m,i,k,α (K) = max {Xm,i,k,α (1) , · · · ,Xm,i,k,α (K)}.
iii) Obtain a sorted sequence ℘m,i,k,α (1) , ℘m,i,k,α (2) , ℘m,i,k,α (3) , · · · , ℘m,i,k,α (K).

2: Set auxiliary constant βmin
m,i,k,α > 0, for βmin

m,i,k,α < ℘m,i,k,α (1).
3: Set auxiliary constant βmax

m,i,k,α > 0, for βmax
m,i,k,α > ℘m,i,k,α (K).

4: Divide interval
[
βmin
m,i,k,α, β

max
m,i,k,α

]
into Lm,i,k,α equal subintervals:

βmin
m,i,k,α = Λ0 < Λ1 < Λ2 < · · · < ΛLm,i,k,α−1 < ΛLm,i,k,α = βmax

m,i,k,α.
5: for l = 1 to Lm,i,k,α do

6: Λl − Λl−1 =
βmax
m,i,k,α−βmin

m,i,k,α

Lm,i,k,α
.

7: Calculate the number of sampling values within subinterval (Λl−1,Λl] denoted by zm,i,k,α (l).
8: Calculate the probability of sampling value by ym,i,k,α (l) =

zm,i,k,α(l)

K
.

9: end for
10: return {ym,i,k,α (1) , · · · , ym,i,k,α (l) , · · · , ym,i,k,α (Lm,i,k,α)}.

Xm,i,k =

(
xm,i,k,1 xm,i,k,2 · · · xm,i,k,α · · · xm,i,k,A

)T

=



xm,i,k,1
(
tD
2K

)
· · · xm,i,k,1

(
tD
2K (2`− 1)

)
· · · xm,i,k,1

(
tD
2K (2K − 1)

)
xm,i,k,2

(
tD
2K

)
· · · xm,i,k,2

(
tD
2K (2`− 1)

)
· · · xm,i,k,2

(
tD
2K (2K − 1)

)
· · · · · · · · · · · · · · ·

xm,i,k,α
(
tD
2K

)
· · · xm,i,k,α

(
tD
2K (2`− 1)

)
· · · xm,i,k,α

(
tD
2K (2K − 1)

)
· · · · · · · · · · · · · · ·

xm,i,k,A
(
tD
2K

)
· · · xm,i,k,A

(
tD
2K (2`− 1)

)
· · · xm,i,k,A

(
tD
2K (2K − 1)

)


A×K

.
(15)

So far, we have rigorously characterized the sampling value Xm,i,k,α (`) belonging to sampling interval ` with
respect to sampled attribute α sensed by SWB i in CWBSN m over channel k. Based on this description, we are also
interested in the probability distribution of sampling value from a perspective of statistical property of the physiological
data sampling. To this aim, we shall proceed to exploit mathematical statistics method to construct the approximate
probability distribution of sampling value. Specifically, we propose Algorithm 1 as an implementation to obtain the
approximate probability distribution P [Xm,i,k,α (`)] of sampling value Xm,i,k,α (`).

Normally, it is impossible that the physiological data sampling values for each SWB will remain unchangeable. In
this way, anomalies or outliers will also occur when the current sampling values monitored by a SWB significantly
deviate from normal pattern of physiological data. The abnormal sampling may result from many reasons such as
emergency situations (e.g., health state degradation and heart attack) and malfunctions of the SWB (e.g., improperly
attached SWB, detached SWB, and false treatment) [34]. For instance, the normal SpO2 ratio is larger than 95%,
and when this ratio is lower than 90%, an emergency alarm must be triggered as a consequence of lung problems or
respiratory complications [35]. In order to describe the normal pattern of physiological data for sampled attribute α
acquired by SWB i in CWBSN m over channel k, we define a statistical probability distribution P̂ [Xm,i,k,α (`)] of
sampling value Xm,i,k,α (`) as a priori information:

P̂ [Xm,i,k,α (`)] = {ŷm,i,k,α (1) , ŷm,i,k,α (2) , · · · , ŷm,i,k,α (l) , · · · , ŷm,i,k,α (Lm,i,k,α)} . (16)

Note that the smaller the relative divergence between the approximate probability distribution P [Xm,i,k,α (`)] and
the statistical probability distribution P̂ [Xm,i,k,α (`)], the better the quality of physiological data sampling. It has
been shown that the Kullback–Leibler divergence is an effective tool to measure how one probability distribution
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diverges from another reference probability distribution [36]. Thereby, the relative divergence between P [Xm,i,k,α (`)]

and P̂ [Xm,i,k,α (`)] can be calculated under the Kullback–Leibler divergence framework as follows:

Dm,i,k,α (Xm,i,k,α (`)) ,
Lm,i,k,α∑
l=1

ym,i,k,α (l) log2
ym,i,k,α (l)

ŷm,i,k,α (l)
. (17)

For A sampled attributes for SWB i in CWBSN m over channel k, the vector of the relative divergence is written
by dm,i,k = (Dm,i,k,1 (Xm,i,k,1 (`)) , · · · , Dm,i,k,A (Xm,i,k,A (`))). Correspondingly, as for A sampled attributes, the
weighted average relative divergence for SWB i in CWBSN m over channel k can be given by:

E [dm,i,k] =

A∑
α=1

wm,i,k,αDm,i,k,α (Xm,i,k,α (`))

A∑
α=1

wm,i,k,α

, (18)

where wm,i,k,α is the weight of sampled attribute α monitored by SWB i. Note that the weight of sampled attribute
α reveals the importance of this attribute within all the sampled attributes. From (18), it is found that the smaller
the weighted average relative divergence, the better the quality of physiological data sampling. In this way, we wish
to remark that the weighted average relative divergence can be used to characterize the quality of physiological data
sampling for each SWB.

4. Dynamic Power Optimization Framework: Problem Formulation, Optimal Solution, and Utility
Discussion

4.1. Problem Formulation

Owing to lack of global information for the SC to achieve the centralized schedule, transmit power should be allo-
cated distributively by the current active SWBs. In general, the current active SWB has to reduce its transmit power
in order to cope with the inter-CWBSN co-channel electromagnetic interference problem. However, the reduction of
its own transmit power of the SWB would be attained at the expense of its own uplink capacity. This is due to the fact
that the uplink capacity between the SWB and the SC is a concave function of current transmit power and channel
conditions according to (5). Meanwhile, the objective of transmit power allocation for each SWB is to maximize its
own utility function. However, the utility functions of the current active SWBs are conflicting and their decisions are
interactive. Moreover, it will be more realistic to dynamically optimize the transmit power with respect to the current
instant time. This motivates us to formulate the problem of dynamic power optimization for the current active SWB
in each CWBSN as a differential game model.

Definition 1. (Differential Game Framework) The differential game theoretic framework for dynamic power opti-
mization of the current active SWB set working over channel k at time t ∈ [t′0, t0 +DSlot] is defined as a 4-tuple:

Gk = {Ak (t) , {Pm,i,k (t)} , {Em,i,k (t)} , {Um,i,k (pm,i,k (t) , Em,i,k (t))}}i∈Ak(t) , ∀m ∈ NW,∀k ∈ NC, (19)

where,

• Player set Ak (t): Ak (t) = {s1,k (t) , s2,k (t) , · · · , snW,k (t)} is the set of the current active SWBs playing the
game. The players belong to the rational policy makers and act throughout a time interval in game Gk.

• Set of strategies {Pm,i,k (t)}: The strategy of a player is defined as its instant transmit power bounded by the
maximum transmit power. Pm,i,k (t) = {pm,i,k (t) |∀t} is the strategy space of SWB i in CWBSN m over channel
k.

• Set of states {Em,i,k (t)}: The state of a player refers to its instant energy consumption. Em,i,k (t) = {Em,i,k (t) |∀t}
is the state space of SWB i, where Em,i,k (t) denotes the energy consumption value of SWB i in CWBSN m

over channel k.
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• Set of utility functions {Um,i,k}: Um,i,k (pm,i,k, Em,i,k) is the utility function of SWB i in CWBSNm over channel
k. The objective of each SWB is to maximize its utility function by rationally selecting optimal strategy and
state.

Note that differential game is a kind of continuous-time dynamic game wherein the utility function of the player
relies on the strategy and the state of itself. Hereinafter, the terms “player” and “SWB” are all interchangeable, unless
explicitly stated otherwise. Under this game framework, we put more emphasis on how to formulate the state space
Em,i,k (t) and the utility function Um,i,k of SWB i in CWBSN m over channel k, respectively. To model the fact that
the state space of SWB i needs to be defined to satisfy the state dynamics as in [37], we introduce a linear differential
equation to represent the state space of SWB i. Let ER

m,i,k (t) denote the residual energy in the battery of SWB i in
CWBSN m over channel k at time t ∈ [t′0, t0 +DSlot]. Similar to [38], the evolution law of energy consumption in the
battery of SWB i can be defined by a linear differential equation as follows:

dEm,i,k (t)

dt
= ER

m,i,k (t)− tTpm,i,k (t)− Em,i,k (t) . (20)

We next discuss how to characterize the utility function Um,i,k of SWB i in CWBSN m over channel k. With the
constraint of maximum value Pmax

m,i , the value of power reduction for SWB i is given by Pmax
m,i − pm,i,k (t). Hence, the

power reduction efficiency for SWB i at time t can be further expressed as:

ηm,i =
Pmax
m,i − pm,i,k (t)

Pmax
m,i

. (21)

Let us revisit the weighted average relative divergence as mentioned in (18) that has been suggested to characterize
the quality of physiological data sampling for each SWB. Therefore, to formulate the revenue of power reduction for
each SWB, we attempt to devise a revenue pricing factor for power reduction performed by each SWB through a joint
consideration of both the power reduction efficiency and the weighted average relative divergence. This motivates
the need for better understanding of the interplay between the power reduction efficiency and the weighted average
relative divergence, which typically require a trade-off between them. From the point of view of trade-off strategy, a
similar design for pricing factor can be found in the formulation of energy-per-capacity factor [31]. Inspired by this
kind of trade-off design, the revenue pricing factor for every SWB in consideration should be highlighted as two points
to achieve a reasonable result. On the one hand, it goes without saying that the more power reduction efficiency, the
higher pricing for a SWB, which means that a higher reward must be attached to that SWB due to its contribution to
power reduction. On the other hand, the worse quality of physiological data sampling because of abnormal sampling
incurred by emergency situations, the larger weighted average relative divergence for a SWB. Thus, the higher pricing
corresponding to a more reward should be offered for that SWB due to the importance of that SWB to reflect the
current emergency alarm, e.g., heart attack or health state degradation.

By combining these considerations, as for SWB i in CWBSNm over channel k, the revenue pricing factor for power
reduction is defined as the product of the power reduction efficiency and the weighted average relative divergence,
which can be thus written as follows:

λRm,i,k , ηm,iE [dm,i,k] . (22)

Obviously, the increase of any values belonging to ηm,i or E [dm,i,k] will result in the more revenue pricing for SWB
i. Consequently, the revenue of power reduction for SWB i in CWBSN m over channel k at time t ∈ [t′0, t0 +DSlot]

by attaining the product of the revenue pricing factor along with the value of power reduction for SWB i, i.e.:

ΘR
m,i,k (t) = λRm,i,k

(
Pmax
m,i − pm,i,k (t)

)
. (23)

So far, we have obtained the revenue of power reduction for each SWB. Next, we turn to formulate the cost of
energy consumption for each SWB, aiming to derive the utility function Um,i,k of SWB i as previously introduced in
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Definition 1. Within the physiological data transmission phase with duration tT, the energy consumption per unit of
time for SWB i in CWBSN m over channel k can be calculated by Em,i,k(t)

tT
. We denote λCE as the cost pricing for

energy consumption per unit of time for each SWB. As a result, the cost of energy consumption for SWB i in CWBSN
m over channel k at time t ∈ [t′0, t0 +DSlot] can be expressed as:

ΘC
m,i,k (t) = λCE

Em,i,k (t)

tT
. (24)

Under the above setup, the utility function of SWB i in CWBSN m over channel k at time t ∈ [t′0, t0 +DSlot] can
be characterized by:

Um,i,k (pm,i,k, Em,i,k) = ΘR
m,i,k (t)−ΘC

m,i,k (t)

= λRm,i,k
(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

= ηm,iE [dm,i,k]
(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT
.

(25)

Our target is to maximize the utility function throughout time interval by adaptively deriving the optimal transmit
power pOP

m,i,k (t) and the optimal energy consumption EOE
m,i,k (t) for SWB i in CWBSN m over channel k, which can

be precisely obtained by:

Υ
(
pOP
m,i,k, E

OE
m,i,k

)
= argmax
p∗m,i,k(t),E

∗
m,i,k(t)

∫ t0+DSlot

t′0

(
λRm,i,k

(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

)
e−r(t−t

′
0)dt, (26)

where r ∈ (0, 1) is the discount factor. This adopted target allows us to mathematically formulate the utility maxi-
mization problem as:

maximize
pm,i,k(t),Em,i,k(t)

∫ t0+DSlot

t′0

(
λRm,i,k

(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

)
e−r(t−t

′
0)dt (27a)

subject to 0 < pm,i,k (t) ≤ Pmax
m,i , ∀k ∈ NC,∀i ∈ Nm,S,∀m ∈ NW, (27b)

dEm,i,k (t)

dt
= ER

m,i,k (t)− tTpm,i,k (t)− Em,i,k (t) , ∀k ∈ NC,∀i ∈ Nm,S,∀m ∈ NW, (27c)

Em,i,k (t
′
0) = Ẽm,i,k (t = t′0) , ∀k ∈ NC,∀i ∈ Nm,S,∀m ∈ NW, (27d)

where Ẽm,i,k (t = t′0) is the initial energy consumption value at the initial time t′0. Constraint (27b) limits the transmit
power level of SWB i. Constraint (27c) represents the evolution law of energy consumption in the battery of SWB
i. Finally, constraint (27d) expresses the initial value of energy consumption at the initial time of the physiological
data transmission phase. To solve the utility maximization problem in (27), we will focus on two dynamic power
optimization strategies based on actual behaviors of individual players in the proposed game framework. The first
strategy is to consider a competitive scenario in which the players act independently to maximize their own individual
utility without being able to contract the behaviors of other players. An alternative strategy aims at a cooperative
scenario wherein the players can make joint strategies from a social point of view to maximize the overall utilities
through full cooperation among all players.

4.2. Non-cooperative Optimal Solution

Here, we will focus on the utility maximization problem posed by the competitive scenario that each SWB aims at
individually maximizing its own individual utility within the physiological data transmission phase. In this scenario,
the optimal solution for the non-cooperative game Gk is the NE point, if the NE exists and it is unique.
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Definition 2. (Nash Equilibrium) A set of strategies
{
p∗m,1,k (t) , p

∗
m,2,k (t) , · · · , p∗m,nW,k

(t)
}

associated with all the
current active SWBs is the NE to the non-cooperative game Gk if and only if the following inequality must be satisfied
for SWB i, for pm,i,k (t) ∈ Pm,i,k (t) and Em,i,k (t) ∈ Em,i,k (t):∫ t0+DSlot

t′0

(
λRm,i,k

(
Pmax
m,i − p∗m,i,k (t)

)
− λCE

E∗m,i,k (t)

tT

)
e−r(t−t

′
0)dt

≥
∫ t0+DSlot

t′0

(
λRm,i,k

(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

)
e−r(t−t

′
0)dt, ∀i ∈ Nm,S, (28)

where the state Em,i,k (t) of SWB i should satisfy constraints (27c) and (27d) on the interval [t′0, t0 +DSlot].

We wish to remark that the NE solution or optimal strategy of SWB i is the steady state of the non-cooperative
game Gk, which depends only on the present time t ∈ [t′0, t0 +DSlot] and the present state Em,i,k (t), but not on
the initial state Em,i,k (t′0). From a perspective of locality, our objective is to optimize the transmit power for every
SWB individually over the considered interval [t′0, t0 +DSlot]. Thus, to simplify the analysis of the problem, it will be
reasonable for us to relax the terminal time t0+DSlot to an infinite time horizon one, i.e., t0+DSlot → +∞. Thereby,
the utility maximization problem in (27) is converted into an infinite horizon differential game model by the help of
the time relaxation mechanism. With such a relaxation process in mind, Bellman’s dynamic programming technique
can be applied to derive the NE solution to by solving the partial differential equation associated with each player
[37]. The technique is given by Lemma 1 as detailed below.

Lemma 1. An nW-tuple set of feedback strategies
{
p∗m,i,k (t) ∈ Pm,i,k (t) |∀i ∈ Ak (t)

}
provides a NE solution to

the infinite horizon differential game framework based on the utility maximization problem in (27), if there exist the
continuously differentiable value function Ξi (pm,i,k, Em,i,k) for SWB i in CWBSN m over channel k, satisfying the
following partial differential equation:

rΞi (pm,i,k, Em,i,k)

= max
pm,i,k,Em,i,k

{
χi
(
Em,i,k, p

∗
m,1,k (t) , p

∗
m,2,k (t) , · · · , p∗m,i−1,k (t) ,

pm,i,k (t) , p
∗
m,i+1,k (t) , · · · , p∗m,nW,k (t)

)
+
∂Ξi (pm,i,k, Em,i,k)

∂Em,i,k (t)
ϕi
(
Em,i,k, p

∗
m,1,k (t) , p

∗
m,2,k (t) , · · · , p∗m,i−1,k (t) ,

pm,i,k (t) , p
∗
m,i+1,k (t) , · · · , p∗m,nW,k (t)

)}
=
{
χi
(
Em,i,k, p

∗
m,1,k (t) , p

∗
m,2,k (t) , · · · , p∗m,nW,k (t)

)
+
∂Ξi (pm,i,k, Em,i,k)

∂Em,i,k (t)
ϕi
(
Em,i,k, p

∗
m,1,k (t) , p

∗
m,2,k (t) , · · · , p∗m,nW,k (t)

)}
, (29)

where χi (·) and ϕi (·) are continuously differentiable functions for SWB i under the general differential game model,
respectively.

Proof: The proof of the lemma is omitted due to space limitations. A similar detailed proof can be found in [37].

To be precise, with relation to our designed differential game theoretic framework, both of the differentiable
functions for SWB i in CWBSN m over channel k in Lemma 1 can be modeled as χi (·) = Um,i,k (pm,i,k, Em,i,k)
and ϕi (·) = ER

m,i,k (t)− tTpm,i,k (t)− Em,i,k (t), respectively. Following Lemma 1 and the above analysis, let us also
assume henceforth that there exists a continuously differentiable auxiliary value function for SWB i in CWBSN m

over channel k, denoted by Lm,i,k (pm,i,k, Em,i,k), which is subject to the following partial differential equation:

rLm,i,k (pm,i,k, Em,i,k)
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= max
pm,i,k,Em,i,k

{
ηm,iE [dm,i,k]

(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

+
∂Lm,i,k (pm,i,k, Em,i,k)

∂Em,i,k (t)

(
ER
m,i,k (t)− tTpm,i,k (t)− Em,i,k (t)

)}
. (30)

Theorem 1. The non-cooperative optimal solution p∗m,i,k (t) to the utility maximization problem in (27) constitutes
the NE to the non-cooperative game Gk if and only if the non-cooperative optimal solution p∗m,i,k (t) and the value

function Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
are respectively formulated as:

p∗m,i,k (t) = Pmax
m,i

(
1− λCE

2 (r + 1)E [dm,i,k]

)
, (31)

∂Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
∂E∗m,i,k (t)

= − λCE
tT (r + 1)

. (32)

Proof : Please refer to Appendix A.
Note that Theorem 1 guarantees the existence and uniqueness of the NE point to the non-cooperative game Gk

in that we can use a specific fixed value to quantify the NE point for each SWB. It further turns out that Theorem
1 ensures the convergence of the non-cooperative optimal solution p∗m,i,k (t) to the NE point. Applying this result in
Theorem 1, the average number of transmitted bits of physiological data within slot duration DSlot under imperfect
spectrum sensing can be rewritten as:

Ψm,i,k = DSlotWCPr
{
HI
k

∣∣∣H̃I
k

}
log2

1 + Γ
Pmax
m,i

(
1− λC

E

2(r+1)E[dm,i,k]

)
gm,i,k

nW∑
j=1,j 6=m

Pmax
j,sj(t),k

(
1− λC

E

2(r+1)E
[
dj,sj(t),k

]) gj,sj(t),k + n0

 . (33)

In the meantime, the evolution law of the non-cooperative optimal energy consumption E∗m,i,k (t) for SWB i in
CWBSN m over channel k can be formally represented by:

dE∗m,i,k (t)

dt
= ER

m,i,k (t)− tTPmax
m,i

(
1− λCE

2 (r + 1)E [dm,i,k]

)
− E∗m,i,k (t) . (34)

To this end, by solving (34), the non-cooperative optimal energy consumption E∗m,i,k (t) follows that:

E∗m,i,k (t) = ξ1e
t − ER

m,i,k (t) + tTP
max
m,i

(
1− λCE

2 (r + 1)E [dm,i,k]

)
, (35)

where ξ1 is the constant number. By substituting (31), (32), and (35) into (A.3), we further exactly obtain that:

Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
=
λCE

(
ξ1e

t + 2tTP
max
m,i − 2ER

m,i,k (t)
)

tTr (r + 1)
−

3
(
λCE
)2
Pmax
m,i

4r (r + 1)
2 E [dm,i,k]

. (36)

4.3. Cooperative Optimal Solution

We now consider an alternative cooperative dynamic power optimization strategy, where all SWBs fully cooperate
to obtain the highest total utilities by achieving full cooperation for their common interests. Our objective is to
maximize the sum of the utility functions of all SWBs throughout time interval [t′0, t0 +DSlot] while simultaneously
satisfying the constraints (27b)-(27d). This is attained by a suitable choice of the cooperative optimal transmit power
and energy consumption for each SWB which are detailed below. To achieve this goal, the total utility maximization
problem can be mathematically modeled as:

maximize
{pm,i,k(t)},{Em,i,k(t)}

nW∑
i=1

∫ t0+DSlot

t′0

(
λRm,i,k

(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

)
e−r(t−t

′
0)dt (37a)
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subject to (27b), (27c), (27d). (37b)

Let p�m,i,k (t) and E�m,i,k (t) be the cooperative optimal transmit power and energy consumption for SWB i in
CWBSN m over channel k, respectively. Invoking Pontryagin’s maximum principle, we further assume that there
exists a continuously differentiable auxiliary value function Fm,i,k (pm,i,k, Em,i,k) satisfying the partial differential
equation given as follows [37]:

rFm,i,k (pm,i,k, Em,i,k)

= max
{pm,i,k(t)},{Em,i,k(t)}

{
nW∑
i=1

(
λRm,i,k

(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

)

+
∂Fm,i,k (pm,i,k, Em,i,k)

∂Em,i,k (t)

(
ER
m,i,k (t)− tTpm,i,k (t)− Em,i,k (t)

)}
. (38)

Theorem 2. The cooperative optimal transmit power constitutes the cooperative optimal solution p�m,i,k (t) to the
total utility maximization problem in (37) if and only if the cooperative optimal transmit power p�m,i,k (t) and the

value function Fm,i,k
(
p�m,i,k, E

�
m,i,k

)
can be formulated as:

p�m,i,k (t) = Pmax
m,i

(
1− nWλ

C
E

2 (r + 1)E [dm,i,k]

)
, (39)

∂Fm,i,k
(
p�m,i,k, E

�
m,i,k

)
∂E�m,i,k (t)

= − nWλ
C
E

tT (r + 1)
. (40)

Proof : Please refer to Appendix B.
As such, by applying the cooperative optimal solution p�m,i,k (t) in Theorem 2, the average number of transmitted

bits of physiological data within slot duration DSlot under imperfect spectrum sensing is equivalent to:

Ψm,i,k = DSlotWCPr
{
HI
k

∣∣∣H̃I
k

}
log2

1 + Γ
Pmax
m,i

(
1− nWλ

C
E

2(r+1)E[dm,i,k]

)
gm,i,k

nW∑
j=1,j 6=m

Pmax
j,sj(t),k

(
1− nWλC

E

2(r+1)E
[
dj,sj(t),k

]) gj,sj(t),k + n0

 . (41)

According to the above result, the evolution law of the cooperative optimal energy consumption E�m,i,k (t) for SWB
i in CWBSN m over channel k can be characterized by:

dE�m,i,k (t)

dt
= ER

m,i,k (t)− tTPmax
m,i

(
1− nWλ

C
E

2 (r + 1)E [dm,i,k]

)
− E�m,i,k (t) . (42)

Finally, by solving (42), the cooperative optimal energy consumption E�m,i,k (t) exactly follows that:

E�m,i,k (t) = ξ2e
t − ER

m,i,k (t) + tTP
max
m,i

(
1− nWλ

C
E

2 (r + 1)E [dm,i,k]

)
, (43)

where ξ2 is the constant number.

Based on the outcome of Theorem 1 and Theorem 2 obtained above, we present a distributed dynamic optimal
transmit power update algorithm to jointly realize the dynamic optimal transmit power allocation and update imple-
mentation, which is sketched in Algorithm 2. The proposed algorithm returns the non-cooperative and cooperative
optimal power allocation for each SWB on the basis of two dynamic power optimization strategies as its output. First,
we initialize and calculate all the necessary parameter values as exactly indicated in the algorithm. Then, we compute
and allocate the optimal transmit power in terms of the non-cooperative and cooperative modes according to the
proposed differential game theoretic framework. Next, we devise an iteration implementation process to ensure fast
convergence of the update of transmit power. By updating the optimal transmit power for each SWB, the iteration
process is terminated when the interference temperature limit for each PMD is guaranteed is reached.
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Algorithm 2 Distributed Dynamic Optimal Transmit Power Update Algorithm
Input: Current transmit power of nW active SWBs {pm,i,k (t) ∈ Pm,i,k (t) |∀m,∀i}.
Output: Optimal Transmit Power of nW active SWBs {p̃m,i,k (t) ∈ Pm,i,k (t) |∀m, ∀i}.
1: Initialization:

i) System configuration: Set of nW active SWBs Ak (t) and number of CWBSNs nW.
ii) Transmission model: Reference distance d0, path-loss exponent ω, and distance from SWB to SC {dm,i |∀m,∀i}.
iii) Sampling model: Number of attributes A, attribute weight {wm,i,k,α |∀m,∀i}, relative divergence {Dm,i,k,α |∀m, ∀i}.
iv) Game model: cost pricing λC

E and discount factor r.
2: Calculation:

Maximum transmit power
{
Pmax
m,i |∀m,∀i

}
and weighted average relative divergence {E [dm,i,k] |∀m,∀i}.

3: Dynamic Optimal Transmit Power Allocation:
4: for i = 1 to |Ak (t)| do
5: for m = 1 to nW do

6: Obtain power p̃m,i,k (t)←

{
p∗m,i,k (t) using(31), for non-cooperative optimization,
p�m,i,k (t) using(39), for cooperative optimization.

.

7: end for
8: end for
9: Transmit Power Update Implementation:

10: for n = 1 to nP do
11: if

∑nW
m=1 p̃m,i,k (t) gn,i,k > Imax

n,k then
12: repeat
13: for i = 1 to |Ak (t)| do
14: for m = 1 to nW do
15: Update power p̃m,i,k (t)← p̃m,i,k (t)×

(
p̃m,i,k (t) /

∑nW
i=1 p̃m,i,k (t)

)
.

16: end for
17: end for
18: until

∑nW
m=1 p̃m,i,k (t) gn,i,k ≤ I

max
n,k .

19: end if
20: end for
21: return {p̃m,i,k (t) ∈ Pm,i,k (t) |∀m,∀i}.

Complexity Analysis: We now analyze the complexity of Algorithm 2. The main computational complexity of
Algorithm 2 lies in obtaining the optimal transmit power and then implementing the power update. The total number
of operations for obtaining optimal power allocation would be |Ak (t)|nW. Note that Ak (t) is a nW-tuple player set
to represent a current active SWB set. Thus, the complexity order is calculated as O

(
n2W
)
. For the power update

implementation, there are at most |Ak (t)|nW iterations in the worst case to guarantee the interference temperature
limit for each PMD. Hence, the complexity for these inner iterations is also on the order of O

(
n2W
)
. In addition,

considering that there are nP PMDs in the primary system, the power update process entails O (nP) operations at most.
Then the complexity of the power update implementation needs O

(
nPn

2
W

)
. Therefore, the overall computational

complexity of the proposed algorithm is achieved by the order of O
(
n2W
)
+O

(
nPn

2
W

)
= O

(
nPn

2
W

)
.

4.4. Utility Discussion

As aforementioned previously, we rigorously derive the non-cooperative and cooperative optimal solutions to
the utility maximization problem and total utility maximization problem, respectively. We can observe that the
cooperative optimal power is lower that the non-cooperative optimal power because the performance of CWBSNs
has been improved due to the SWBs’ cooperation with each other to achieve optimal uplink transmission in intra-
CWBSN. In order to get some insights and further assess the performance of dynamic power optimization for the
individual players from the point of view of non-cooperation and cooperation relations, we proceed to reconsider
another performance metric: actual utility distributed to each player.

According to differential game theory [37], the utility that each player has gained in the non-cooperative dynamic
power optimization can be defined as value function Lm,i,k

(
p∗m,i,k, E

∗
m,i,k

)
, which has been reformulated by (36).

Then we just need to calculate the utility of each player under the cooperative dynamic power optimization. Note
that the utility of each player is deemed to be the Shapley value in cooperative game framework, aiming to propose
the fairest allocation of the utilities obtained by all the collaborative players. Let us first formulate a nonvoid proper
subset of player set Ak (t) asMk (t), in which |Mk (t)| , ϑ players are the entirely collaborative players during the
game, for Mk (t) ⊂ Ak (t) and Mk (t) 6= ∅ over channel k at time t. However, other nW − ϑ players belong to the
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non-cooperative players. In other words, ϑ collaborative players agree to constitute a partial coalitionMk (t) of player
set Ak (t) to play against other nW − ϑ non-cooperative players. The following definition set a formal formulation of
the Shapley value that is used to distribute the total cooperative utilities to the collaborative players.

Definition 3. (Shapley Value) The Shapley value Om,i,k
(
p�m,i,k, E

�
m,i,k

)
for SWB i in CWBSN m over channel k

under the cooperative dynamic power optimization can be mathematically defined as:

Om,i,k
(
p�m,i,k, E

�
m,i,k

)
=

∑
i∈Mk(t)

(n− ϑ)! (ϑ− 1)!

n!
(Wm,i,k (Mk (t))−Wm,i,k (Mk (t) \ {i})) , (44)

where Wm,i,k (Mk (t)) is the predefined value function of the cooperative dynamic power optimization under partial
coalition Mk (t), and Wm,i,k (Mk (t) \ {i}) = Lm,i,k

(
p∗m,i,k, E

∗
m,i,k

)
is the derived value function exploited by the

non-cooperative dynamic power optimization.

With this definition, we need to provide a theoretical derivation of the predefined value function to calculate the
Shapley value. Notice that the partial coalitionMk (t) refers to a partially cooperative scenario that ϑ players agree
to cooperate in contrast to a fully cooperative scenario that nW players make joint strategies via full cooperation
among those players. Under this scenario, let us build a dynamic programming formulation to derive an optimal
solution to the cooperative dynamic power optimization under partial coalition Mk (t). In this formulation, our
target is to maximize the total utilities of all SWBs belonging to the partial coalitionMk (t) throughout time interval
[t′0, t0 +DSlot] while satisfying the constraints (27b)-(27d), which can be precisely expressed as:

maximize
{pm,i,k(t)},{Em,i,k(t)}

∑
i∈Mk(t)

∫ t0+DSlot

t′0

(
λRm,i,k

(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

)
e−r(t−t

′
0)dt (45a)

subject to (27b), (27c), (27d), (45b)

pm,j,k (t) = p∗m,j,k (t) ,∀j ∈ NW \Mk (t) , (45c)

where constraint (45c) indicates that the optimal power values of other nW− |Mk (t)| non-cooperative players should
be represented by the non-cooperative optimal power in (31). Let pMk(t)

m,i,k (t) and EMk(t)
m,i,k (t) denote the cooperative

optimal transmit power and energy consumption for SWB i in CWBSN m over channel k under partial coalition
Mk (t), respectively. Invoking Pontryagin’s maximum principle, we also assume that there exists a continuously
differentiable auxiliary value function Wm,i,k (Mk (t)) satisfying the partial differential equation given as follows [37]:

rWm,i,k (Mk (t))

= max
{pm,i,k(t)},{Em,i,k(t)}

 ∑
i∈Mk(t)

(
λRm,i,k

(
Pmax
m,i − pm,i,k (t)

)
− λCE

Em,i,k (t)

tT

)

+
∂Wm,i,k (Mk (t))

∂Em,i,k (t)

(
ER
m,i,k (t)− tTpm,i,k (t)− Em,i,k (t)

)}
. (46)

Theorem 3. The cooperative optimal transmit power pMk(t)
m,i,k (t) constitutes the cooperative optimal solution to the

total utility maximization problem in (45) if and only if the cooperative optimal transmit power pMk(t)
m,i,k (t) and the

value function Wm,i,k (Mk (t)) can be formulated as:

p
Mk(t)
m,i,k (t) = Pmax

m,i

(
1− ϑλCE

2 (r + 1)E [dm,i,k]

)
, (47)

Wm,i,k (Mk (t)) = −
ϑλCE

tT (r + 1)
. (48)

21



Proof : The proof of the theorem is similar to that of Theorem 2, and thus is omitted due to space limitations.

We now claim that the optimal power of all players including partial coalition Mk (t) and other nW − ϑ non-
cooperative players can be determined as follows:

Pmax
m,1

(
1− ϑλCE

2(r+1)E[dm,1,k]

)
,··· ,Pmax

m,ϑ

(
1− ϑλCE

2(r+1)E[dm,ϑ,k]

)
︸ ︷︷ ︸

ϑCollaborative Players

, Pmax
m,ϑ+1

(
1− λCE

2(r+1)E[dm,ϑ+1,k]

)
,··· ,Pmax

m,nW

(
1− λCE

2(r+1)E[dm,nW,k]

)
︸ ︷︷ ︸

nW−ϑNon-cooperative Players

 . (49)

Similarly, we can also say that the cooperative optimal energy consumption EMk(t)
m,i,k (t) follows that:

E
Mk(t)
m,i,k (t) = ξ3e
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)
, (50)

where ξ3 is the constant number. On substituting (50) and the results of Theorem 3 into (46), with the aid of some
algebraic manipulations, we can rewrite:
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Applying the value functions given by (51) and (36) into (44), by direct computation, we immediately has the
Shapley value under the cooperative dynamic power optimization. It is evident that the expression of the Shapley
value seems too complicated. For ease of discussion, let us consider a simplified scenario with nW = 3 players denoted
by NW = {1, 2, 3} to play the game, and the partial coalition comprises ϑ = 2 players denoted by Mk (t) = {1, 2}.
Under the above setting, the corresponding Shapley value can be exactly reformulated as follows:
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 . (52)

Finally, we are then ready to compare the utilities between the non-cooperative and cooperative dynamic power
optimization to evaluate the performance of dynamic power optimization from the perspective of non-cooperation and
cooperation relations. For simplicity, let us define ξ1 = ξ3 = 1. From our previous calculations in (52), we deduce
that:

Om,i,k
(
p�m,i,k, E

�
m,i,k

)
− Lm,i,k

(
p∗m,i,k, E

∗
m,i,k

)
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Figure 4: Simulation scenario with one CG, nW = 4 underlay CWBSNs, and nP = 2 PMDs located in a hospital
room. In this scenario, the circles with dashed lines correspond to the PMDs, and the dash-dotted lines stand for the
CWBSNs.
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Theorem 4. For ξ1 = ξ3 = 1, the utility inequality Om,i,k
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Proof : Please refer to Appendix C.
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Table 4: The predefined location points of the SWBs for every CWBSN in simulation scenario.

SWB location
Location point in the three-dimensional space (m)

SWB 1 SWB 2 SWB 3 SWB 4 SWB 5

CWBSN 1 (16.25, 17.00, 1.45) (15.17, 16.75, 0.14) (15.74, 17.41, 0.68) (15.67, 16.83, 1.49) (15.79, 16.82, 1.25)

CWBSN 2 (6.25, 32.22, 1.58) (5.74, 32.12, 0.17) (5.79, 31.61, 0.75) (5.58, 31.97, 1.67) (6.38, 32.19, 1.55)

CWBSN 3 (30.25, 9.26, 1.36) (29.02, 8.52, 0.12) (29.40, 9.18, 0.49) (30.38, 8.88, 1.34) (30.17, 9.38, 1.15)

CWBSN 4 (34.12, 38.47, 1.69) (33.40, 37.18, 0.18) (33.73, 38.46, 0.62) (34.56, 37.83, 1.73) (34.39, 38.27, 1.44)

Table 5: The relative divergence between the approximate probability distribution and the statistical probability
distribution as well as the weighted average relative divergence used in the simulations.

Type Attribute
Relative divergence Weighted average relative divergence

CWBSN 1 CWBSN 2 CWBSN 3 CWBSN 4 CWBSN 1 CWBSN 2 CWBSN 3 CWBSN 4

SWB 1
Attribute 1 0.1095 0.0753 0.0136 0.0528

0.1002 0.0478 0.0370 0.0389Attribute 2 0.1761 0.0713 0.0349 0.0388
Attribute 3 0.0362 0.0094 0.0563 0.0287

SWB 2
Attribute 1 0.3698 0.0933 0.0217 0.1547

0.1700 0.1553 0.0554 0.0984Attribute 2 0.1124 0.1617 0.0708 0.1289
Attribute 3 0.0633 0.1969 0.0691 0.0332

SWB 3
Attribute 1 0.1414 0.0271 0.1235 0.0687

0.1175 0.1012 0.0668 0.0588Attribute 2 0.0770 0.0392 0.0862 0.1147
Attribute 3 0.1299 0.2033 0.0096 0.0095

SWB 4
Attribute 1 0.4508 0.1978 0.1023 0.0228

0.3164 0.1358 0.1462 0.0673Attribute 2 0.1588 0.0692 0.0900 0.1143
Attribute 3 0.3337 0.1394 0.2212 0.0656

SWB 5
Attribute 1 0.2441 0.0848 0.0560 0.0336

0.1042 0.0826 0.0456 0.0347Attribute 2 0.0282 0.1309 0.0438 0.0308
Attribute 3 0.0564 0.0448 0.0392 0.0384

We wish to remark that Theorem 4 provides the fundamental condition that the utility of cooperative scenario is
larger than that of competitive scenario according to the actual behaviors of players in the proposed game framework.
In summary, we further conclude that the performance of the cooperative dynamic power optimization is better than
that of the non-cooperative dynamic power optimization from two aspects: the optimal power and the actual utility
gained by each player.

5. Simulation Results

5.1. Simulation Setup

In this section, we present the simulation results to verify our theoretical analysis and evaluate the performance of
our proposed optimization framework under a given system configuration. As depicted in Fig. 4, the simulations are
conducted on a hospital room scenario within a three-dimensional space of 40m × 40m × 3m. In this scenario, one
CG and nW = 4 underlay CWBSNs coexist with a primary system consisting of nP = 2 PMDs in a hospital room.
More precisely, the CG is deployed on the center of the roof, i.e., the three-dimensional spatial point (20, 20, 3)m. The
location points of the near-body SCs are initialized as (16, 17, 1.6)m, (6, 32, 1.75)m, (30, 9, 1.5)m, and (34, 38, 1.8)m,
for CWBSN 1, CWBSN 2, CWBSN 3, and CWBSN 4, respectively. Each CWBSN contains nS = 5 SWBs which
are identified from SWB 1 to SWB 5 with different colors and marker, to monitor EEG, foot pressure, EMG, res-
piration, and blood pressure, respectively. The predefined location points of the SWBs for every CWBSN in the
three-dimensional space are listed in Table 4. Moreover, the locations of two PMDs marked by PMD 1 and PMD
2 are assumed to be set at the location points (4, 7, 1.5)m and (35, 14, 2)m, respectively. We would like to mention
that our proposed optimization framework is conducted within this given simulation configuration, which can be
interpreted as a specific predefined scenario with limited network nodes due to the space limitations. However, the
results about this framework will be easily extendable to the general case for increased density of nodes.
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Figure 5: Comparison between minimum value and maximum value of physiological data sampling used in Algorithm
1 among A = 3 attributes, marked by A1, A2, and A3, respectively, for nS = 5 SWBs.

The duration of physiological data sampling phase and physiological data transmission phase for every SWB is
set to tD = 10ms and tT = 12ms, respectively. For TDMA-based access, we consider two access methods used in the
simulations, i.e., ordered channel access and disordered channel access, respectively. In ordered channel access, nS = 5

SWBs in every CWBSN will access to the time slot successively, as shown in Fig. 3(a). In the case of disordered
channel access, the time slot will be obtained by nS = 5 SWBs in every CWBSN according to the discrete uniform
distribution on the integers 1, 2, · · · , nS coordinated by the SC. In this case, each SWB in every CWBSN has equal
probability 1

5 to obtain one specific time slot to access the channel. For instance, SWB 1, SWB 2, SWB 3, SWB 4,
and SWB 5 in CWBSN 1 all have the same probability 1

5 to access slot 1 in Fig. 3(b).

The whole authorized spectrum is assumed to be separated into nC = 12 licensed channels, and the bandwidth
for every channel is set to WC = 5MHz. Particularly, we employ a slow flat fading channel model to characterize
the uplink wireless transmission from every SWB to the corresponding SC in CWBSN. In the considered model, the
path-loss exponent is set to ω = 2. We suppose that the receiving reference power by every SC is defined as the same
value P0 = 8dBm under the reference distance d0 = 1m. The background noise power spectral density at every SC is
assumed to be n0 = −15 dBm. We further adopt a constant processing gain factor given by Γ = −1.5/ log2 (5 · BER),
where the acceptable BER is set to 10−3 for multiple quadrature amplitude modulation with symbol period 52.5µs.
In addition, the interference temperature limit is initialized as Imax

n,k = 20dBm, ∀n ∈ NP = {1, 2} and ∀k ∈ NC =

{1, 2, · · · , 12}, for every PMD to protect them from harmful interference generated by all the current active SWBs.

In all the simulations, the detection probability φdk and the false alarm probability φfk of each licensed channel for
the CG are uniformly distributed over [0.95, 0.99] and [0.01, 0.2], respectively. The priori probability φk of PMD’s
occupation on each licensed channel is also assumed to be uniformly distributed over [0, 1]. For physiological data
sampling, we suppose that each SWB can only sample A = 3 attributes of physiological data during the physiological
data sampling phase, namely, Attribute 1, Attribute 2, and Attribute 3. The sampling intervals of the physiological
data sampling phase are set to be the same value for each SWB, i.e., K = 20. Due to the lack of empirical data
about physiological data sampling for different attributes, we assume that the minimum value and maximum value
of physiological data sampling adopted by Algorithm 1 among three kinds of attributes for each SWB are initialized
in Fig. 5. For every sampled attribute of physiological data sampling value, the number of equal subintervals in
Algorithm 1 is set to Lm,i,k,α = 8, ∀m ∈ NW = {1, 2, 3, 4}, ∀i ∈ Nm,S = {1, 2, · · · , 5}, ∀k ∈ NC = {1, 2, · · · , 12}, and
∀α ∈ {1, 2, 3}.
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(a) CWBSN 1

(b) CWBSN 2

(c) CWBSN 3

(d) CWBSN 4

Figure 6: Approximate probability distribution of A = 3 sampled attributes for nS = 5 SWBs in nW = 4 CWBSNs.
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Figure 7: Statistical probability distribution of A = 3 sampled attributes for nS = 5 SWBs for every CWBSN.

Based on this setting, the approximate probability distribution of every sampled attribute of physiological data
sampling value generated by Algorithm 1 can be assumed to satisfy the distribution for each SWB in the considered
CWBSNs, as depicted in Fig. 6. For simplicity, we assume that the statistical probability distribution of every
attribute of sampling value is set to be the same distribution for each SWB over the corresponding CWBSN, as shown
in Fig. 7. For Attribute 1, Attribute 2, and Attribute 3, the weight of sampled attribute for every SWB is set to be
0.3, 0.3, and 0.4, respectively. As a result, we can obtain the relative divergence between the approximate probability
distribution and the statistical probability distribution for every attribute of sampling value, as well as the weighted
average relative divergence for each SWB over the corresponding CWBSN (see Table 5).

The proposed optimization framework using Algorithm 2 is compared against the classical distributed constrained
power control (DCPC) algorithm in [39]. The DCPC algorithm can be regarded as a SINR balancing constrained
power allocation algorithm which distributively and iteratively searches for decentralized transmit power updated
from the ε-th iteration to the (ε+ 1)-th iteration. Let us use γtar

m,i,k to denote the target received SINR of SC Cm

in CWBSN m over channel k to maintain a certain QoS requirement. In the simulations, the target received SINR
is determined as γtar

m,i,k = 8dB, ∀m ∈ NW = {1, 2, 3, 4}, ∀i ∈ Nm,S = {1, 2, · · · , 5}, and ∀k ∈ NC = {1, 2, · · · , 12}.
In this way, the DCPC algorithm iteratively updates the transmit power of SWB i in CWBSN m over channel k by
using the following iterative function:

p
(ε+1)
m,i,k = min

{
Pmax
m,i ,

γtar
m,i,k

γ
(ε)
m,i,k

p
(ε)
m,i,k

}
, ε = 0, 1, 2, · · · . (56)

5.2. Performance of the Proposed Optimization Framework in Ordered Channel Access

We first evaluate the results of the non-cooperative and cooperative optimal transmit power allocation for the
proposed optimization framework using Algorithm 2, by varying the discount factor in the context of ordered channel
access. In Fig. 8, we show the simulated non-cooperative and cooperative optimal transmit power of the proposed
algorithm versus discount factor r for nS = 5 SWBs of nW = 4 CWBSNs in different time slots with DSlot = 22ms and
λCE = 0.008. It is observed that the optimal transmit power for every SWB in the corresponding CWBSN no matter
non-cooperative or cooperative scenarios will gradually increase with the continuous evolution of discount factor r
form 0.1 to 0.9. This occurs due to the fact that discount factor r has a significant impact on the optimal transmit
power of every SWB according to Theorem 1 and Theorem 2. That is, larger discount factor used in the proposed
optimization framework means higher transmit power of every SWB, and vice versa. We observe from Fig. 8 that the
cooperative optimal transmit power of every SWB increases greatly with the growth of discount factor r. However,
with the same value of discount factor, the cooperative optimal transmit power of every SWB is obviously lower than
that of the non-cooperative optimal power. Hence, the performance of the cooperative dynamic power optimization
outperforms that of the non-cooperative scheme, which is in line with the theoretical analysis.
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(a) Time slot 1 (b) Time slot 2

(c) Time slot 3 (d) Time slot 4

(e) Time slot 5

Figure 8: Non-cooperative and cooperative optimal transmit power versus discount factor r for nS = 5 SWBs of
nW = 4 CWBSNs using the proposed algorithm under ordered channel access, where DSlot = 22ms and λCE = 0.008.
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(a) Non-cooperative optimal transmit power (b) Cooperative optimal transmit power

Figure 9: Optimal transmit power versus discount factor r for nS = 5 SWBs of CWBSN 1 using the proposed algorithm
under ordered channel access, where DSlot = 22ms and λCE = 0.05.

Figure 10: Optimal transmit power versus discount factor r between the proposed algorithm and the DCPC algorithm
during time slot 1 under ordered channel access, where DSlot = 22ms and λCE = 0.01.
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Figure 11: Optimal transmit power versus cost pricing factor for energy consumption λCE between the proposed
algorithm and the DCPC algorithm during time slot 1 under ordered channel access, where DSlot = 22ms and
r = 0.5.

Fig. 9 depicts the optimal transmit power using the proposed algorithm versus discount factor r for nS = 5

SWBs of CWBSN 1 under ordered channel access with DSlot = 22ms and λCE = 0.05. In order to focus on the
main findings and make the plot clear, we only show the results for nS = 5 SWBs of CWBSN 1. It is interesting to
observe that the non-cooperative optimal transmit power of every SWB in CWBSN 1 using our presented algorithm
is always larger than the cooperative optimal transmit power of the same SWB. From Fig. 9, we also see that the
optimal transmit power of every SWB in CWBSN 1 under a given discount factor satisfy the interference temperature
constraint Imax

n,k = 20dBm for any PMD.

Fig. 10 displays the results of the optimal transmit power of SWB 1 (i.e., during time slot 1) in CWBSN 1 and
CWBSN 3 versus discount factor r for the proposed optimization framework and the DCPC algorithm in the context
of ordered channel access with DSlot = 22ms and λCE = 0.01. From the results, we can immediately observe that the
cooperative optimal transmit power of SWB 1 is very less than the non-cooperative optimal power and the results
by using the DCPC algorithm with ε = 250 iterations. Meanwhile, the non-cooperative optimal power of SWB 1 is
also smaller than that of the benchmark DCPC algorithm. This figure further provides a hint to choose appropriate
power control mechanisms. In addition, we can find from this figure that the optimal transmit power of SWB 1 by
using the DCPC algorithm presents two fixed power values, i.e., nearly 74mW for CWBSN 1 and 42mW for CWBSN
3, respectively. Such behavior can be interpreted as follows: the optimal transmit power of SWB 1 by adopting the
benchmark algorithm converges to an expected equilibrium point after ε = 250 iterations. Therefore, compared to
the DCPC algorithm, both cooperative and non-cooperative optimal transmit power results own better performance,
which validates the effectiveness of the proposed optimization framework in e-healthcare leveraging CWBSNs.

Fig. 11 presents the impact of the cost pricing factor for energy consumption on the optimal transmit power of
SWB 1 in CWBSN 1 and CWBSN 3 for the proposed algorithm and the DCPC algorithm under ordered channel access
with DSlot = 22ms and r = 0.5. It can be seen from the figure that the optimal transmit power of SWB 1 with our
proposed optimization framework monotonically decreases with the increasing values of cost pricing factor for energy
consumption. Also note that the optimal transmit power of SWB 1 obtained by the DCPC algorithm approaches
two constant power values after 250 iterations, i.e., approximately 74mW for CWBSN 1 and 42mW for CWBSN 3,
respectively. From Fig. 11, we can find that the optimal transmit power of SWB 1 under our proposed optimization
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(a) Discount factor r = 0.2 and iteration index ε = 250 (b) Discount factor r = 0.8 and iteration index ε = 250

Figure 12: Comparison of average transmitted bits of physiological data between the proposed algorithm and the
DCPC algorithm under ordered channel access, where DSlot = 22ms and λCE = 0.01.

framework always performs better than that of the benchmark algorithm by adjusting the cost pricing factor λCE
ranging from 0.004 to 0.018. As expected, the cooperative optimal transmit power of SWB 1 always outperforms the
non-cooperative one under the proposed optimization framework with the same discount factor r = 0.5 and the tuned
cost pricing factor. These observations validate the analysis in Section 4 in the paper.

In Fig. 12, we show the comparison of average transmitted bits of physiological data for every CWBSN between
the proposed optimization framework and the DCPC algorithm under ordered channel access with DSlot = 22ms and
λCE = 0.01. From Fig. 12(a), with the given discount factor r = 0.2, we can observe that the proposed optimization
framework provides more average transmitted bits of physiological data to every CWBSN than that of the DCPC
algorithm with ε = 250 iterations. It could be concluded that despite the reduced transmit power using the proposed
framework, the overall system capacity increases due to the improved SINR. From the perspective of CWBSN, the
average transmitted bits of physiological data in CWBSN 1 is larger than that of other CWBSNs. Fig. 12(b) shows
the results of average transmitted bits of physiological data for every CWBSN under the constraint of discount factor
r = 0.8, which are similar to the results in Fig. 12(a). In contrast, the average transmitted bits of physiological data for
every CWBSN with discount factor r = 0.8 outperforms the obtained average transmitted bits by using discount factor
r = 0.2, and achieves the better performance. This highlights the importance of properly tuning the discount factor
allowing, theoretically, the better system capacity for every CWBSN. Overall our proposed optimization framework
via Algorithm 2 performs much better than other compared DCPC algorithm.

5.3. Performance of the Proposed Optimization Framework in Disordered Channel Access

In this set of results, we move on to explore the performance of the proposed optimization framework in disordered
channel access wherein nS = 5 SWBs in every CWBSN can obtain the time slot based on the discrete uniform
distribution. In Fig. 13, the simulated optimal transmit power for nS = 5 SWBs of nW = 4 CWBSNs in terms of the
competitive and fully cooperative scenarios using the proposed optimization framework are plotted against discount
factor r with DSlot = 22ms and λCE = 0.008. It is noted that different SWBs in each CWBSN access to the same time
slot due to the adopted disordered channel access in TDMA-based access scheme. From Fig. 13, we can find that the
cooperative optimal transmit power performs better than the non-cooperative optimal power for SWBs in every time
slot. This fact validates the analysis in Section 4 in the paper. Furthermore, we observe that the optimal transmit
power for each SWB grows slightly, especially for cooperative power, as discount factor r increases, this is because
the optimal transmit power of every SWB is influenced by discount factor.
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(a) Time slot 1 (b) Time slot 2

(c) Time slot 3 (d) Time slot 4

(e) Time slot 5

Figure 13: Non-cooperative and cooperative optimal transmit power versus discount factor r for nS = 5 SWBs of
nW = 4 CWBSNs using the proposed algorithm under disordered channel access, where DSlot = 22ms and λCE = 0.008.
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(a) Non-cooperative optimal transmit power (b) Cooperative optimal transmit power

Figure 14: Optimal transmit power versus discount factor r for nS = 5 SWBs of CWBSN 3 using the proposed
algorithm under disordered channel access, where DSlot = 22ms and λCE = 0.02.

Fig. 14 compares the non-cooperative and cooperative optimal transmit power for nS = 5 SWBs of CWBSN 3
in ordered channel access by employing the proposed algorithm under the discount factor r varying from 0.1 to 0.9

with DSlot = 22ms and λCE = 0.02. Referring to this figure, we see that the non-cooperative and cooperative optimal
transmit power for SWB 1, SWB 4, and SWB 5 of CWBSN 3 is obviously larger than that of SWB 2 and SWB 3 in
CWBSN 3 when discount factor r is greater than 0.2. Moreover, as discount factor r increases, the non-cooperative
and cooperative optimal transmit power for SWB 1, SWB 4, and SWB 5 of CWBSN 3 then increases markedly. This
implies that we need to properly reduce the discount factor to obtain the lower transmit power. It is further observed
that the non-cooperative optimal transmit power of every SWB in CWBSN 3 via the presented algorithm is always
larger than the cooperative optimal power of the same SWB.

In Fig. 15, we look at the performance comparison of the optimal transmit power of SWB 2 in CWBSN 1 and SWB
5 in CWBSN 3, i.e., during time slot 1, between the proposed optimization framework and the DCPC algorithm in
disordered channel access with DSlot = 22ms and λCE = 0.01. We notice from Fig. 15 that the optimal transmit power
of SWB 2 in CWBSN 1 and SWB 5 in CWBSN 3 within time slot 1 by using the proposed optimization framework
is clearly lower than the simulated results via the DCPC algorithm with ε = 250 iterations. As shown in the figure,
the cooperative optimal transmit power has the lowest values, followed by the non-cooperative optimal power, and
finally the DCPC algorithm as the benchmark. The figure manifests the importance of the selection of the competitive
and cooperative scenarios to improve the energy efficiency and maintain the long-term low-power operations for every
SWB. From the results, we further observe that the transmit power using the DCPC algorithm for SWB 2 in CWBSN
1 and SWB 5 in CWBSN 3 converges to an expected equilibrium value after ε = 250 iterations. Thus, combining
these results demonstrates that the overall performance of the proposed optimization framework is better than that
of the benchmark algorithm.

Next, we analyze the impact of varying cost pricing factor for energy consumption on the optimal transmit power
of SWB 2 in CWBSN 1 and SWB 5 in CWBSN 3 by comparing the proposed optimization framework and the DCPC
algorithm in disordered channel access with DSlot = 22ms and r = 0.5. We consider cost pricing factor λCE for energy
consumption varies from 0.004 to 0.018 while the iteration index for the DCPC algorithm is also set to ε = 250. The
results plotted in Fig. 16 show that with the increase in the value of cost pricing factor the optimal transmit power
of SWB 2 and SWB 5 monotonically decreases for our proposed optimization framework. We can also clearly observe
that the optimal transmit power of SWB 2 and SWB 5 reaches the certain values 2.2mW and 21.5mW, respectively,
after 250 iterations. From Fig. 16, we can conclude that the proposed optimization framework obtains a beneficial
power reduction compared with the DCPC algorithm by adjusting the cost pricing factor. Moreover, the optimal
transmit power of SWB 2 and SWB 5 with cooperative relations is always lower than that of competitive scenarios,
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Figure 15: Optimal transmit power versus discount factor r between the proposed algorithm and the DCPC algorithm
during time slot 1 under disordered channel access, where DSlot = 22ms and λCE = 0.02.

which means that the cooperative power control outperforms the non-cooperative result. Such an insight, to some
extent, is aligned with the fact that the SWBs’ cooperation with each other can achieve optimal uplink transmission
in intra-CWBSN when compared with the cooperative relations among the SWBs.

Finally, Fig. 17 exhibits the comparison of the average transmitted bits of physiological data for every CWBSN
between the proposed optimization framework and the DCPC algorithm in the context of disordered channel access
with DSlot = 22ms and λCE = 0.01. From Fig. 17(a), we can easily see that when discount factor r = 0.2, the proposed
optimization framework achieves more average transmitted bits of physiological data than the DCPC algorithm with
ε = 250 iterations. It can be also observed that the average transmitted bits of physiological data every CWBSN in
cooperative scenario is larger than the results in competitive scenario. As expected, with the aid of the cooperative
optimal power optimization, the overall system capacity for each CWBSN increases owing to the improved SINR
over cooperative scenario. In addition, the average transmitted bits of physiological data for CWBSN 1 achieves best
performance than that of other CWBSNs when discount factor r = 0.2. The same behaviors can also be observed in
Fig. 17(b) where the proposed optimization framework with discount factor r = 0.8 achieves more average transmitted
bits of physiological data than the DCPC algorithm with ε = 250 iterations. Therefore, from the above discussed
results, it is revealed that for dynamic power optimization in our proposed e-healthcare system, rationally handling
the discount factor and choosing the cooperative mechanism substantially influences the system performance.

6. Conclusion

In this paper, we studied the dynamic power optimization problem for e-healthcare leveraging CWBSNs with
imperfect spectrum sensing, and proposed a distributed optimization framework of dynamic power optimization to
mitigate inter-CWBSN co-channel electromagnetic interference and improve the energy efficiency for SWBs. We
employed the mathematical statistics method to obtain the approximate probability distribution of sampling value for
every SWB during the physiological data sampling phase. With this distribution, we designed the weighted average
relative divergence for every SWB via the Kullback–Leibler divergence to characterize the quality of physiological
data sampling. By considering the quality of physiological data sampling, we further defined the utility function of
every SWB. Then the problem of dynamic power optimization for SWBs was formulated as a differential game model,
in which the utility function was maximized throughout a continuous time interval while satisfying the evolution law
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Figure 16: Optimal transmit power versus cost pricing factor for energy consumption λCE between the proposed
algorithm and the DCPC algorithm during time slot 1 under disordered channel access, where DSlot = 22ms and
r = 0.5.

(a) Discount factor r = 0.2 and iteration index ε = 250 (b) Discount factor r = 0.8 and iteration index ε = 250

Figure 17: Comparison of average transmitted bits of physiological data between the proposed algorithm and the
DCPC algorithm under disordered channel access, where DSlot = 22ms and λCE = 0.01.
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of energy consumption in the battery of every SWB. From the perspective of the non-cooperation and cooperation
relations for SWBs, we converted the game model into two subproblems, namely, utility maximization problem and
total utility maximization problem, and also derived the non-cooperative and cooperative optimal solutions for power
optimization. We further showed that the performance of the cooperative dynamic power optimization is better
than that of the non-cooperative optimization in terms of the optimal power and the actual utility gained by each
SWB, respectively. Our simulation results demonstrated the practicality of implementing the proposed optimization
framework to achieve considerable amount of power savings and improved system capacity in e-healthcare scenario.
Besides, we showed that better performance can be achieved by using the cooperative mechanism to maximize the
overall utilities rather than the competitive scheme to obtain the individual utility maximization.
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Appendix A. Proof of Theorem 1

First of all, based on this conversion from the general differential game model Gk into an infinite horizon one, we
intend to perform the maximization operation of the right hand side of (30) with respect to the variable pm,i,k (t). To
reach this goal, we obtain the partial derivative of the right hand side of (30) with respect to the variable pm,i,k (t),
and give the following indeed solution:

2E [dm,i,k]
Pmax
m,i − p∗m,i,k (t)

Pmax
m,i

+
∂Lm,i,k

(
p∗m,i,k, E

∗
m,i,k

)
∂E∗m,i,k (t)

, 0. (A.1)

After some simplifications, the non-cooperative optimal solution p∗m,i,k (t) can be obtained by:

p∗m,i,k (t) = Pmax
m,i

1 +
tT

2E [dm,i,k]

∂Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
∂E∗m,i,k (t)

 . (A.2)

Substituting (A.2) back into (30), straightforward computation yields that:

Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
=

Pmax
m,i t

2
T

4rE [dm,i,k]

∂Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
∂E∗m,i,k (t)

2

+
ER
m,i,k (t)− tTpm,i,k (t)− E∗m,i,k (t)

r

∂Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
∂E∗m,i,k (t)

. (A.3)

Now we are ready to derive the derivative of value function Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
with respect to the non-

cooperative optimal energy consumption E∗m,i,k (t) in (A.3). Upon solving the partial differential equation, we can
obtain the auxiliary function as the partial differential equation, which can be expressed as:

∂Lm,i,k
(
p∗m,i,k, E

∗
m,i,k

)
∂E∗m,i,k (t)

= − λCE
tT (r + 1)

. (A.4)

By substituting the expression of value function in (A.4) into (A.2), we can easily obtain the non-cooperative
optimal solution which is equivalent to:

36



p∗m,i,k (t) = Pmax
m,i

(
1− λCE

2 (r + 1)E [dm,i,k]

)
. (A.5)

which constitutes the NE to the non-cooperative game Gk. This concludes the proof of our theorem.

Appendix B. Proof of Theorem 2

The proof is very similar to that of Theorem 1. The only difference is that the optimization objective of the
total utility maximization problem in (37) is to maximize the sum of the utility functions of all SWBs. Likewise, in
this appendix, we are also ready to transform the total utility maximization problem in (37) into an infinite horizon
differential game model by relaxing the terminal time t0+DSlot as infinite time horizon. Performing the maximization
operation of the right hand side of (38) with respect to the variable pm,i,k (t), we have the following result:

p�m,i,k (t) = Pmax
m,i

1 +
tT

2E [dm,i,k]

∂Fm,i,k
(
p�m,i,k, E

�
m,i,k

)
∂E�m,i,k (t)

 . (B.1)

Plugging (B.1) back into (38), after some algebraic manipulations, we immediately have:
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·
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Following (B.2), we start by deriving the derivative of value function Fm,i,k
(
p�m,i,k, E

�
m,i,k

)
with respect to the

cooperative optimal energy consumption E�m,i,k (t) in (41). It is sufficient to prove that
∑nW

i=1 λ
C
E = nWλ

C
E for each

SWB. Upon solving the partial differential equation, we can immediately obtain the auxiliary function as the partial
differential equation calculated by (40). By substituting the expression of value function in (40) into (B.1), we can
easily get the cooperative optimal solution as formulated by (39). As a result, Theorem 2 is derived.

Appendix C. Proof of Theorem 4

From the right hand side of (53), we observe that it can be verified that the component 1
6 (·) since we can exactly

get the following main result: ∑
i∈{1,2}

(
Pmax
m,i

(
ER
m,i,k (t) +

λCE
(r + 1)E [dm,i,k]

− 1

))
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i∈{1,2}

(
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(
ER
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(r + 1)E [dm,i,k]
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. (C.1)

After a reasonable approximation, it is easily shown that:

∑
i∈{1,2}

(
Pmax
m,i

(
ER
m,i,k (t) +

λCE
(r + 1)E [dm,i,k]
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> 0. (C.2)

Furthermore, in order to guarantee that Om,i,k
(
p�m,i,k, E

�
m,i,k

)
> Lm,i,k

(
p∗m,i,k, E

∗
m,i,k

)
, we can also obviously

check that:
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(
18λCE + (r + 1)

(
3λCE − 16 (r + 1)

))
λCEP

max
m,i > 0,

=⇒ 18λCE +
(
3λCE − 16 (r + 1)

)
(r + 1) > 0,

=⇒ 3λCE (r + 7) > 16 (r + 1)
2
, (C.3)

and

(2r + 1)λCEe
t + 10λCE

(
tTP

max
m,i − ER

m,i,k (t)
)
< 0,

=⇒ 10
(
ER
m,i,k (t)− tTP

max
m,i

)
> (2r + 1) et. (C.4)

For the discount factor 0 < r < 1, it then follows from (C.3) and (C.4) that the inequalities (54) and (55) are both
exactly satisfied. This completes the proof.
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