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Abstract

We present techniques for solving the problem of detecting element failures in phased array antennas by using a combination of

a single fixed probe and an optimization of element excitations using principles derived from compressive sensing. This departs

significantly from conventional techniques where the excitations are held constant and probes are instead moved spatially to

collect measurements. Doing so helps us to accomplish two objectives with regards to successful fault diagnosis. First, we

achieve a reduction in the number of measurements required compared to the state of the art; this reduction is particularly

significant in the case of high-noise measurements where existing methods fail. Second, our techniques solve the problem of

fault diagnosis in the case of real valued measurements (i.e. intensity measurement along with phase detection instead of phase

measurement), which leads to simpler measurement hardware. We use nonconvex optimization algorithms to generate numerical

results in support of our conclusions.
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Element Excitation Optimization for Phased Array Fault Diagnosis
Prajosh K P, Uday K Khankhoje, and Francesco Ferranti

Abstract—We present techniques for solving the problem of
detecting element failures in phased array antennas by using
a combination of a single fixed probe and an optimization of
element excitations using principles derived from compressive
sensing. This departs significantly from conventional techniques
where the excitations are held constant and probes are in-
stead moved spatially to collect measurements. Doing so helps
us to accomplish two objectives with regards to successful
fault diagnosis. First, we achieve a reduction in the number
of measurements required compared to the state of the art;
this reduction is particularly significant in the case of high-
noise measurements where existing methods fail. Second, our
techniques solve the problem of fault diagnosis in the case of
real valued measurements (i.e. intensity measurement along with
phase detection instead of phase measurement), which leads to
simpler measurement hardware. We use nonconvex optimization
algorithms to generate numerical results in support of our
conclusions.

Index Terms- Compressive sensing, antenna arrays, fault
diagnosis

I. INTRODUCTION

Phased array antennas are widely used in wireless commu-
nications, remote sensing, and radar applications [1]. Future
deployments of telecommunications [2] and automotive radars
[3] will extensively rely on the proper functioning of such
systems. The failure of one or more antenna elements can
severely impair the system operation, making the monitoring
of the health of these systems increasingly critical. In partic-
ular, methods of fault diagnosis that can work in situ with
minimal modification are particularly appealing, rather than
those that require systems to be taken inside specialized test
facilities.

In this Paper, we propose techniques of fault diagnosis that
rely on a single fixed probe, and can work with complex
or real valued measurement data in the near and far-field.
Since we do not require probes to scan the array under
test (AUT) from different spatial locations, the techniques
are in-principle compatible with in situ measurements of the
AUT in operational settings, provided that scattering from the
neighbouring environment can be minimized.

The typical use-case scenario for fault diagnosis considered
in recent literature has centred around element failure of a
small fraction of the total element number. In this scenario,
the principles of compressive sensing (CS) [4] have offered
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the promise of fault diagnosis by making much fewer mea-
surements than the number of antennas in the array [5].
Several variations on this theme have been studied, such as
fault diagnosis from near [5] or far [6] field data, and from
measurements with [7] and without [8] phase. It is known that
for CS techniques to work, the sensing matrix must satisfy
the so-called “Restrictive isometry property” (RIP) [9]. By
choosing the measurement locations in a particular way [6],
it was shown that the sensing matrix was a random partial
Fourier matrix, which in turn satisfied RIP provided sufficient
measurements were made.

Typically, the RIP property is difficult to verify in practise,
and often the CS machinery is used in a heuristic manner by
resorting to random measurement locations [8]. Instead of the
RIP, it is known that minimizing the mutual coherence of the
sensing matrix provides (weaker) guarantees of convergence
[10]; recent work has shown how this idea can be applied
to electromagnetic compressive sensing applications [11]. Re-
turning to the theme of fault diagnosis in phased arrays, we
note that in all the work referred to so far, the sensing matrix
was generated by choosing different sensing locations in space.
This imposes severe restrictions on how suitable the sensing
matrices are for applying CS principles.

Recent work [12], [13] has shown an elegant method of fault
diagnosis where the probe locations are kept fixed and the
phase of the element excitations are varied to generate a series
of measurements. The phases were chosen at random and fault
diagnosis was accomplished by solving an unconstrained `p
minimization problem (0 < p ≤ 1). We extend this idea
further by allowing the entire sensing matrix to be subject to
design. In particular, we allow both the amplitude and phases
of the element excitations to be optimized in order to minimize
the mutual coherence of the sensing matrix. The theory of
compressive sensing tells us that by doing so, the number of
measurements required for successful fault diagnosis can be
reduced, much more so in the average case as compared to
the worse case [14, Ch. 7].

In our work we consider two types of measurements, depend-
ing on the type of hardware available. If we represent the pha-
sor of a time-harmonic electromagnetic field by rejθ, where
r and θ represent the amplitude and phase, respectively, then
we refer to a complex measurement as one which measures
both the amplitude (r) and the phase (θ) via measurements of
the in-phase and quadrature components. We refer to a real
measurement as one which measures the amplitude (r) and
the sign of the in-phase component (sgn(cos θ)); this can be
implemented by using a power meter (measurement ∝ r2) and
a phase detector to determine the sign. Since the latter does
not actually measure the phase, a real measurement requires
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simpler hardware than a complex measurement and offers the
possibility of cheaper hardware for large scale Internet of
Things (IoT) type of applications. In our approach, the same
technique can be used for solving both problems without any
approximations, and the only difference lies in the nature of
the sensing matrix that is employed. This is accomplished
in the real measurements case by a specific choice of the
element excitation phase which will be detailed subsequently.
This confers a great deal of generality to our approach, not
previously offered by other approaches. We note that there
exists a related problem of fault diagnosis using intensity
only measurements (e.g. [8]); however, we do not address this
problem in the current work.

This Paper is organized as follows: we formulate the problem
mathematically in Section II, where we also describe the
solution strategies. In Section III, we present numerical results
in support of the efficacy of our technique for complex and real
measurements along with their analysis. Finally, we conclude
in Section IV with a summary of our results.

II. PROBLEM FORMULATION AND METHODS

A. Problem setup

We consider the measured far-field, E(θ), from a one dimen-
sional N -element array of elements spaced uniformly by a
distance d as:

E(θ) =

N∑
n=1

En(θ)xn ρn exp (jknd cos θ), (1)

where k is the wavevector, θ is the angle measured from the
array axis, and En, xn, ρn are the element pattern, excitation,
and fault state (1 if the element is working, and 0 if it
has failed) of the nth element, respectively. The expression
can easily be generalized for planar arrays or near field
measurements.

We first sketch the conventional scheme of fault diagnosis
where measurements are taken at different locations in space.
Assuming for simplicity that the elements are identical (with
pattern E0), and M measurements are taken at locations:
{θm}Mm=1, Eq. (1) becomes:

ỹ = Ax̃, Amn = E0 exp(jnkd cos θm), (2)

where ỹ ∈ CM , x̃ ∈ CN (with x̃n = xnρn) represent the
vectors of measurements and sensor excitations, respectively,
and A ∈ CM×N is the system sensing matrix. Evidently,
the only control over designing the system matrix comes by
adjusting the measurement locations, θm.

However, Eq. (1) can also be recast in the following way,
with an allowance for using different excitations for each
measurement at the fixed observation angle, θ, as:

ỹ = Bρ, Bmn = E0 exp(jnkd cos θ)xmn, (3)

where xmn is the excitation of the nth element for the mth

observation. Since the element excitations have entered the
system matrix, one can aim to improve the efficiency of fault

diagnosis by optimizing the element excitations; this will be
demonstrated shortly.

To complete the connection with compressive sensing, we take
recourse to the measurements obtained from the same array but
without faults, recorded in ŷ ∈ CM . Denoting the difference in
measurements between the ideal and faulty array by y = ŷ−ỹ,
and under the assumption that the number of faults is a small
fraction of the total element number, N , the problem that needs
to be solved for fault diagnosis becomes:

min
z
‖z‖0, s.t. ‖y −Bz‖2 < η, (4)

where z = 1− ρ (with 1 ∈ RN being a vector of ones) and η
is a small scalar proportional to the variance of measurement
noise. We have defined the problem statement for far field
measurements with identical elements for ease of illustration;
we emphasise that our methods are completely general, and
show in the Appendix how to deal with arrays that might be
heterogeneous and measured in the near field.

B. Solution philosophy and methodology

As the name ‘phased array’ suggests, the element excitations
have phase and or amplitude control, thus providing a larger
canvas to design the sensing matrix than is possible by
adjusting receiver positions only.

It is known that the mutual coherence, µ, of a general
M × N fat matrix is lower bounded by the Welch bound,√

N−M
M(N−1) ≤ µ ≤ 1, and that alternating projection algorithms

can be used for designing matrices which approach this bound
[15][16]. Of great interest is the improvement in performance
(e.g. a reduction in the number of measurements) on account
of a reduction in µ. Worst case analysis, which tends to be
rather pessimistic, says that a signal can be reconstructed
from compressive measurements only if it has a sparsity
factor (i.e. its 0-norm) up to O(1 + 1

µ ); on the other hand,
when average case performance is sought, the sparsity factor
can be up to O( 1

µ2 ) [14, Thm. 7.3]. This means that for
a given number of measurements, an array with a greater
number of faults can be detected (on average) if the sensing
matrix is optimized (for lower mutual coherence). The idea of
optimizing the mutual coherence of the sensing matrix and not
using a random matrix is the key idea of our work, and one of
the distinguishing features compared to recent literature [13].
This allows a reduction of the needed number of measurements
for a successful fault diagnosis. This reduced number can be
an important factor in multiple scenarios, for e.g. : (1) when
the forward model used to compute the radiation pattern has
a non-negligible computational cost when changing excitation
signals (e.g., see reconfigurables reflectarray antennas in [17]),
and (2) when the fault diagnosis performed in an onsite way
has to minimally affect the operation time of the antenna
array. The numerical results in the subsequent Section amply
demonstrate the power of our approach.

Often, the nonconvex, combinatorial ‖z‖0 function in Eq. (4)
above is relaxed to ‖z‖1, since this is the closest convex func-
tion to the `0 function. Another approach that is considered is
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the relaxation to the nonconvex function given by ‖z‖p with
0 < p < 1. Although this nonconvex relaxation does not
come with convergence guarantees, it has been empirically
found to outperform the `1 convex relaxation [13], [18].
These approaches are summarized in terms of the following
unconstrained optimization problem to be solved for fault
diagnosis:

min
z
‖y −Bz‖2 + λ‖z‖p, 0 < p ≤ 1, (5)

where λ is an empirical hyperparameter.

In our work, we assume that the phase and amplitude of the
phased array is quantized to 6 bits each to reflect realistic
hardware for phase shifters. In implementing related work
[13], we generate the amplitude (0 to 1) and phase (0 to
2π) by drawing from the multinomial probability distribution
function. In our optimized matrix approach, we initialize with
the earlier random matrix, then apply an alternating projection
procedure [15][14, Ch. 2], and end by quantizing the amplitude
and phase. The behaviour of the mutual coherence values of
the matrices used in the results below are shown in Fig. 1. It
can be seen that even after quantization, the optimized matrices
closely approach the Welch bound (attained by Grassmanian
matrices).
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Fig. 1. Mutual coherence values for M×100 matrices for random, optimized,
and real sensing matrices. The amplitude and phase of every matrix element
has been quantized to 6 bits each (for the complex entries).

C. Approach for real measurements

For the case of optimizing the sensing matrix for real mea-
surements, we restrict the phase to only 1 bit (i.e. a phase of 0
or π), but allow 6 bits of amplitude control. As an illustration,
it can be seen from Eq. (3) that if the element patterns are
real valued and measured at θ = π

2 , then by keeping the
excitations real valued, the measured field is also real valued,
and thus no information is lost by a using a sensor capable of
only real-valued measurements. This motivates fault diagnosis
using the existing scheme by restricting the phase to 1-bit for
the real-measurements case. We show in the Appendix how to
overcome the restriction of real valued element patterns and
θ = π

2 for a completely general antenna array. In the next
Section, we provide details of the algorithms used and the
results obtained.

III. RESULTS & ANALYSIS

Algorithms: In this paper, we present the solution to the fault
diagnosis problem by three strategies:
(i) a solution to the original problem in Eq. (4) by means of a
greedy pursuit algorithm, the Compressive Sampling Matching
Pursuit (CoSaMP) [19],
(ii) and (iii) A solution to the relaxed convex and nonconvex
problem in Eq. (5) with p = 1, and 0 < p < 1, respectively,
by means of an iteratively reweighted `1 (IRL1) minimiza-
tion algorithm [20] implemented via the alternating direction
method of multipliers (ADMM) [21].

Error metrics: We report fault diagnosis success according
to a metrics computed on the recovered solution vector, ρ,
the rate of successful recovery (RSR). While [13] defines
RSR in terms of the mean squared error (MSE) < −30 dB,
we adopt a more explicit criteria, and define RSR-k as the
number of measurements such that k% of trials give a perfect
reconstruction of the fault state of the array; we implement
a thresholding function on the reconstructed vector prior to
computing the RSR (i.e. if ρn < 0.5, set ρn = 0, else set
ρn = 1). In our simulations, we consider 200 Monte Carlo
trials for every result shown.
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Fig. 2. Performance of IRL1 on a 100 element linear array for different values
of the hyperparameter, λ for the case of (complex) random and optimized
sensing matrices. The number of faults and SNR are fixed at 10 and 20 dB,
respectively.

Implementation details: Note that CoSaMP requires a priori
information of the expected sparsity of the solution vector.
Since this information is typically not known, we run the
algorithm with various guesses for the solution sparsity. Of
those, we pick the sparsity corresponding to the smallest
residual error.
In the `p norm relaxation algorithm, we determine the λ
hyperparameter of Eq. (5) empirically using a grid search. A
study of this search is shown in Fig. 2 where the value of λ is
varied logarithmically. We find that λ = 0.1 worked the best
for optimized matrices, while for random matrices λ = 0.01
was optimal. The termination criteria used in CoSaMP and
IRL1 is a limit on the total number of iterations (500 in
our case). For every result, we perform 200 Monte Carlo
iterations; simulations were performed on an Intel Core i7-
8700 CPU 3.20 GHz × 12 processor and took 45-50 seconds
on average.
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Comparative results for varying fault numbers: We consider a
100-element linear array consisting of ideal isotropic radiators
with measurements at θ = π

2 in the far field (noise corrupted
with a signal to noise ratio (SNR) of 10 dB). The centerpiece
of our results is Table I, where varying numbers of faults are
diagnosed by a variety of methods, including our optimized
matrix approach, the random matrix approach from [13], as
well as the real-measurements case.

s IRL1 p = 1 IRL1 p = 0.5 IRL1 p = 0.1 CoSaMP
R O E R O E R O E R O E

Number of measurements for RSR-100 ↓
1 13 11 15 10 10 15 9 9 14 34 15 27
5 58 39 49 61 36 56 59 25 64 79 48 63
10 � 69 79 � 61 80 � 63 91 99 70 84
15 � 80 99 � 71 94 � 79 98 � 80 99

Number of measurements for RSR-90 ↓
1 9 9 10 6 6 10 6 6 10 13 10 14
5 34 30 36 28 20 34 30 19 40 47 34 50
10 � 53 59 � 43 63 � 38 68 77 58 66
15 � 67 77 � 61 79 � 65 86 97 67 82

TABLE I
RESULTS SHOWING THE NUMBER OF MEASUREMENTS REQUIRED TO

ACHIEVE RSR-100 (TOP ROWS) AND RSR-90 (BOTTOM ROWS) FOR THE
DIFFERENT ALGORITHMS CONSIDERED IN THIS PAPER (IN COLUMNS) AS A

FUNCTION OF NUMBER OF FAULTS, s, FOR AN ARRAY OF 100 ELEMENTS
AND AN SNR OF 10 DB. ENTRIES IN BOLDFACE CORRESPOND TO THE

BEST RESULTS FOR THAT PARTICULAR VALUE OF s AND RSR-k. R,O,E
REFER TO RANDOM, OPTIMIZED, AND REAL MATRICES, RESPECTIVELY.

THE SYMBOL � REFERS TO CASES WHERE THE NUMBER OF
MEASUREMENTS EXCEED THE NUMBER OF ELEMENTS (N) AND

COMPRESSIVE SENSING IS NO LONGER MEANINGFUL.

Comparative results for varying SNR: Next, in Table II we
consider the same array as above, except that we fix the
number of faults to 10, and vary the SNR on the measure-
ments.

SNR IRL1 p = 1 IRL1 p = 0.5 IRL1 p = 0.1 CoSaMP
R O E R O E R O E R O E

Number of measurements for RSR-100 ↓
10 � 65 75 � 55 82 � 65 85 100 64 85
20 40 38 47 31 29 43 33 30 45 34 30 42
30 38 35 44 31 28 41 32 30 44 29 30 40

Number of measurements for RSR-90 ↓
10 � 53 62 � 39 61 � 37 69 70 51 67
20 36 32 40 28 24 36 28 26 39 27 26 35
30 33 31 37 26 24 35 29 25 40 26 26 34

TABLE II
RESULTS SHOWING THE NUMBER OF MEASUREMENTS REQUIRED TO

ACHIEVE RSR-100 (TOP ROWS) AND RSR-90 (BOTTOM ROWS) FOR THE
DIFFERENT ALGORITHMS CONSIDERED IN THIS PAPER (IN COLUMNS) AS A

FUNCTION OF SNR, FOR AN ARRAY OF 100 ELEMENTS AND A FIXED
NUMBER OF FAULTS, s = 10. ENTRIES IN BOLDFACE CORRESPOND TO

THE BEST RESULTS FOR THAT PARTICULAR VALUE OF SNR AND RSR-k.
THE REST OF THE SYMBOLS ARE AS IN TABLE I.

Comparative results for varying array size: Finally, in Table
III we consider the performance of various algorithms against
varying array sizes, keeping the number of faults and SNR
fixed at 10 and 10 dB, respectively.

Analysis: We now analyze the results that we have obtained,
drawing out the salient features of our work.

1) The results in all the Tables strongly suggest that regardless
of the algorithm used, the optimized matrix approach always

N
IRL1 p = 1 IRL1 p = 0.5 IRL1 p = 0.1 CoSaMP

R O E R O E R O E R O E
Number of measurements for RSR-100 ↓

50 � 42 � � 43 � � 40 � � 50 �
70 � 51 � � 46 68 � 57 69 � 52 �
90 � 65 69 � 56 74 � 61 84 85 57 78

Number of measurements for RSR-90 ↓
50 � 36 41 � 31 41 � 33 44 � 39 48
70 � 43 52 � 33 53 � 35 51 63 44 58
90 � 51 57 � 39 59 � 37 66 63 50 62

TABLE III
RESULTS SHOWING THE NUMBER OF MEASUREMENTS REQUIRED TO

ACHIEVE RSR-100 (TOP ROWS) AND RSR-90 (BOTTOM ROWS) FOR THE
DIFFERENT ALGORITHMS CONSIDERED IN THIS PAPER (IN COLUMNS) AS A
FUNCTION OF NUMBER ARRAY SIZE, N , FOR A FIXED NUMBER OF FAULTS,
s = 10, AND AN SNR OF 10 DB. ENTRIES IN BOLDFACE CORRESPOND TO

THE BEST RESULTS FOR THAT PARTICULAR VALUE OF N AND RSR-k.
THE REST OF THE SYMBOLS ARE AS IN TABLE I.

outperforms the random matrix approach under varying num-
ber of faults, noise levels, as well as different array sizes.
The difference between the optimized and random matrix
approaches becomes clearer as the number of faults increases.
This is to be expected from the study of the mutual coherence
(see Fig. 1), where an improvement as compared to the random
matrix case is seen only after the number of measurements
exceeds 9 (for an arrary of 100 elements).
2) We emphasize that our approach is particularly robust
under high noise conditions; in particular, as the (10 dB SNR)
results in Table I show, in most cases the random matrix
approach fails (marked by a diamond symbol indicative of
> N measurements, at which point a brute force approach
of testing each element individually is better). In general it is
seen that the optimized matrix approach takes 1-2 times fewer
measurements than the random sensing matrix case.
3) A remarkable observation from all the results is that the
number of measurements required for the case of real mea-
surements is comparable with that from the random sensing
matrix case with complex measurements. In fact, in several
instances the former succeeds, while the latter fails.
4) Among the methods considered in this paper, the IRL1
algorithm with p = 0.5 delivers the best results, though the
results with p = 0.1 are only slightly worse in comparison. The
results of the CoSaMP algorithm are also competitive.

IV. CONCLUSION

In summary, we have presented a new framework in which
fault diagnosis can be performed on phased arrays without
taking recourse to moving detectors in space. Our approach
optimizes the element excitations and leverages ideas from
compressive sensing to perform this diagnosis, giving us two
distinct advantages with respect to the most advanced state-
of-the-art: the fault diagnosis can be done with (a) fewer
measurements, and (b) in the presence of real measurements.
We show the superior performance of our methods through
extensive numerical simulations; in particular, we show how
our methods are robust in the presence of noise, delivering re-
sults when other methods fail. Finally, our methods can easily
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be generalized to near field measurements of heterogeneous
arrays.

APPENDIX
HETEROGENEOUS ARRAYS, NEAR FIELD MEASUREMENTS

We consider the case where the array elements are hetero-
geneous, and the (possibly near-field) measurements may be
away from the normal direction (i.e. θ 6= π

2 ). In this most
general case (still ignoring mutual coupling, though), Eq. (1)
gets generalized to:

E(r, θ) =

N∑
n=1

En(rn, θn)xn ρn. (6)

For e.g., if a particular element were a Hertz dipole
at the origin, and we were measuring the θ-component
of the field, Eθ(r, θ), we would have En(rn, θn) =
−jZ0le

−jkrn/(4πkr3n) sin θn, where l is the dipole length and
Z0 is free space impedance.

We define a matrix of excitations, X ∈ CM×N s.t. Xmn =
xmn, a vector t ∈ CN s.t. tn = En(rn, θn)ρn, a vector t̃ ∈ CN
s.t. t̃n = En(rn, θn), and a diagonal matrix W ∈ CN×N

s.t. Wnn = 1/En(rn, θn). Then the fault diagnosis optimiza-
tion problem is similar to the earlier Eq. (4) with a redefinition
of z to guarantee its sparsity, as below:

min
z
‖z‖0, s.t. ‖y −Xz‖2 < η, where z =W (t̃− t). (7)

With the identical reformulation of z, the nonconvex relaxation
described by Eq. (5) can be used in this general setting. Thus,
as desired, the system matrix X can be completely optimized
for fault diagnosis even in this general setting.

Real measurement scenario: In this case, the principle is to
use the phase of the excitation, xn, to cancel the phase of the
accompanying En(rn, θn) term of Eq. (6). While the phase
is restricted in this manner (up to a sign), we are free to
adjust the amplitude of the excitations to optimize the sensing
matrix. As a result, the measurement, E(r, θ), is real valued.
This approach depends on there being sufficient bits available
for phase control to approximate the negative of the phase of
En(rn, θn).
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