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Abstract

We provide a low-level review of the computation of Sommerfeld integration theory using the singularity expansion method

(SEM) to analytically estimate the short-wavelength components of the 2-dimensional Green’s function. The SEM is employed

to replace the infinite tail of the spectral integral by a closed-form evaluation. The various steps in the SEM substitution and

the calculations are elaborately presented and discussed with emphasis on giving the missing details often not included in the

published literature.
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Abstract: We provide a low-level review of the computation of Sommerfeld integration theory using the 

singularity expansion method (SEM) to analytically estimate the short-wavelength components of the 2-

dimensional Green's function. The SEM is employed to replace the infinite tail of the spectral integral by a 

closed-form evaluation. The various steps in the SEM substitution and the calculations are elaborately 

presented and discussed with emphasis on giving the missing details often not included in the published 

literature. 

 

I. Introduction 

 

       Sommerfeld integrals arise in the problem of calculating Green's functions of 

electromagnetic sources in media containing open boundaries. For a source above stratified 

media, the spectral-domain Green's functions can be obtained in closed form. However, in 

order to obtain the corresponding spatial-domain Green's functions it is required to calculate 

the inverse Fourier transform. This process results in what is known as Sommerfeld integrals. 

The calculation of these integrals is very difficult due to the oscillatory nature of the integrand 

and the existence of branch points and surface pole (SWP) singularities. Discrete complex 

image theory (DCIT) or the spatial singularity expansion method (SEM) is a fast and efficient 

method that can be used to treat such problems [1-6]. Applications include computing the 

electromagnetic fields in cylindrical nanostructures [7,8], RF antenna system analysis and 

design [9], and near-field nano-optics [10]. 

 

II. Formulation of the Problem 

 

      In what follows, we assume familiarity with the concept of Green's function at the level of 

[11]. Consider the following spatial domain 2D Green's functions calculated using the inverse 

Hankel transform 

 

                                0

1

2
G dk k J k G k    




                                                      (1) 

 

where  G k   is the spectral-domain function. For review of the bessel functions 0 ( )J x  and 

the derivation of (1), see [11]. If the function  G k  is even then we can write the above 

integral as 

 

                                0
0

G dk k J k G k    


                                                              (2) 

 

The propagation constant 
zk  is given by 

 

                            kkk iz                                                                                               (3) 

 

where ik  is the wavenumber in the ith medium. We now present the computation of the 

spectral integral above in the following hierarchical method. 
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II.a 1-Level Approach: The one-level approach consists of the following contour 

 

                         
0

0

: 1 0
zk z i

t
C k k jt t T

T

  
       

   

                                          (4)       

 

Fig. 1 shows how this contour is mapped from the complex zk plane to the complex k  . 

Here, we have  

                                      
max

2

01ik k T                                                                        (5) 

 

Thus, to insure that the deformed path C   will include all the branch points, the surface wave 

poles (SWP), and the asymptotic behavior of the spectral domain GF when k   , it is 

important to choose 
max

k   large enough.  

 

                                         
                                              (a) 

 

                                         
 

                                                (b) 

          

                Fig. 1 1-level integration path in a) the k  plane b) zk  plane 

 

       We will now approximate  z Cjk G k
  using the singularity expansion method (SEM), 

powered by Prony’s Method (PM) or the Generalized Pencil of Function (GPOF) Method 

 

                                      
1

n

N
t

z C n

n

jk G k b e








                                                                    (6) 

 

The reason of including the multiplicative factor zjk  in equation (6) will be apparent when 

we use Sommerfeld identity later. Alternatively, the equation (6) can be re-written in the 

following form 

 kRe  

maxk

 

ik  

C   

zkC  

ik  

2Tjki  

 kIm  

 zkIm  

 zkRe  
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                                  
1 1

n n zt kN N

C n n

n nz z

e e
G k b a

jk jk

 





 

                                                     (7) 

 

where it is easy to show that 

 

                                 
 

0

01
i nkn

n n n

i

T
a b e

k jT


  


                                                    (8) 

 

Substituting (7) into (2) we get 

 

                            

   

 

0
0

1

0
0

1

n z

n z

kN

n

n z

kN

n

n z

e
G dk k J k a

jk

e
a dk k J k

jk



  



  

 



















 

                                                    (9) 

 

The following form of Sommerfeld identity will now be used 

 

                                       
z

zjkjkr

jk

e
kJkdk

r

e z




 0
0                                                 (10) 

 

Equation (9) become then 

 

                                       
1

njkrN

n

n n

e
G a

r






                                                                        (11) 

 

where we have 

 

                                      
2 2

n nr                                                                                (12) 

 

which is the distance – generally complex - of the nth image. 

 

II.b 2-Level Approach: The two-level DCIT approach consists of sampling over the 

following two parameterized integration paths  

 

                         

 1 2 1 1 1

2
2 2 2

2

: 0

: 1 0

z i

z i

C k jk T t t T

t
C k k jt t T

T

    

  
       

  

                                        (13) 

 

The corresponding path in the k  complex plane is shown in Fig. 1. It is clear that a linear 

variation in the zk  plane shown in Fig. 1(a) is translated in the k  plane to the deformed path 

shown in Fig. 1(b). Notice that 
max

2

21ik k T   .  
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                                              (a) 

 

                                         
 

                                              (b) 

          

                Fig. 2 2-level Integration path in a) the k  plane b) 
zk  plane 

 

The Prony's method (PM), or the Generalized Pencil of Function (GPOF) method, can be 

utilized to expand an arbitrary function in terms of sum of complex exponentials. We utilize 

now this method in order to calculate the Sommerfeld integral of equation (2). 

 

       First, approximate the "tail" region of the spectral domain function, i.e. the region over 

the contour 1C , in the following way 

 

                                           
1

1 1

1 1

1

n

N
t

z C n

n

jk G k b e








                                                           (14) 

 

Next, putting the above in a form suitable for the future use of Sommerfeld identity, we write 

 

                             
1 1 11 1

1 1 1

1 1

n n zt kN N

C n n

n nz z

e e
G k b a

jk jk

 





 

                                                      (15) 

 

where it easy to find that 

 

                              1 21
1 1 1, i njk Tn
n n n

i

a b e
jk


 

                                                        (16) 

 

Next, the function approximated in (15) is subtracted from the original spectral domain 

function  G k . The result will be non-zero only on the contour 2C . The total integration 

can be then written as 

 

 kIm  

 kRe  

2C  

1C  maxk  
ik  

 zkIm  

2C  

1C  

ik  

2Tjki  

 zkRe  
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           
1 1

2 1 2

0 0C C

C C C

G k dk k J k G k G k dk k J k G k
 

  

          


   
                                              

        (17) 

 

Now, the spectral domain function in the first integral is approximated using PM or GPOF 

over the path 2C  as follow 

 

                          
2

2 2

1 2

1

n

N
t

z C n

n

jk G k G k b e




 



  
                                                           (18) 

 

where this yield  

 

                            
2 2 22 2

1 2 2

1 1

n n zt kN N

C n n

n nz z

e e
G k G k b a

jk jk

 

 



 

                                       (19) 

 

and again it is easy to deduce that 

 

                         
 

22 2
2 2 2

2

,
1

i nkn
n n n

i

T
a b e

k jT


  


                                                (20) 

 

By substituting into equation (17) the approximations (15) and (19) and utilizing Sommerfeld 

identity in (10) we get 

 

                 
1 1 2 21 2

1 2

1 11 2

n n n nr rN N

n n

n nn n

e e
G a a

r r

 


 

                                                                  (21) 

 

                                    
2

2,1

2

2,1 nnr                                                                               (22) 

 

 

III.c 3-Level Formulation 

 

     The 3-level formulation follows the basic idea developed in the previous section. Fig. 3 

illustrates the three paths 

 

                                         
                                            

                                              (a) 

 kRe  

 kIm  

2C

 

1C  

max1
k   

3C   

max 2k   
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                                                (b) 

          

                Fig. 3 3-level Integration path in a) the k  plane b) 
zk  plane 

 

       The integration path in the region max10,k 
   is divided into two parts, max 20,k 

    and 

max 2 max1,k k 
   . The reason of doing this is the fact that for some problems the spectral 

domain Green’s functions may vary considerably in one region while being smooth in other 

regions. Since the PM or the GPOM work only for uniform sampling, they can not be utilized 

directly in sampling the function unless a huge number of points is used (may be thousands). 

To avoid this, we divide the main region max10,k 
    into two sub-regions where higher 

number of samples will be used in each region. Because the sub-regions are smaller than the 

original interval, the “higher” number of samples here is still less what would be required if 

the entire region is sampled once using uniform sampling. The suggested contour path will be 

given in the following way 

 

                     

 

 

1 2 1 1 1

2
2 2 3 2 2

2

3
3 3 3 3

2

: ,0

: 1 ,

: 1 ,0

z i

z i

z i

C k jk T t t T

t
C k k j t T t T

T

t
C k k jt t T

T

    

  
       

  

  
       

  

                          (23) 

 

We first approximate the spectral domain function in the first region as follow  

 

                
1 1 11 1

11 1 1 max 2

1 1

, 0,
n n zt kN N

C n n

n nz z

e e
f k G k b a k k

jk jk

 

   


 

                            (24) 

 

where 1n  and 1na  are given by equations (16).  

 

Next, we approximate the following function in the interval max 2 max1,k k 
    as follow 

 

              
2 2 22 2

22 2 2 max 2 max1

1 1

, ,
n n zt kN N

C n n

n nz z

e e
f k G k b a k k k

jk jk

 

    



 

                     (25) 

 

where 2n  and 2na  are given by (20). 

 zkIm  

3C  

1C  

ik  

2C  

 zkRe  

2Tjki  
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We now approximate the following function over the interval max 2 ,k 
    

                       

       
3 2 33 3

3 1 2 3 3 max 2

1 1

, 0,
n n zt kN N

n n

n nz z

e e
f k G k f k f k b a k k

jk jk

 

     



 

                (26)                 

         

where 2n  and 2na  are also given by (20). 

      

The inverse Hankel transformation can be written then as 

             

               0 2 1 0 1 2

C C

G k dk k J k G k f k f k dk k J k f k f k            

 

                                               

                    (27) 

Now, since  

 

                       1 2 max 20 , 0,G k f k f k k k                        

 

we can write (27) as 

 

                 

               
3

0 2 1 0 1 2

C C

G dk k J k G k f k f k dk k J k f k f k            



                                                 

        (28) 

 

which is the Green's function in the spatial domain expressed in terms of mixed spectral and 

closed-form analytical expression.  

 

III. Conclusion 

 

We provided a pedagogically illuminating reexamination of how to compute Sommerfeld 

integrals using the singularity expansion method. The derivation was given with high degree 

of details to explain how each integration interval was handled in the spectral domain. The 

expression (28) is much faster to evaluate than a fully-fledged numerical calculation over the 

entire spectral domain. The reduction of cost clearly comes from the fact that the short-

wavelength components have been approximated analytically using the deeper SEM poles 

and residues information buried in the high spatial frequency band. Physically, it appears that 

the SEM data (poles and residues) represent special spectral points of major singularities that 

capture the overall (global) behavior of the Green's functions [12]. 
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