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Abstract

Distribution locational marginal prices (DLMPs) have been formulated for electric distribution grids to economically dispatch

distributed energy resources (DERs) while addressing operational constraints of the electric grid. This paper proposes to extend

this methodology to thermal grids, i.e, district heating or cooling systems, and specifically the combined operation of thermal

and electric grids. To this end, thermal and electric grid models are formulated in a linear approximate model fashion. Then,

the derivation and decomposition of DLMPs is formulated based on the combined optimal operation problem, assuming a linear

state space model form for flexible loads (FLs). The ability of the DLMPs to reflect operational constraints in the thermal grid

is demonstrated for a test case with 22 FLs.
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Abstract—Distribution locational marginal prices (DLMPs)
have been formulated for electric distribution grids to eco-
nomically dispatch distributed energy resources (DERs) while
addressing operational constraints of the electric grid. This
paper proposes to extend this methodology to thermal grids, i.e,
district heating or cooling systems, and specifically the combined
operation of thermal and electric grids. To this end, thermal
and electric grid models are formulated in a linear approximate
model fashion. Then, the derivation and decomposition of DLMPs
is formulated based on the combined optimal operation problem,
assuming a linear state space model form for flexible loads (FLs).
The ability of the DLMPs to reflect operational constraints in the
thermal grid is demonstrated for a test case with 22 FLs.

I. INTRODUCTION

With the increasing integration of distributed energy re-
sources (DERs) such as flexible loads (FLs) and distributed
generators (DGs) into the electric distribution grid, the con-
cept of distribution locational marginal prices (DLMPs) was
developed to economically dispatch DERs, while keeping
within the operational constraints of the electric grid. If not
operated appropriately, DERs may lead to increased losses
and congestion in the distribution grid, whereas DLMPs have
been demonstrated to efficiently aid with loss reduction [1]
and congestion management [2], [3].

The concept for DLMPs is related to location marginal
prices (LMPs), which are deployed by electric transmission
grid operators, e.g., independent system operators (ISOs) in the
US and UK [4]. LMPs refer to nodal electricity prices, which
express the marginal cost of supplying load at a particular
grid node. To this end, LMPs incorporate information on
electric grid losses and congestion in addition to the marginal
generation cost. For example, LMPs will increase at nodes
which are served through a congested grid line, therefore
serving as an incentive to reduce the load at these nodes to
alleviate the congestion. Hence, LMPs are integrated into the
day-ahead electricity market to add consideration for the grid
operation limits. DLMPs are essentially an extension of LMPs
to the distribution grid [4].

DLMPs are formulated based on the numerical optimization
problem for the operation of the electric grid, which aims
cost minimization for the DERs, while maintaining voltage
drop, line loading and loss balance constraints of the electric
grid. By obtaining the dual variables associated with these
constraints, DLMPs can be formulated to essentially reflect the
operational requirements of the electric grid into price signals

to incentivize the contribution of DERs, e.g., by rescheduling
loads. This has led to the envisioning of distribution system
markets based on DLMPs to address the integration of DERs
in [5].

In district heating and cooling systems, i.e., thermal grids,
thermal DERs in the form of distributed heating and cooling
sources are leading to a shift of paradigms similar to the elec-
tric distribution grid. Particularly, combined heat and power
(CHP) plants, heat pumps (HPs), solar-thermal plants have
motivated research into bi-directional thermal grids [6]. On the
demand side, buildings equipped with heating, ventilation and
air-conditioning (HVAC) systems have already been proposed
as FLs for the electric grid and can be retrofitted in a similar
fashion to increase operational flexibility in the thermal grid.
To this end, the concept of DLMPs which was proposed for the
electric distribution grid can readily be extended for thermal
grids, to aid the economic dispatch of thermal DERs in a
similar fashion.

This paper formulates a methodology to obtain the DLMPs
for the combined optimal operation of the thermal and electric
distribution grids, such that the DLMPs reflect the operational
constraints of the combined grid. To begin with, thermal and
electric grid models are formulated in a linear approximate
model fashion, which later facilitates the derivation of the
DLMPs. Along with this, a linear FL model in state-space form
is defined. Then, the combined optimal operation problem is
formulated for the thermal and electric grids with intercon-
nected FLs, which serves as the basis for the calculation and
decomposition for the DLMPs. Lastly, the approach is applied
for a test case with 22 FLs and congruent thermal and electric
distribution grids based in Singapore, where the DLMPs are
shown to represent the operational constraints of the combined
grid.

NOMENCLATURE

Let R be the domain of real numbers. Non-bold letters x,
X denote scalars R1, bold lowercase letters x denote vectors
Rn and bold uppercase letters X denote matrices Rn,m. Bold
numbers 0 and 1 denote vectors or matrices of zeros and ones
of appropriate sizes. The transpose of a vector or matrix is
denoted by ()ᵀ and diag(x) constructs a diagonal matrix with
the entries of x. The Hadamard product is denoted by �.
Prices are in Singapore Dollar (SGD) which is denoted by S$.



II. MODELLING

A. Thermal grid model

The following thermal grid model formulation assumes that
1) the thermal grid forms a connected tree graph, i.e., a radially
connected grid, 2) a distributed pumping scheme is applied,
i.e., distribution pumps are installed at the energy transfer
station (ETS) of each FL rather than centrally, 3) thermal
losses in the distribution branches are neglectable, 4) the layout
of supply and return piping is symmetric and 5) thermal power
is transmitted with constant supply and return temperatures,
i.e., a constant absolute enthalpy difference between supply
and return side. Note that points 4) and 5) render the proposed
formulation more appropriate for district cooling systems,
whereas for district heating systems, the model will require an
extension to model dynamic supply and return temperatures.

The thermal grid is modelled with a linear approximate
model as:

ht = href +Mh,pth

∆ptht

vt = vref +Mv,pth

∆ptht

ppmt = ppm,ref +Mppm,pth

∆ptht

(1)

The vectors ht ∈ Rnth

, vt ∈ Rbth are the pressure head at
thermal grid nodes nth ∈ N th and the branch volume flow
at thermal grid branches bth ∈ Bth for time step t ∈ T .
The scalar ppmt denotes the total electric distribution pumping
power demand for time step t. The reference point for each
property is denoted by ()ref , which in the following is chosen
to be the nominal operation point of the thermal grid. The vec-
tor ∆ptht ∈ Rf is the thermal power change at FLs f ∈ F for
time step t. The matrices Mh,pth ∈ Rnth,f , Mv,pth ∈ Rbth,f ,
Mppm,pth ∈ R1,f are the sensitivity matrices for the change of
the respective properties to the thermal power change, which in
turn is defined as ∆ptht = ptht −pth,ref . The vector ptht ,∈ Rf

is the absolute thermal power demand and the vector pth,reft

is the thermal power demand reference which is chosen to be
the nominal load, i.e., peak load, of the FLs f . The reference
properties for the linear approximate model in eq. (1) are then
obtained by solving the reference power flow problem of the
thermal grid, which is formulated based on [7], [8] as:

vref =
1

ρwa∆hwa

(
Anth,bth

)−1
Anth,fpth,ref (2a)

href =
((
Anth,bth

)ᵀ)−1 (
ffo � ffr,ref � vref � vref

)
(2b)

ffo
bth

=
8lbth

d5
bth
gπ2

(2c)

ff,ref
bth

=
1.325(

ln

(
ε
bth

3.7d
bth

+ 5.74(
Reref

bth

)0.9

))2 (2d)

ppm,ref =
−g

ηpm∆hwa

(
pth,ref

)ᵀ
·
(
Anth,f

)ᵀ (
2href + hets

)
(2e)

The matrix Anth,bth ∈ Rnth,bth is the thermal branch to
node incidence matrix with entries Anth,bth

nth,bth
= 1 if branch

bth starts at node nth; Anth,bth

nth,bth
= −1 if branch bth ends at

node nth; Anth,bth

nth,bth
= 0 otherwise. Note that Anth,bth must

be square and non-singular, which is satisfied if the thermal
grid forms a connected tree graph. The matrix Anth,f is the
FL to thermal node incidence matrix with entries Anth,f

nth,f
= 1

if FL f is connected at node nth; Anth,f
nth,f

= 0 otherwise. The
scalars ρwa and ∆hwa define the density of water and the
absolute enthalpy difference experienced by the distribution
water between the primary and secondary side. To this end,
eqs. (2a) and (2b) are equivalent to formulating the nodal flow
balance for the thermal grid nodes and the branch pressure
head balance based on the Darcy-Weisbach equation:∑

f∈Fnth

pth,reff

ρwa∆hwa
=

∑
bth∈Bnth,2

vref
bth
−

∑
bth∈Bnth,1

vref
bth

href
nth,bth,2

− href
nth,bth,1

= ffo
bth
ffr,ref
bth

(
vref
bth

)2
,

(3)
where Fnth

are the FLs connected at node nth, Bnth,1/Bnth,2

are the branches starting/ending at node nth and
nth,b

th,1/nth,b
th,2 denotes the start/end node of branch

bth. The vector ffo ∈ Rbth with entries ffo
bth

describes the
form factor for branch bth depending on its length lbth ,
diameter dbth and gravitational acceleration g. The vector
ffr ∈ Rbth with entries ffr

bth
describes the Darcy-Weisbach

friction factor for branch bth depending on its absolute
roughness εbth , diameter dbth and the Reynolds number
Reref

bth
of the branch flow. Note that this formulation based on

the Swamee-Jain Formula assumes that the Reynolds number
stays in 4 · 103 ≤ Reref

bth
≤ 108 and the branch parameters

stay in 10−6 ≤ ε
bth

d
bth
≤ 10−2 [9]. Note also that minor

friction losses, i.e., losses due to curvatures and junctions,
are neglected in the model formulation. Lastly, the vector
hets ∈ Rf describes the head loss across the ETS, i.e., heat
exchanger, at full load for each FL f ∈ F .

A global approximation for the sensitivity matrices Mv,pth

,
Mh,pth

, Mppm,pth

can be obtained based on the formulation
of the thermal grid power flow problem in eq. (2). The
global approximation essentially forms a linear expression as
a tangent between the no-load point and the nominal operation
point of the thermal grid for each non-linear model equation.
In fact, only the pressure head loss terms eqs. (2b) to (2d)
require linearization whereas eqs. (2a) and (2e) are are simply
translated into the matrix form. The derived global sensitivity
matrices is provided as:

Mv,pth

=
1

ρwa∆hwa

(
Anth,bth

)−1
Anth,f

Mh,pth

=
((
Anth,bth

)ᵀ)−1
· diag

(
ffo � ffr,ref � vref

)
Mv,pth

Mppm,pth

=
−2g

ηpm∆hwa

(
pth,ref

)ᵀ (
Anth,f

)ᵀ
Mh,pth

(4)



B. Electric grid model

The electric grid is modelled with a linear approximate
model as:

ut = uref +Mu,p∆pt +Mu,q∆qt

|sft |2 = |sf,ref |2 +M sf ,p∆pt +M sf ,q∆qt

|stt|2 = |st,ref |2 +M st,p∆pt +M st,q∆qt

plst = pls,ref +Mpls,p∆pt +Mpls,q∆qt

qlst = qls,ref +M qls,p∆pt +M qls,q∆qt

(5)

The vectors ut ∈ Rnel

, |sft |2, |stt|2 ∈ Rbel are the voltage
magnitude at electric grid nodes nel ∈ N el and the squared
branch power flow in “from” and “to” direction at electric grid
branches bel ∈ Bel for time step t ∈ T . The scalars plst , qlst
denote the total active and reactive loss for time step t. The
reference point for each property is denoted by ()ref , which
in the following is chosen to be the nominal operation point of
the electric grid. The vectors ∆pt,∆qt ∈ Rf are the active and
reactive power change at FLs f ∈ F for time step t. The ma-
trices Mu,p,Mu,q ∈ Rnel,f , M sf ,p,M sf ,q,M st,p,M st,q ∈
Rbel,f , Mpls,p,Mpls,q,M qls,p,M qls,q ∈ R1,f are the sen-
sitivity matrices for the change of the respective properties
to the active and reactive power change, which in turn are
defined as ∆pt = pt − pref , ∆qt = qt − qref . The vectors
pt, qt ∈ Rf are the absolute active and reactive power demand
of the FLs f . The vectors preft , qreft are the active and reactive
power demand reference which is chosen to be the nominal
load, i.e., peak load, of the FLs f . The reference properties
for the linear approximate model eq. (5) are then obtained by
solving the reference power flow problem of the electric grid,
e.g., through a fixed-point solution methodology, and a global
approximation for the sensitivity matrices can be obtained as a
function of the reference properties. The detailed formulation
is omitted here for the sake of brevity, but can be obtained
from [3].

C. Flexible load model

The FL model is expressed in state space form as:

xf,t+1 = Afxf,t +Bc
fcf,t +Bd

fdf,t

yf,t = Cfxf,t +Dc
fcf,t +Dd

fdf,t
(6)

The vectors xf,t, cf,t and df,t are the state, input and
disturbance vectors for FL f at time step t. The matrices Af ,
Cf are the state and output matrix, and Bc

f , Dc
f , Bd

f , Dd
f

are the input and feed-through matrices, on the control and
disturbance vectors respectively. Note that control vector is a
function of the thermal, active and reactive power dispatch of
the FL cf,t = cf,t(p

th
f,t, pf,t, qf,t). Therefore the FL model

serves as the interconnection between the thermal and electric
grids.

For the presented test case (section IV), air-conditioned
buildings serve as FLs and a fixed power factor, i.e., a
fixed ratio between active and reactive power, is assumed.
The detailed formulation of the state space model for such
buildings can be obtained from [10].

III. DISTRIBUTION LOCATIONAL MARGINAL PRICING

A. Combined optimal operation problem

The combined optimal operation problem of the thermal and
electric grid addresses the economic dispatch of FLs subject
to the operational constraints of the thermal grid, the electric
grid and the FLs:

min
pt,qt,pth

t

∑
t∈T

creft

(
1ᵀpt +

1

ηch
1ᵀptht

)
(7a)

s.t.(∀t∈T ) (1), (5), (6) (7b)

h− ≤ ht : µh−

t (7c)

vt ≤ v+ : µv+

t (7d)

pth,srct − 1

ηch
1ᵀptht = ppmt : λp

pm

t (7e)

u− ≤ ut ≤ u+ : µu+

t ,µu−

t (7f)

|sft |2 ≤ |sf,+|2 : µsf,+

t (7g)

|stt|2 ≤ |st,+|2 : µst,+

t (7h)

psrct − 1ᵀpt = plst : λp
ls

t (7i)

qsrct − 1ᵀqt = qlst : λq
ls

t (7j)

y−f,t ≤ yf,t ≤ y
+
f,t : µy+

f,t,µ
y−

f,t (7k)

The scalar creft is the electric energy price at the reference
node and ηch is the coefficient of performance (COP) of the
district heating or cooling plant. Note that this formulation
translates to assuming 1) a constant-efficiency model for the
performance of the heat pump at the district heating or cooling
plant and 2) that electric power required for district heating
or cooling is drawn at the source node of the electric grid.
The vectors u−,u+ ∈ Rnel

, |sf,+|2, |st,+|2 ∈ Rbel describe
the electric grid voltage and branch loading limits, whereas
h− ∈ Rnth

, v+ ∈ Rbth describe the thermal grid head and
volume flow limits. The scalars psrct , qsrct , pth,srct describe
the total active, reactive power demand and the electric power
demand of the thermal grid. The vectors y−f,t, y

+
f,t describe

the operational constraints of the FLs f , which may be
time-dependent to reflect set-back periods. Finally, the vec-
tors µu+

t ,µu−

t ,µsf,+

t ,µst,+

t ,µh−

t ,µv+

t ,µy+

f,t,µ
y−

f,t and scalars

λp
ls

t , λq
ls

t , λp
pm

t are the Lagrangian multipliers associated the
respective inequality and equality constraints. Note that this
formulation of the combined operation assumes that the district
heating or cooling plant of the thermal grid is co-located
with the electric grid source node, such that the thermal grid
source node is not subjected to any electric grid constraints.
Therefore, the operation of the thermal grid (in eqs. (1)
and (7c) to (7e)) and the electric grid (in eqs. (5) and (7f)
to (7j)) are coupled only through the FL operation (in eqs. (6)
and (7k)).

B. DLMP derivation and decomposition

In order to obtain the distribution locational marginal prices
(DLMPs), the Lagrangian function of eq. (7) is formulated for



time step t:

Lt =creft

(
1ᵀpt +

1

ηch
1ᵀptht

)
+ µu−

t

(
u− − ut

)
+ µu+

t

(
ut − u+

)
+ µsf,+

t

(
|sft |2 − |sf,+|2

)
+ µst,+

t

(
|stt|2 − |st,+|2

)
+ λp

ls

t

(
psrct − 1ᵀpt − plst

)
+ λq

ls

t

(
qsrct − 1ᵀqt − qlst

)
+ µh−

t

(
h− − ht

)
+ µv+

t

(
vt − v+

)
+ λp

pm

t

(
pth,srct − 1

ηch
1ᵀptht − p

pm
t

)
+ µy−

f,t

(
y−f,t − yf,t

)
+ µy+

f,t

(
yf,t − y+

f,t

)
(8)

For the solution of eq. (7), the DLMPs for active power πp
t ∈

Rf and thermal power πth
t ∈ Rf are obtained using the first-

order derivatives of eq. (8) for active and thermal power. Note
that the electric grid DLMPs πp

t and thermal grid DLMPs
πth
t are obtained clearly independent from each other, as the

coupling of the grids only exists through the FLs in eqs. (6)
and (7k). The DLMPs are then obtained as:

πp
t = πp,e

t + πp,u
t + πp,s

t + πp,ls
t

πth
t = πth,e

t + πth,h
t + πth,v

t + πth,pm
t

(9)

The symbols πp,e
t , πp,u

t , πp,s
t and πp,ls

t are the energy com-
ponent, voltage support component, congestion component
and loss component of the DLMPs for the electric grid
respectively. Similarly, πth,e

t , πth,h
t , πth,v

t and πth,pm
t are

the energy component, head support component, congestion
component and pumping component of the DLMPs for the
thermal grid respectively. The individual components can be
conveniently obtained with the help of the sensitivity matrices
as:

πp,e
t = creft 1f , πp,u

t = (Mu,p)
ᵀ
(
µu−

t − µu+

t

)
πp,s
t = −

(
M sf ,p

)ᵀ
µsf,+

t −
(
M st,p

)ᵀ
µst,+

t

πp,ls
t = −

(
Mpls,p

)ᵀ
creft −

(
M qls,p

)ᵀ
creft

πth,e
t =

creft

ηch
1f , πth,h

t =
(
Mh,pth

)ᵀ
µh−

t

1

ηch

πth,v
t = −

(
Mv,pth

)ᵀ
µv+

t

1

ηch

πth,pm
t = −

(
Mppm,ppm

)ᵀ
creft

(10)

Note that for the loss and pumping components, the La-
grangian multipliers become λp

ls

t = λq
ls

t = λp
pm

t = creft 1f .

C. Application of DLMPs
Considering an independent system operator which operates

the combined thermal and electric distribution system and
allocates prices for the electric and thermal consumption, the
market procedures can be cast as follows:

1) FLs submit their instantaneous bids, energy requirements
as well as their dispatch capabilities to the system oper-
ator;
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Fig. 1. Test case with congruent electric and thermal grid layout.

2) The system operator forecasts its underlying elec-
tric/thermal demand and solves the combined optimal
operation problem eq. (7) in a day-ahead manner;

3) The system operator obtains the respective DLMPs for
electric and thermal consumption and then passes them
to the FLs;

4) The FLs receive the price signals and solve the local FL
operation problem. This results in an optimal dispatch
which implicitly respects the operational constraints of
the thermal and electric grids.

Note that such a market organization enables the individual
market participants like FLs to make bids purely based on
the locally available information. This essentially enables the
price-based control for the system operator over FLs that act
as price takers for both electric and thermal demand.

IV. RESULTS AND DISCUSSION

The presented methodology is demonstrated for a test case
based on a neighbourhood in Singapore, which was originally
developed as part of the City Energy Analyst (CEA) [11]. The
test case consists of thermal and electric grids with identical
layout according to fig. 1 and 22 commercial buildings mod-
elled as FLs according to [10], where the thermal grid serves
as a district cooling system (DCS). The source node electricity
price creft is derived for one day of the Universal Singapore
Energy Price (USEP). In the following, three scenarios are
distinguished for 1) unconstrained operation, 2) constrained
branch flow and 3) constrained pressure head.

Scenario 1: Unconstrained operation: In this scenario, the
optimal dispatch of the FLs does not incur any thermal
or electric grid constraint violations. Figure 2 depicts the
thermal grid DLMPs of FLs “16” and “17”. The observed
thermal grid DLMPs consist only of energy and pumping
components, where the variations in energy component and
pumping component correspond to changes in creft . Thermal
and electric demand are scheduled such that the apparent price
peak at 09:30 is avoided.

Scenario 2: Constrained branch flow: For this scenario, an
artificial branch volume flow constraint was introduced at the
branch connecting nodes “A” and “B” (see fig. 1). As depicted
in fig. 3, FL “17” observes an increased thermal grid DLMP
due to the additional congestion component. No change is
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Fig. 2. Thermal grid DLMPs and thermal/active power dispatch at FLs “16”
and “17” for scenario 1: Unconstrained operation.
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Fig. 3. Thermal grid DLMPs and thermal/active power dispatch at FLs “16”
and “17” for scenario 2: Constrained branch flow.

observed at FL “16”, as it is adjacent to a different section
of the thermal grid which does not connect to the source node
through branch “A”-“B”. Even with this minor price change,
FL “17” is incentivized to reschedule its demand.

Scenario 3: Constrained pressure head: Scenario 3 consid-
ers an artificial node pressure head constraint at node “B”.
Figure 4 highlights that this introduces head support DLMP
components for both FLs “16” and “17”. This demonstrates
that the node pressure head is a function of all upstream
nodes’ pressure head, as described by eq. (3) and as such
interdependent between different grid sections. FL “17” in
this case again reschedules its demand, apparently to avoid
a slightly increased price peak at around 12:00.

V. CONCLUSION

This paper presented an extension for distribution locational
marginal prices (DLMPs) to combined thermal and electric
grids. Based on linear thermal and electric grid models, the
derivation and decomposition of DLMPs was formulated for
the combined optimal operation problem. The approach was
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Fig. 4. Thermal grid DLMPs and thermal/active power dispatch at FLs “16”
and “17” for scenario 3: Constrained pressure head.

demonstrated for a test case based in Singapore. Future work
will focus on the impact of thermal grid injections and model
extensions to consider thermal losses in the thermal grid. The
presented models and test case are implemented in [12].
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