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Abstract

An increasing number of emerging applications, e.g.,

Internet of Things (IoT), vehicular communications, augmented reality, and the growing complexity due to the interoperability
requirements of these systems, lead to the need to change the tools used for the modeling and analysis of those networks.
Agent-Based Modeling (ABM) as a bottom-up modeling approach considers a network of autonomous agents interacting with
each other, and therefore represents an ideal framework to comprehend the interactions of heterogeneous nodes in a complex
environment. Here, we investigate the suitability of ABM to

model the communication aspects of a road traffic management system as an example of an IoT network. We model, analyze
and compare various Medium Access Control (MAC) layer protocols for two different scenarios, namely uncoordinated and
coordinated. Besides, we model the scheduling mechanisms for the coordinated scenario as a high level MAC protocol by
using three different approaches: Centralized Decision Maker, DESYNC and decentralized learning MAC (L-MAC). The results
clearly

show the importance of coordination between multiple decision makers in order to improve the information reporting error and

spectrum utilization of the system.
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Abstract—An increasing number of emerging applications, e.g.,
Internet of Things (IoT), vehicular communications, augmented
reality, and the growing complexity due to the interoperability
requirements of these systems, lead to the need to change the
tools used for the modeling and analysis of those networks.
Agent-Based Modeling (ABM) as a bottom-up modeling approach
considers a network of autonomous agents interacting with
each other, and therefore represents an ideal framework to
comprehend the interactions of heterogeneous nodes in a complex
environment. Here, we investigate the suitability of ABM to
model the communication aspects of a road traffic management
system as an example of an IoT network. We model, analyze
and compare various Medium Access Control (MAC) layer
protocols for two different scenarios, namely uncoordinated and
coordinated. Besides, we model the scheduling mechanisms for
the coordinated scenario as a high level MAC protocol by using
three different approaches: Centralized Decision Maker, DESYNC
and decentralized learning MAC (L-MAC). The results clearly
show the importance of coordination between multiple decision
makers in order to improve the information reporting error and
spectrum utilization of the system.

Index Terms—Agent-Based Modelling (ABM), Internet of
Things (IoT), Complex Communications Systems (CCS).

I. INTRODUCTION

In the context of this study, a complex system is defined
as any system featuring a large number of interacting com-
ponents (agents, processes, etc.) whose aggregate activity is
nonlinear (not derivable from the summations of the activity
of individual components) and typically exhibits hierarchical
self-organization under selective pressures [1]. Considering
this definition of complex systems, the next generation of
communication networks (e.g., IoT, cellular networks, vehic-
ular networks) can be regarded as a complex system due
to growing number of technologies and connected devices.
Complexity in decision making (scheduling, routing) for a
large IoT system requires new modeling and decision making
tools and methodologies, which motivates its study by means
of complex systems science (CCS) [2], [3]. The tools used
to model and analyze these networks must evolve in order
to optimally utilize the available resources (e.g., spectrum,
processing power) at affordable complexity.
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ABM is a bottom-up approach of modeling that considers a
network of autonomous agents. Each agent has its own set
of attributes and behaviors. These behaviors describe how
the agents interact with other agents and their environment.
If needed, the agents can exhibit learning capabilities that
allow them to adapt to changes in the system, altering the
internal attributes and the behaviors towards other agents.
Therefore, ABM is suitable to model complex systems [4]–
[6] that would require large computational complexity to be
modeled otherwise.

ABM has previously been used to model a wide range of
applications in sectors such as ecology, biology, telecommu-
nications and traffic management. Some examples include:
[7] where ABM is used to model intra-cellular chemical
interactions, and [8] to analyze the parking behaviors in a city.

Recently, ABM has been used to solve various complex
problems in telecommunication networks. Reference [9] pro-
vides a survey of recent works on use of ABM for modelling
IoT systems. The authors of [10] show how a cognitive agent-
based computing modeling approach, such as ABM, can be
used to model complex problems in the domain of IoT.
Following an approach similar to [10], our work examines the
use of ABM to model an IoT network that requires distributed
decision making. The IoT network in question is a road traffic
management system that adjusts the timing of traffic lights
based on the amount of vehicles waiting at an intersection.
Our focus is on the modeling of the communication aspects
of the system and in particular we want to analyze the impact
of the MAC protocol on the application itself, i.e., the timing
of traffic lights.

Many applications of ABM in the telecommunications in-
dustry have focused on economic and social aspects, such as
consumer behavior. In [11], the authors model the customer
behavior in a telecommunication network. Also, in [12], ABM
is used to analyze the wireless cellular service market. There
have been quite a few applications of ABM that model the
network itself. In [13], the authors describe how ABM can
be applied to model spectrum sharing techniques in future
5G networks. The authors model a system that considers eco-
nomical, technical and regulatory considerations when leasing
spectrum. The agents are able to remember what spectrum
sharing conditions were beneficial for them previously and
learn/adapt based on their previous choices. The authors of
[14] analyze the spectrum trading mechanism by modeling
the heterogeneous nodes as agents in an ABM framework. The
motivation for ABM came from the emergence of structures,
patterns and unexpected properties. ABM allowed them to
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TABLE I
COMPARISON OF ABM AND MATHEMATICAL MODELLING APPROACHES

Property Mathematical Model ABM
Response to system state change Difficult to capture Convenient to capture

Implementation complexity for large systems Moderate High
Modeling of heterogeneous agents Not possible Possible

Response to randomness Difficult to model Relatively easy
Access to intermediate results Difficult to access Easily available

model and understand market models with dynamics that are
beyond the scope of familiar analytical formulations, such as
differential equations.

Other applications of ABM to communication networks are
presented in [15]–[17]. The authors of [15] analyze the effec-
tiveness of ABM to model self-organization in peer-to-peer
and ad-hoc networks. They also outline the limitations of using
current modeling and simulation software. Their work shows
that tools such as OMNeT++, Opnet and specialized tools such
as the Tiny OS Simulator are limited as they tend to focus
solely on computer networks. Interactions with humans and
mobility cannot be modeled with enough flexibility. Network
parameters can be easily modified but other conditions are
difficult to be considered. The authors highlight the flexibility
of an ABM approach, showing how easily the system can
be updated and allow for powerful result abstraction. In
[16], the authors analyze a decentralized spectrum resource
access model as a complex system, modeling the decentralized
decision making and cooperation of distributed agents in a way
that allows them to partially observe the state of the system,
meaning that each agent has only the information about its
own local environment. The authors of [17] introduce an ABM
framework to formally define all necessary elements to model
and simulate a Wireless Sensor Network (WSN). As a proof
of concept, they demonstrate the application of the framework
to a model of self-organized flocking of animals monitored
by a random deployment of proximity sensors. In [18], Marco
et al. provide an ABM simulation framework applied to IoT
networks and show results on suitability of their proposed
model to evolving IoT networks. These studies provide further
motivation to our investigation on use of ABM for the dynamic
scenarios where ABM is more suitable as compared to other
optimization methods. A very recent work in [19] summarizes
when continuous-learning based approaches can outperform
model-based approaches in network optimization.

Many studies have been carried out to try to optimize traffic
flow (specifically in urban areas) using WSN. For example, in
[20], [21] and [22], sensor networks for monitoring traffic are
proposed. The authors of [23]–[25] use ABM for traffic opti-
mization and simulation. Reference [23] describes an ABM
solution to generate personalized real-time data to present
route information to travelers. The authors in [24] model the
effect of an increasing population on traffic congestion. In [25]
a detailed traffic simulator using NetLogo was designed. It
analyzes the effect on traffic congestion when various different
lanes of traffic are introduced. The authors in [26] propose a
deep learning and ABM based solution for traffic light control.

Based on our discussion in this section on the application

use cases where ABM is an effective approach, we summarize
the pros and cons of ABM and mathematical model based
approach in Table I. ABM approach is very effective when
system is highly dynamic and different entities of the system
interact with each other. ABM allows the system to respond
to any change in environmental conditions and take action,
which is not possible with mathematical models where only
steady state response can be captured. Similarly, ABM facil-
itates modeling of agents with different properties, a feature
difficult to model with mathematical modeling. ABM allows
access and study of intermediate results of the system, where
mathematical modeling focuses on steady state results. Due to
large system state space, ABM is suitable for systems with
moderate number of agents and limited interactions while
mathematical modeling is suitable for large system with steady
state result focus.

Though the work presented in the above papers and others
such as [27], provide motivation to our work, their focus lies in
the functionality and optimization of the traffic light systems
and not on the modeling and analysis of the communication
aspects of the related sensor network.

Due to the suitability of the ABM approach to model
large systems composed of autonomous decision making en-
tities, we believe that ABM is a perfect match to model
and analyze the problem addressed in this paper, i.e., road
traffic management. IoT systems in future will comprise of
thousands of devices and decision making will be increasingly
more complex. Traditional centralized approaches have little
potential to succeed in such large systems, while completely
independent decision making will make system severely sub-
optimal. ABM allows us to model individual agents and the
effect that those agents have on their local environment, and as
a result we can observe the cumulative/system level behavior
that results from the agents interacting with each other and
with the environment. The beauty of this approach is that
by modeling the interactions and their effects locally, we
actually model a complex decision making system which is
decentralized in nature. It may not be optimal as compared
to centralized decision making entities, but it provides a low
complexity decision making framework.

Building on the preliminary work in [28], we have proposed
a comprehensive analysis of an ABM approach to model a
distributed IoT system. As an example of IoT system, we
apply ABM on traffic intersection system; but the results can
be generalized to other systems with appropriate definitions
of agents and their interactions. We summarize the main
contributions of the paper as:
• We aim to demonstrate a distributed modeling methodol-
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ogy that can be applied to study various MAC protocols
in IoT systems. We believe that our framework will
help further studies on protocol and routing algorithms
for wireless networks with large number of nodes. We
demonstrate the use of ABM to model the communication
aspects of IoT networks with suitable definitions of agents
(sensors, decision makers) and their interactions.

• Furthermore, we investigate impact of different MAC
protocols on the information reporting error gathered by
a sensor network. We first model a single intersection
case for developing intuition and then extend the work
to more complex multi-intersection case where impact of
system changes in one intersection can be observed over
other intersections.

• Using ABM approach, we evaluate the spectrum utiliza-
tion of different MAC protocols in a multi-layered net-
work configuration, comprising of a smaller scale (intra-
intersection) interaction between nodes using TDMA,
slotted Aloha or CSMA/CA protocols, and a larger
scale (inter-intersection) interaction in the system using
DESYNC and L-MAC protocols. We quantify the results
using numerical evaluation in Section IV. It is worth
noting that goal of the evaluation is not the performance
comparison of MAC protocols from an optimization point
of view, but to demonstrate a use case for analysis of such
problems in communication systems where distributed
decision making needs to be performed in a system with
large system state.

The rest of the paper is organized as follows. Section
II presents the description of the model and outlines the
algorithm used for modeling ABM system. Section III intro-
duces the MAC protocols that are implemented in the Mesa
framework. In Section IV, we present the methodology used
for the analysis and discuss the results gathered from the
simulations. In Section V, we elaborate on the main findings
and discuss conclusions on the work.

II. DESCRIPTION OF MODEL

A. Agent Based Modeling Framework

We first define the fundamental terms used in ABM.

Definition 1 (Agent). An autonomous computational object
with particular properties and capable of particular actions
is called an agent.

Agents are completely autonomous entities in their decision
making. As shown in Fig. 1, every agent has a set of attributes
and methods that define how and with whom it can interact.
This defines the topology of an ABM system. Not all the
agents are connected with each other; instead an agent is
connected with a particular set of agents, called neighbors,
who influence its localized decision making.

Definition 2 (Environment). A set of entities that influence the
behavior of an agent constitute the environment for an agent.

Fig. 1 shows that agents interact not only with other agents
but also with the environment.

Agent
Attributes: 
▪ Static: name, initial state, …
▪ Dynamic: memory, resources, 

neighbors, environment state, …

Methods:
• Behaviors
• Rules to update the behavior
• Rules to update dynamic attributes
• …

Other Agents

Agent 
Agent 

Environment

Interaction 
with agents

Interaction with 
Environment

Fig. 1. Each agent can interact with the environment and/or other agents in its
neighborhood. Agents also have a set of static and dynamic attributes storing
the properties of the agent and its knowledge about the surrounding agents
and the environment. Agents can be heterogeneous having different attributes
as illustrated with different colors. The simple rules that an agent is following
are encoded in the methods.

To model a problem using ABM, we have to define the
agents, the environment as well as associated methods and
interactions in a way that reflects the original problem. The
goal is to model the distributed optimization mechanisms
that would converge reasonably to optimized solution by
modeling the interactions of a decentralized system such that
the complexity remains manageable.

B. Road Traffic ABM Model

In order to explain the model (i.e., the agents and the
environment of the ABM model), we start with the single
intersection of roads. The visualization of this model is shown
in Fig. 2. The environment of our model is represented by the
road. The agents in our model are:
• sensors
• traffic lights
• vehicles
• Decision Maker (DM)

These are the main entities of the system that interact with
each other. This single intersection model contains 20 sensors.
The sensors are represented by the black dots surrounding the
perimeter of the roads. There are four traffic lights. These can
be seen as the red/green dots near the center of the image. The
yellow squares in Fig. 2 symbolize vehicles traveling on the
road.1 The blue square in the upper right section of the image
represents a central DM that will be responsible for managing
the timing of the traffic lights in the model.

The interaction between the sensor agents and the envi-
ronment (the road) is modeled by the collection of traffic
measurements. Those measurements represent the number of
vehicles approaching the intersection. Once a sensor observes
a vehicle approaching the intersection, it tries to transmit this
information to the DM.

The DM controls the timing of the four traffic lights with
the aim of optimizing the waiting time of the vehicles traveling

1It should be noted that the vehicles follow UK and Ireland driving
conventions and travel on the left-hand side of the road.
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Fig. 2. Sensors, DM, traffic lights and vehicles represent ABM agents. The
sensors are represented by the black dots surrounding the perimeter of the
road. The green and red dots are traffic lights. Vehicles are represented by
yellow squares, and the DM is represented by a blue square in the upper right
section.

through the intersection. It is important to notice that we
do not focus on the optimization algorithms related to the
vehicle traveling time, we rather focus on the analysis of the
communication aspects of the sensor network that collects the
information about the traffic. In Fig. 2, the traffic lights appear
in red and green colours. The red colour symbolises that traffic
should stop when it reaches the traffic light. The green colour
represents that the vehicles are free to move past the traffic
light.

The model description is outlined with the Algorithm 1.
The tick number limit (Tmax) is a user defined parameter,
that allows us to define the upper time limit for the sensor
transmission attempts and at the same time the decision
making interval of the DM agent. One tick is equivalent to
a transmission time slot on the MAC layer. Since we dedicate
one tick to the movement and generation of the vehicles and
one additional tick for the DM decision making function, the
number of ticks that is dedicated for the transmission of the
measurements (Ttrans) is calculated as:

Ttrans = Tmax − 2 (1)

As shown in Algorithm 1, each car that is currently on the
grid will attempt to move one space forward in each simulation
iteration (one iteration takes Tmax ticks). For simplicity sake,
the vehicles will always travel in a straight line. If there is
already another vehicle in the space a certain car intends to
move to or the space in front of that, it will not be allowed
to move forward. This prevents vehicles from colliding with
each other or travelling too close to each other. Vehicles are
also prohibited from moving if they are close to a traffic light
in their trajectory and the traffic light is red.

Each simulation iteration involves the creation of new
vehicles on the grid. The number of vehicles added to the grid
depends on the user defined parameter (prob. of new vehicle).
Vehicles will only be initialized on the edges of the grid
either traveling north, south, east or west. The initial position
of the newly generated vehicles is chosen randomly (i.e.,
uniformly sampled from a list of all available positions). If
there is already a vehicle currently blocking the placement of
the newly generated vehicle, the newly generated vehicle will

Algorithm 1 Model
0: Tc ← Current Tick number
0: Tmax ← Tick number limit
0: repeat
0: Set tick number to 0
0: for each existing vehicle do
0: if no car in front and green light then
0: Move forward
0: if random number < probability of new vehicle then
0: Create new vehicle
0: while Tc < Tmax or Transmission not succ. do
0: Sensor attempt to transmit
0: Increment Tc

0: if Tc == Tmax then
0: DM make decision

=0

be discarded. Once the vehicles are placed on the grid and
the existing vehicles move according to the above mentioned
rules, the sensors collect the vehicle position information and
attempt to convey those measurements to the DM. The sensors
detect stopped vehicles by remembering the grid space where
vehicles were detected in the previous cycle. If this grid space
is still occupied by the same vehicle in the current cycle, that
means that the vehicle has stopped moving. On the other hand,
if the grid space is no longer occupied, the vehicle has moved
on. We model the MAC layer protocols (i.e., TDMA, slotted
Aloha and CSMA/CA) for the communication between the
sensors and the DMs, and in the case of multiple intersections
we also model the communication between the DMs (TDMA
like scheduling). It is important to keep in mind that the
implemented model is discrete (the time is divided into slots of
equal duration). Each sensor can only transmit at the beginning
of a slot. The chosen MAC protocol defines how to deal
with potential collisions. A collision happens in case a sensor
attempts to transmit in the same slot as one of its neighbors.
A neighboring sensor is the one that is in the selected sensor’s
Moore neighborhood. The Moore neighborhood represents the
8 grid spaces surrounding the selected sensor’s grid space.
Hence, a sensor transmission is affected by the transmission
of sensors in all directions, including diagonals.

In our analysis we consider three MAC protocols for the
communication between the sensor nodes and the DMs, i.e.,
slotted Aloha, TDMA and CSMA/CA. Slotted Aloha deals
with collisions by introducing back-off time, meaning that
in case two neighboring sensors try to transmit at the same
time, both transmissions will be unsuccessful and the sensors
will choose a random back-off time to retry the transmission.
The Aloha protocol also introduces a timeout time, which in
case it is reached without a successful transmission implies
that the packet should be discarded. As opposed to the Aloha
protocol which does not involve any type of synchronization
between the nodes and therefore, potentially leads to packet
collisions, the TDMA protocol is implemented by allowing
the DM to assign each sensor a specific time slot for packet
transmissions. The centralized coordination, results in a colli-
sion free environment, if only one DM exists (i.e., the single
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State 0

State 1 State 2 T < T2
T < T1

T < 9

Fig. 3. Traffic Light Finite State Machine describes the transition of the traffic
lights between the three predefined states.

intersection of roads scenario). In case multiple DMs are
managing the communication of their sensors (i.e., Fig. 4),
we have to introduce some type of coordination between
the DMs to avoid potential packet collisions. The CSMA/CA
protocol, like Aloha, is an opportunistic approach. If a sensor
has information to send, it first checks if any of its neighbours
is currently using the spectrum resource. If the resource is
currently being used, a back-off time will be computed. If
the resource is not being used, the packet will be transmitted
collision free and the DM will send an acknowledgment packet
back to the sensor node to confirm the reception of the packet.
It should be noted that the model assumes that there are
no hidden nodes. Therefore, all potential collisions will be
successfully sensed before transmission.

As shown in Algorithm 1, the final time slot of each cycle
is reserved for the DM entity to make a decision. The DM
analyzes the information received from the sensors and based
on that controls the timing of the traffic lights. The traffic lights
follow a strict set of rules, that can be summarized with the
finite state machine shown in Fig. 3. The traffic lights can be
configured to be in one of three different states - State 0, State
1 and State 2. Fig. 2 shows the system in State 1, allowing
cars traveling eastwards and westwards to pass. In State 0, all
traffic lights are red, and hence no vehicles are allowed to pass
through any traffic lights. State 2 allows only vehicles traveling
northbound or southbound to pass. The DM determines how
long the traffic lights stay in a certain state, i.e., the DM based
on the collected sensor information calculates the values of
T1 and T2 in Fig. 3. Fig. 3 also shows that between each
transition of State 1 and State 2, a period of 9 cycles in
State 0 takes place. This period allows all traffic that has
recently passed through the traffic lights to safely clear the
intersection, preventing collisions with vehicles coming from
other directions.

As previously mentioned, if we consider a more complex
scenario (i.e., the four neighboring intersections scenario),
we have to introduce coordination between the DMs. Again,
our focus is not the coordination of the decision making
functionalities of the DMs in order to optimize the traffic
flow. Therefore, the states of the traffic lights are completely
independent from each other. We focus on the optimization of
the communication aspects of this scenario, meaning that the
DMs coordinate the transmission time slots for their sensors

Fig. 4. A four intersections model, showing all the sensors (black), traffic
lights (red and green), vehicles (yellow) and decision makers (blue) that are
part of our model.

in order to minimize the number of collisions. As shown in
Figure 4, each intersection has 20 sensors, 4 traffic lights and
one DM. The vehicles can now be generated in more locations
compared to the basic model (i.e., one intersection model).
We also define a neighbor radius set, that defines the distance
between two sensors within which their transmissions could
result in collisions.

III. HIGHER MAC PROTOCOLS

In this section, we discuss some MAC protocols to model
interactions between agents and environment. In order to
coordinate the transmissions for neighboring intersections, we
introduce a higher MAC layer, that schedules DMs in a TDMA
like manner. Each DM gets its own dedicated time slot for
communication with its own sensors and such an arrangement
models inter-agent interaction. We also introduce a protocol
for communication of higher and lower MAC layers. One
slot on the higher MAC layer is the equivalent of 20 slots
on the lower MAC layer. The lower MAC layer protocols
are described previously (i.e., slotted Aloha, TDMA and
CSMA/CA), whereas the higher MAC layer uses one of the
following three approaches to coordinate the communication
amongst multiple DMs: (1) Centralized Decision Maker, (2)
Decentralized L-MAC and (3) DESYNC.

A. Centralised Decision Maker

The approach that involves a Centralised Decision Maker
(CDM) entity assumes that this centralized node has all
the information needed to control all involved DMs. The
centralized node needs to know how many time slots should
be assigned to each DM and how to synchronize the activation
of all DMs. As mentioned previously, our approach schedules
20 time slots, using a selected protocol - either TDMA, slotted
Aloha or CSMA/CA, per DM in a round robin fashion.

B. Decentralized L-MAC

This approach allows us to coordinate the transmission
among multiple DMs by implementing a decentralized TDMA
schedule by using the L-MAC protocol outlined in [29]. Each
DM defines a probability vector of length C where C is the
available number of time slots in a round. Initially, each DM
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chooses a transmission slot with equal probability. Based on
the success and failure rate of transmission for the chosen
transmission slot, the probability vector for each DM gets
updated to allow a more intelligent choice of slots in the next
round. The result of this is a collision-free schedule, provided
that the number of DMs is less than C.

C. DESYNC

The DESYNC algorithm is described in [30]. Each DM
initializes a slot for the communication with its sensor nodes.
Each DM also listens for messages that are transmitted by
other DMs and stores the timestamps of transmissions that
occurred before and after its own slot. This information is
used by the DMs to adjust their own slot, by computing the
midpoint between the previous and next slot. The method
described in [30] is concerned with a continuous model. We
had to adapt this in order to fit our discrete model. The
midpoint (Tm) between the previous (Tp) and next (Tn) time
slot is computed as,

Tm =
⌊Tp + Tn

2

⌋
(2)

where Tp and Tn are the firing slots of the DMs immediately
before and after the DM whose Tm is being calculated
respectively. Equation (2) was further adapted to deal with
the periodic nature of our timestamps (i.e., time cycles). For
example, let us assume that the round time is Tr = 10, Tp = 8,
and Tn = 2. The midpoint slot (Tm) calculated for the next
round should be equal to 10. It is to be noted here that Tr

is the total round time for each cycle i.e. the total number of
time slots in each cycle. However, using equation (2) it results
in Tm = 5. Therefore, if Tp > Tn, then the following equation
should be used:

Tm =
⌊Tp + Tn + Tr

2

⌋
(3)

This ensures that each DM will position itself in the midpoint
slot between the DMs transmitting before and after it, resulting
in a collision free TDMA schedule.

IV. SIMULATION STUDY

The model was built using the ABM Python library Mesa
[31]. Mesa is an open source framework that is built with
the functionality of popular ABM simulation software such as
NetLogo, Repast and Mason. Mesa’s DataCollector module
allows us to easily collect data from the agents in the model
at specified intervals. Mesa enables us to visualize the entire
system at each simulation step, helping with the debugging
and verification of the traffic lights finite state machine.

In this section, we present the simulation results for both
scenarios: (1) uncoordinated and (2) coordinated. The results
are generated for a varying range of input parameters, such
as selection of MAC protocols, number of time slots available
for the DMs on the higher MAC layer and neighbor radius.
The results are evaluated using the information reporting error
and the spectrum utilization as criteria.

The reporting error of the information received by the DMs
is important to the overall functionality of the system. The

actual number of vehicles waiting at a given moment at the
traffic lights is denoted by NW . The number of vehicles that
has been registered by the sensor nodes is denoted by NS , and
the number of vehicles that has been reported to the DM is
NDM . Since we focus on the communication aspects of the
system, we assume perfect sensing implying NS = NW . We
define information reporting error A as the difference between
number of vehicles reported to the DM and the actual number
of vehicles waiting at the traffic lights.

A = NDM −NS , (4)

A reporting over-estimation error (A > 0) means that the DM
believes that there are more vehicles waiting than the actual
figure. A reporting under-estimation error (A < 0) means
that the DM believes that there are fewer vehicles waiting
than the actual ones. This data is collected once every cycle
before the DM action step outlined in Algorithm 1. Since we
assume perfect sensing (NS = NW ), any discrepancies can be
attributed to interference within the system, i.e., collisions of
packets transmitted from neighboring nodes in the same tick.

The spectrum utilization is a metric that allows us to
understand what proportion of the available information in
the system is actually transferred to the DM in order to make
a more informed decision about the traffic light states. For
example, if there are 5 vehicles waiting, the total amount of
information/packets that should be available at the DM is 5.
If 2 sensors successfully utilize the spectrum, the utilization
is 40%. Therefore, if the number of successfully transmitted
packets in a cycle is denoted with Nsucc and the actual number
of vehicles waiting at the traffic lights is NW , the spectrum
utilization is calculated as:

U =
Nsucc

NW
× 100 (5)

A. Uncoordinated Scenario

The uncoordinated scenario assumes that the DMs are
not aware of each other’s scheduling decision, meaning that
increasing the number of neighboring intersections will lead
to an increase in the number of collisions, due to the lack of
coordination between the neighboring DMs.

Fig. 5 shows the value of the information reporting error
averaged over 104 simulation steps for the single intersection
of roads scenario. The neighbor radius is set to 15, meaning
that sensors that are within 15 hops away can potentially
interfere with each other.

Fig. 5 highlights that the choice of protocol and level
of traffic affect the reporting error of information received
by the DM. Regardless of traffic level, the model using the
TDMA protocol make transmissions with zero error, resulting
in highly accurate results. In a single intersection model, each
sensor is allocated its own time slot to send. Therefore, there
are no collisions of packets in a slot, resulting in highly
accurate data transmission to the DM. Thus, the DM is always
aware of exactly how many vehicles are currently waiting.

When there is low traffic, the model using the slotted
Aloha protocol is seen to have a number of reporting over-
estimation errors. Such errors are due to backed off sensor
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Fig. 5. Information reporting error for the single intersection of roads scenario. The neighbor radius is set to 15.

packets being transmitted when they no longer reflect the state
of the system (i.e., a collision happens, all involved sensors
decide to retransmit the packets and in the meantime, the
traffic lights change state and the number of vehicles waiting
changes). The DM is not aware that the received information
is stale and therefore continues to control the timing based
on inaccurate information. The information reporting error for
the slotted Aloha protocol changes as the number of vehicles
waiting grows. This is due to the fact that with the increasing
number of waiting vehicles the number of sensors trying to
transmit their measurements increases.

The increased number of transmissions results in an increas-
ing number of collisions, leading to the case in which the DM
does not have the information about a significant number of
vehicles waiting on the lights (NDM << NS). This is further
exemplified through results shown in Fig. 6 on the section of
each Aloha simulation when there is at least one car waiting.
When there is very little traffic there is very little congestion in
the channel and one sensor packet is transmitted at every single
slot. This indicates that there is only one car waiting during
this time. As the number of cars waiting increases, the amount
of collisions increases, leading to less sensors transmitting at
every slot.

The model using the CSMA/CA protocol does not suffer
from any reporting under-estimation error. As expected the
number of reporting over-estimation errors increases with the
increasing level of traffic. The reason for this stems from the
increased number of sensors attempting to transmit packets
when there is a higher traffic level. When the traffic lights
change state, there is a sudden reduction in the amount of
packets competing for spectrum access as the vehicles begin
to move. This leads to an increased amount of packets reaching
the DM with inaccurate information (NDM >> NS).

As previously mentioned, we also calculate the spectrum
utilization as shown in equation (5). The results in Fig. 7
are obtained over 104 simulation steps on a two intersection
model. Considering the uncoordinated nature of the scenario
(2 DMs that are not aware of each others scheduling decisions)
40 ticks are assigned for the sensors to transmit the vehicle
detection information per cycle. We up-scaled the model (from
one to two intersections) in order to increase the range of
neighboring radii. We vary the neighbor radius from 5 to 25.
All the scenarios assume an intermediate traffic level, i.e., a
0.5 probability of a car being generated each cycle.

Fig. 7, as expected, shows that TDMA exhibits the lowest
spectrum utilization. However, it is not affected as much by
neighbour radius. When the neighbour radius is large, there is
a low probability that two sensors from different intersections
within the same neighbour radius would be scheduled for the
same tick, both having vehicles waiting at them. Hence, the
spectrum utilisation for the TDMA protocol remains fairly
constant regardless of the neighbor radii. CSMA/CA displays
the greatest spectrum utilisation in all variations of neighbor
radii. This is due to the sensing ’first - transmitting if available’
policy of the CSMA/CA protocol. This allows sensors to avoid
collisions of packets by sensing the collision before it occurs
and backing off for a random period of time. In comparison
to this, slotted Aloha demonstrates a relatively high spectrum
utilization when the neighbor radius is low. The increase of the
neighbor radius leads to the increasing number of collisions
(due to lack of coordination and sensing), which results in
lower spectrum utilization.

B. Coordinated Scenario

The coordinated scenario assumes that the DMs are aware
of each other’s scheduling. As previously explained, in order
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Fig. 6. Section of each Aloha simulation when there is at least one car waiting, representing an uncoordinated scenario where increased number of transmissions
causes rise in number of collisions.
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Fig. 7. Spectrum Utilization - showing how much of the available information in the system is actually transferred to the DM in order to make a more
informed decision about traffic light system.

to coordinate the scheduling mechanisms of the DMs, we
introduce a higher MAC layer. The coordination is achieved by
either a CDM, DESYNC or the L-MAC protocol. The operation
of the CDM is obvious - manually configured time slots for
each DM. Therefore, we are going to explain in more detail
how the DESYNC and L-MAC protocols achieve the best time
slot assignment on the higher MAC layer.

1) Desync Algorithm: DESYNC algorithm relies on the fact
that each node in the system performs a task periodically.
Depending on the length of the cycle, the convergence of
the system can display different behavior. We explain the
algorithm with the help of some numerical examples and
illustrations in Fig. 8. The ring represents the value of Tr, the
total time taken for a full round to be completed. A colored
circle with a number in the middle represents the DM, that
assigned a time slot. An empty circle represents a slot where
no DM is assigned and therefore remains idle. We are going
to use equations (2) and (3) to explain the illustrations in Fig.
8. Two different scenarios can arise,

• Number of DMs = Tr (refer to Fig. 8a).
• Number of DMs < Tr (refer to Figs. 8b and 8c)

Fig. 8a, is slotted into 4 time slots that can be chosen by
the nodes. Hence, in equations (2) and (3) Tr = 4. Each node

is given a unique starting point. Considering that the number
of nodes is equal to the number of available time slots, the
spacing between the time slots is already maximal and (2) is
always satisfied, resulting in no further readjustments of the
initially chosen time slots. Therefore, (3) is not applicable in
this case.

To summarize the assumptions and conditions for Desync
algorithm, we enlist as,
Assumptions:
• Time-slots are fixed, the DMs move around.
• We assume that the DMs are sequentially placed in the

1st round without any gaps between them.
• Tp is the firing slot of the previous DM in the present

round (since it is a memoryless process).
• Tn is the firing slot of the next DM in the previous round.
• Exception: In order to calculate Tm for DM1 in the

present round, we consider Tp as the firing slot of the
DM4 from the previous round.

Conditions:
• If Tp < Tn, then use Eq.(2) to calculate Tm.
• If Tp > Tn, then use Eq.(3) to calculate Tm.
• If Tm > Tr from Eq.(3), then to calculate the right firing

slot, we use T ′m = Tm mod Tr.
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Fig. 8. Numerical examples implementing DESYNC algorithm that relies on the fact that each node in the system performs a task periodically at a fixed
period : (a) Tr = 4 (b) Tr = 8 (c) Tr = 6.

• Convergence is ensured if, number of DMs = Tr/2
n

where n = 0, 1, 2, 3, . . . is a positive integer.
To illustrate the execution of the Desync Algorithm for the

case where number of DMs is less than Tr, we are going
to analyze an example with Tr = 8. We choose an initial
configuration (shown in the first circle in Fig. 8b: all the nodes
representing the DMs start next to each other). According to
equations (2) and (3), each DM listens to its neighbor’s firing
and adjusts the chosen slot accordingly. Let us consider DM2
in round 2 as shown in row 2 of Table II. To calculate the
position of DM2 in round 2, let us first find out Tm according
to Eq. (2). In this case, Tm = 5, where Tp = 7 is the position
of DM1 in round 2 and Tn = 3 is the position of DM3 in
round 1. Now in this case, Tp > Tn, hence we use Eq. (3)
to calculate Tm = 9 which is greater than Tr = 8, as shown
in Table II. Hence, the final position of DM2 in round 2 is
T ′m = Tm mod Tr = 1. In round 3, for DM2, Tp = 6, Tn = 2.
Since, Tp > Tn, Tm is calculated according to Eq. (3) to be
equal to 8. Hence, we place DM2 on the 8th slot in round 3.
At round 4, for DM2, Tp = 6, Tn = 2. Again, since Tp > Tn,
Tmis found using Eq. (3) as Tm = 8. Therefore, DM2 again
fires at the 8th time slot for round 4. Following this, for the
case where Tr = 8 and number of DMs is 4, the DMs finally
converge in the 4th round. This is because the spacing between
the DMs is maximal and none of the DMs wants to readjust
its firing slot. We summarize the steps and and observations
of this scenario in Table II, Table III and Table IV for rounds
2, 3 and 4 respectively.

Now we will look into an example that never converges (Fig.
8c). In this example the chosen Tr = 6, and the number of
DMs is still 4. Obviously, there is no configuration for which
the time slot spacing between the DMs would be equal and
maximal, and therefore the system never converges. Fig. 8c
shows that the nodes continue to rearrange themselves in such
a way that a circular pattern emerges. Let us consider the firing
slots for DM3. In round 1, it starts on slot 3. In round 2, Tm

can be calculated according to Eq. (2) since Tp = 1 < Tn = 4
and Tm = 2. If we jump to the forth round, in case of DM3,
Tp = 6, Tn = 3, Tm can be calculated according to Eq.
(3), where Tm = 7. Since Tm > Tr, we have final position
as T ′m = Tm mod 6 = 1. Next in the fifth round, Tm for
DM3 becomes equal to 6 (from Eq. (3)). The reconfiguration
continues in this way and never converges. Theoretically, it
is not possible that the nodes can be arranged in such a way
that they are equally spaced with maximal difference between
them. The reason can be attributed to the fact that, number of
DMs 6= Tr/2

n where n = 0, 1, 2, 3, . . . and the system never
converges.

2) L-MAC Protocol: The method used by the L-MAC pro-
tocol to implement a TDMA schedule is quite different from
the DESYNC protocol. Initially, the DMs choose a random slot
in the schedule with equal probability. This is in contrast to the
DESYNC protocol where nodes are assigned a starting point.
If there is a collision in a slot, the DM will choose a slot
again in the next round with updated probabilities. If the DM
is successful in a slot, it will choose the same slot again in
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TABLE II
DESYNC ALGORITHM FOR Tr = 8 : ROUND 2

DM Tp Tn Tm Eq.(2) Tp > Tn Tm Eq.(3) Tm > Tr T ′
m = Tm mod 8 Convergence

1 4 2 3 Yes 7 No Not Applicable No
2 7 3 5 Yes 9 Yes 1 No
3 1 4 2 No Not Applicable No Not Applicable No
4 2 7 4 No Not Applicable No Not Applicable No

TABLE III
DESYNC ALGORITHM FOR Tr = 8 : ROUND 3

DM Tp Tn Tm Eq.(2) Tp > Tn Tm Eq.(3) Tm > Tr T ′
m = Tm mod 8 Convergence

1 4 1 2 Yes 6 No Not Applicable No
2 6 2 4 Yes 8 No Not Applicable No
3 8 4 6 Yes 10 Yes 2 No
4 2 6 4 No Not Applicable No Not Applicable No

TABLE IV
DESYNC ALGORITHM FOR Tr = 8 : ROUND 4

DM Tp Tn Tm Eq.(2) Tp > Tn Tm Eq.(3) Tm > Tr T ′
m = Tm mod 8 Convergence

1 4 8 6 No Not Applicable No Not Applicable Yes
2 6 2 4 Yes 8 No Not Applicable Yes
3 8 4 6 Yes 10 Yes 2 Yes
4 2 6 4 No Not Applicable No Not Applicable Yes

the next round with a higher probability.
Fig. 9 shows the convergence of the system to a collision

free configuration. Each node that experiences collisions con-
tinues to rearrange itself, until a collision free schedule is
reached. In Fig. 9(a), if we take a closer look at DM3, we
see that due to a collision free assignment in a previous slot,
the node decides to stick with the chosen slot even after it
experiences collisions.

As proven in [29], the system can converge with any round
time that is greater than the number of available DMs. For the
sake of comparison with the DESYNC protocol, in Fig. 9(b),
we show that the L-MAC protocol can converge with a round
time of 6. However, the L-MAC protocol does not consider
the spacing of the nodes around the ring.

Increasing the round time leads to an increasing number of
idle slots, which implies that the probability of a node initially
choosing slots without collisions increases as well. That results
in a shorter convergence time. Though very unlikely, it is
still possible that the DMs randomly choose a collision free
schedule on initial selection with any number of slots in a
round greater or equal to the number of DMs. To summarize,
the L-MAC protocol compared to the DESYNC can converge
with any Tr greater or equal to the number of DMs, whereas
the DESYNC protocol requires that the Tr should be chosen
such that the number of DMs is a factor of it. On the other
hand, the DESYNC protocol will assure maximal spacing
between the time slots, whereas the L-MAC protocol does
not take into account the spacing.

Similar to the approach adopted to analyze the uncoordi-
nated scenario, we will focus on the analysis of the information
reporting error and the spectrum utilization for the coordinated
scenario. The coordinated scenario can be implemented by
using any of the abovementioned high layer MAC protocols.

The number of time slots available on the higher MAC layer
is set to four, meaning that all mentioned higher level MAC
protocols would converge to the same arrangement. We used
L-MAC in our simulations. The higher-lower MAC level time
slot length has the ratio of 1:20, meaning that for every higher
level MAC time slot allocated to a DM, the equivalent of 20
lower MAC ticks for sensor transmissions is available. Fig.
10 shows the absolute error (absolute value of the information
reporting error). The data used in Fig. 10 is obtained from
simulations of the four intersections model. The traffic level
is set to medium, i.e., a vehicle will be generated with the
probability 0.5 in each cycle. The neighbor radius is set to
10. Fig. 10 depicts the spread of the absolute reporting error
averaged over 10 simulations and over 5000 simulation steps
for each simulation2. The absolute error is used in this case as
it is not our intention to imply a median error close to zero.
The TDMA results are not shown in Fig. 10, because TDMA
results in an average spread of zero for both uncoordinated
and coordinated scenarios. The data in Fig. 10 is shown in
the form of a box plot. The upper extreme of the error bars
show the average maximum absolute error, the lower extreme
of the error bar shows the minimum average absolute error.
The upper lines of the boxes in the graph represent the upper
quartiles, the lower lines represents the lower quartiles. The
lines in the centers of each box represents the median values
of the absolute error.

Fig. 10 shows that the introduction of the higher MAC
layer can greatly reduce the average absolute error for both
CSMA/CA and slotted Aloha. The introduction of coordina-
tion reduced the average maximum absolute error from 3.9 to
1.1 for CSMA/CA and from 4 to 2.6 for slotted Aloha. The

2Averaging over 10 already averaged samples is performed to remove the
effect of random initialization of each simulation.
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Fig. 9. Two numerical examples implementing L-MAC protocol where any node that experience collision continues to rearrange themselves until a collision-free
schedule is reached : (a) C=4 (b) C=6

average median absolute error was also reduced from 0.3 to 0
for CSMA/CA and from 0.5 to 0 for slotted Aloha. The reason
for the reduction in the absolute error lies in the influence of
the higher MAC layer scheduling procedures. Sensors can only
transmit data to the target DM when the target DM is selected
by the higher MAC layer. This decreases the problem of stale
data. Since the ABM approach allows us to analyze each time
step of the discrete simulation, the analysis of the log files
shows that the majority of stale data is received immediately
after a car moving step, mostly affecting the earliest ticks in
each cycle. When a higher MAC layer is introduced, stale data
primarily affects the first DM that is selected after a movement
step. Previously, all four DMs would be affected by this stale
information. The stale information will indeed only affect the
sensors’ packets that are being sent to the first DM selected
after a movement step, as the selected DM will reject all other
sensor packets being transmitted to other DMs. Because each
DM is allocated its own slot, the interference from sensors
transmitting to other DMs is decreased, and thus the reporting
error of information received by the DMs is improved.

Fig. 11 shows the comparison between the spectrum uti-
lization for the coordinated and uncoordinated scenario. The
results are gathered from the simulations of the two inter-
section model over 104 simulation steps. The traffic level is
again configured to be medium. This is the same configura-
tion that was used to obtain the spectrum utilization of the
uncoordinated model shown in Fig. 7. The L-MAC protocol
is used with a round time of two, and a higher to lower ratio
of 1:20. Therefore, after convergence these should be no idle
slots in the higher MAC layer. This choice of parameters
ensures fairness between the uncoordinated and coordinated
scenarios. Two higher MAC layer ticks in the coordinated
scenario with the ratio of 1:20 results in a total of 40 time

slots for the communication between the sensors and the DMs.
In the uncoordinated scenario, 40 time slots are assigned for
sensor transmissions in each cycle.

The results obtained from these simulations are overlaid
with the results obtained from the uncoordinated model as
shown in Fig. 11. It should be noted that Fig. 11 is not a
stacked bar chart, meaning that the ratio between each scenario
and the total spectrum is being analyzed. As shown in Fig.
11, the spectrum utilisation is reduced when coordination is
introduced. This is due to the limitation that only sensors
transmitting to the selected DM are able to send in each
slot. The neighbor radius has a similar effect on the slotted
ALOHA and CSMA/CA protocols in the uncoordinated and
coordinated scenarios (i.e., the spectrum utilization decreases
with increasing neighbor radius). Again TDMA is not af-
fected by the neighbor radius. As previously explained, in the
coordinated TDMA scenario, each DM is assigned its own
higher MAC TDMA slot to transmit where each sensor will
then be given its own lower level MAC tick to transmit. The
spectrum utilization of TDMA in the coordinated scenario is
approximately half the spectrum utilization achieved in the
uncoordinated scenario. This is due to the rejection of packets
attempting to transmit to DMs that are not selected by the
higher MAC layer.

V. DISCUSSION AND CONCLUSION

The increasing complexity of the next generation of com-
munication networks leads to a need to change the tools we
use to model and analyze them. The primary purpose of
our work was to investigate the possibility of using ABM
as a method of modeling an IoT network. We showed that
ABM is an effective way to model the complex behavior
of heterogeneous nodes (e.g., simple sensors, traffic lights,
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Fig. 10. Average absolute information reporting error - the data is obtained from simulations of the four intersection model; traffic level is set to medium;
the neighbor radius is set to 10.

and more powerful decision making nodes). One of the main
advantages of ABM is its flexibility in modeling networks that
does not scale up exponentially with the size (e.g., from the
simple one intersection model, to the more complex two and
four intersections model). Complexity of the solution depends
on the number of agents (sensors in each inter-section) and the
intersections in the neighborhood. As number of neighboring
intersections are usually small, complexity scales with number
of agents per intersection. The frequency of message exchange
between intersections is another factor influencing complexity
of computation of the solution. However, it is worth noting that
complexity does not really scale with the agents that are not
in the neighborhood, therefore ABM provides a pretty much
localized distributed decision making platform. Besides, it pro-
vides opportunity to add new features for decision coordination
(e.g., the higher MAC layer protocol to ensure coordination
between the decision makers). Human interactions, such as
vehicles, are as easily configurable as the network agents in the
model. This feature allowed the level of traffic and behavior
of the vehicles to be modeled as well as the operation of
the network. Another appealing quality of the ABM modeling
approach is its ability to model and collect information on a
more granular level (i.e., from all agents within the system in
any time step of the simulation).

In the models where CSMA/CA was used as the selected
MAC protocol, we assumed there are no hidden nodes. If

hidden nodes were introduced, the behavior and performance
of the models using the CSMA/CA protocol could change.
Moreover, we assumed that the only interference in the model
is generated from the agents within the IoT network itself.
Although the results in Section IV suggested TDMA to be
an extremely effective MAC protocol, the limitations of our
present model did not highlight the areas where TDMA can
fail. For example, if a sensor fails to transmit successfully
due to external source of interference, it has to wait for its
slot in the next cycle to transmit. As explained in Section
II, the DM uses a method of polling for a certain amount
of time before making timing decisions. If this was more
of a continuous decision making process, TDMA could be
found to be slower than the other protocols as each sensor
must wait for its time slot and for the polling phase to be
over, before transmitting. Therefore, more investigations are
necessary before concluding in a definite way that TDMA is
the best MAC protocol for the kind of application considered
in this paper and a subject of future research.

The motivation for this paper was to investigate ABM as a
tool for modeling the complexity of future networks. Building
on this work, we envision the future research to be about
modeling of complex networks where ABM can help to reduce
overhead and complexity of distributed decision making.
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Fig. 11. Spectrum Utilization - comparison between the coordinated and uncoordinated scenario, showing how much of the available information in the
system is actually transferred to the DM.
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