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Abstract

This brief note reports the fundamental phenomenon of implicit multivaluedness exhibited from one output to the other of two
node-systems with a common input—referred to as counter-cascaded1 systems—under the appropriate conditions. The novel
concepts of immanence and transcendence are introduced upon which the formulation and prove of a necessary and sufficient
condition for multivaluedness are based; this is the main result of this note. Next, subsequent consequences of this result are
presented. Among these is the fact that this result also holds for cascaded generalized systems.

The novel application of structural complexity reduction in directed networks presented next, demonstrates the utility of
multivaluedness and is itself a contribution to the theory of signals and systems.

The significance of the work presented here is that it contributes toward the theory of systems and networks as well as toward

the arsenal of tools for studying networks.
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Abstract—This brief note reports the fundamental phe-
nomenon of implicit multivaluedness exhibited from one output
to the other of two node-systems with a common input—
referred to as counter-cascaded1 systems—under the appropriate
conditions. The novel concepts of immanence and transcendence
are introduced upon which the formulation and prove of a
necessary and sufficient condition for multivaluedness are based;
this is the main result of this note. Next, subsequent consequences
of this result are presented. Among these is the fact that this result
also holds for cascaded generalized systems.

The novel application of structural complexity reduction in
directed networks presented next, demonstrates the utility of
multivaluedness and is itself a contribution to the theory of signals
and systems.

The significance of the work presented here is that it con-
tributes toward the theory of systems and networks as well as
toward the arsenal of tools for studying networks.

Index Terms—Big data, cascaded systems, complex networks,
counter-cascaded systems, distributed measurement systems,
functional uniformization, immanence, mixed modeling, multi-
valuedness, multivalued function, multivalued relation, network
analysis, network science, networked systems, neural networks,
node rationalization, nonlinear systems, structural reduction,
transcendence, single-valuedness, single-valued relation, well-
defined mapping.

I. INTRODUCTION

The area of Network Theory and Analysis [1] has rapidly
expanded into a very active and vibrant field of research,
with ever more fundamental theoretical results [2] and novel
applications [3] [4] being reported. A network consists of
units called nodes that interact via connections referred to
as links or edges. In order to give a glimpse of the diverse
nature of these objects of study, note that size-wise, real-world
networks range from a few nodes up to billions of nodes
and beyond, with some node-pairs interacting unilaterally
(via directed edges) and others bilaterally (via undirected
edges). Structure-wise, they range from highly homogeneously
structured networks through to amorphously unstructured and
even randomly structured networks. Character-wise, they vary
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1In Fig. 1 the systems T and M are counter-cascaded systems with common
input u, considering outputs v and w; similarly are N ◦T and M , considering
outputs x and w.

from uniformly cooperative or competitive to heterogeneously
mixed with cooperative and competitive factions contained
within. Furthermore, the mathematical descriptions of nodes in
a network range from uniform (identical) in some networks, to
diverse (distinct) in others. For these reasons, graph-theoretic
methods are indispensable for the description and analysis of
network problems. An important feature of the majority of
real-world networks is that they are constantly evolving as
far as structure, character and mathematical description are
concerned.

In the literature, the meaning of the term “network analysis”
is rather diverse. Of particular interest here, is the extended
definition of Zaidi [5], namely that it encapsulates the study
of theory, methods and algorithms applicable to graph-based
models representing interconnected real-world systems. From
this perspective, the collection of interconnected elements of
a finite element analysis of a distributed structure or physical
field and a complex interconnection of nonlinear dynamical
systems are instances of network analyses [6], [7], the former
undirected and the latter directed. Both an excellent account
of the theory and overview of current research directions in
networks, can be found in [8] and [9].

Even though networks might not always have external
causes (inputs) and effects (outputs), there are always internal
(i.e., local) causes and effects of interest when considering a
single node or a collection of nodes. A deeper understanding
of the global behavior and dynamics of a network usually
requires a deeper understanding of the mechanisms of behavior
at a more detailed level in the network. For this reason,
oftentimes it requires one to relate two (sets of) effects
w ∈ W and x ∈ X , produced by the common cause
u ∈ U (as in Fig. 1), in order to gain deeper insight. This
aspect, termed counter-cascaded systems, which is ubiquitous
in directed networks and systems, is the focus of this note,
with results for cascaded systems following as a byproduct. In
particular, minimal underlying assumptions and an elementary
set-theoretic argument [10], [11], produce a necessary and
sufficient condition for such a relation to be well-defined.

The outline of this paper is as follows: Section II presents
the mathematical foundations: basic assumptions, definitions,
the main result, its proof and some immediate consequences.
The application considered in Section III demonstrates the
utility of these results in structural reductions of directed
networks, referred to as functional uniformization via node
rationalization. The conclusion follows in Section IV.

II. THEORY OF MULTIVALUEDNESS

In order to provide a definite and concrete context for the
presentation and discussion, we consider (directed) networks

2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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u ∈ U

v ∈ V x ∈ X
T N

w ∈W
M S

Fig. 1. Two counter-cascaded paths with the common cause, u ∈ U . The
implicit relation S is shown in gray.

of nonlinear dynamical systems2 [12]. In such networks,
we will study occurrences of counter-cascaded systems us-
ing the framework shown in Fig. 1. Importantly, note that
this framework includes both counter-cascaded (M 6= I)
and cascaded (M = I) systems configurations; I denotes
the identity mapping. Therefore, the results obtained here
are applicable to both of these configurations. In general U ,
V , W and X can be very general sets, with M ⊂ U ×W ,
T ⊂ U × V and N ⊂ V ×X binary relations. However, here
these relations are mappings M : U → W , T : U → V
and N : V → X . For the selected context, unless stated
otherwise, these mappings are nonlinear operators3 with do-
mains and ranges real vector spaces; typically T is a nonlinear
operator describing some nonlinear system, with M and N
nonlinear operators describing either nonlinear systems, input
and output ancillary systems or even identity operators. When
they describe ancillary systems, M and N are often many-to-
one mappings as is inevitably the case when they represent
measurement systems.

For the purpose of the presentation here, N is redundant and
can be absorbed into T by replacing N ◦T with T or by setting
N = I .4 However, for applications of these results in other
areas, it has a distinct and explicit purpose, as will be reported
on in the future. Finally, the implicit relation S ⊂ W × X
will either be single-valued (i.e., a mapping) or multivalued,
depending on the problem considered.

Next follows an important definition:

Definition II.1. (Immanence, Transcendence) In Fig. 1,
the mapping T is called immanent with respect (or relative)
to the ordered pair of mappings (M,N), if for every element
w ∈M(U), there exists an5 element x ∈ N(T (U)) such that
T (M−1(w)) ⊆ N−1(x).

If not immanent with respect to (M,N), then T is called
transcendent with respect to (M,N).

Notes.

2For economy of presentation, throughout, the same symbol is used both
for a system and its mathematical model; these are usually not the same.

3In order to emphasize that the results presented here apply in much more
general contexts, the term “mapping” will be used instead of “operator.”

4Throughout, N ◦ T denotes function composition N(T (·)) of N with T
and M−1 denotes the preimage of M .

5If such x exists, then it is unique. To see this suppose that two such
elements x1 and x2 exist, implying that N−1(x1)

⋂
N−1(x2) 6= ∅. Now,

applying N to this nonempty intersection immediately yields x1 = x2.

a. The statement “T is (M,N)-immanent” is often used
to mean “T is immanent with respect to (M,N)” and
similarly for transcendence.

b. Two nodes in a network, can be analyzed for immanence
or transcendence only if they are affected by the very
same cause.

c. Since collections of nodes can be clustered to form
supernodes, which are themselves nodes, this definition
and all subsequent results apply to supernodes without
explicit further mention.

The main result and its proof follows next:

Theorem II.2. (Well-Defined Mapping) The mapping T is
immanent relative to (M,N) if and only if N ◦ T ◦M−1 is
well-defined (i.e., single-valued).

Note. Before proceeding with the proof, first observe that for
each element u ∈ U , there exist elements wu := M(u) and
xu := N(T (u)). Next, we associate wu and xu by writing
xu = S(wu) for every u ∈ U . This can be compactly
expressed as S := N ◦ T ◦M−1. Here, S defines a relation.
If for every pair of distinct elements u1, u2 ∈ U we have that
wu1 = wu2 implies that xu1 = xu2 , then S is well-defined.

Proof. We first prove the “only if” part. Suppose that T is
immanent with respect to (M,N). Now, if S is not well-
defined, then there exist distinct elements u, u′ ∈ U such
that M(u) = M(u′) but x := N(T (u)) 6= N(T (u′)) =: x′.
This contradicts the consequence of immanence, namely that
N(T (u)) = x for all u ∈ M−1(w) and consequently S is
well-defined.

Conversely, to prove the “if” part, suppose T is transcendent
with respect to (M,N). Then, for some w ∈M(U), there are
distinct elements u, u′ ∈M−1(w) for which x := N(T (u)) 6=
N(T (u′)) =: x′, implying that S is not well-defined because
S(w) = x and S(w) = x′ and yet x 6= x′. This concludes the
converse via the contrapositive and completes the proof.

An equivalent statement of this result follows:

Theorem II.3. (Multivalued Relation) The mapping T is
transcendent relative to (M,N) if and only if N ◦ T ◦M−1
is multivalued (i.e., not well-defined).

To our knowledge this result, identifying all those situations
when the outputs of two counter-cascaded subsystems are
functionally related (as well as when not), is a novel result.

Some immediate consequences of Theorem II.2 now follow.

Corollary II.4. (Existence of a Unique Faithful Model)
For a given mapping T , a unique faithful model or modeling
mapping S exists if and only if T is (M,N)-immanent.

For modeling problems, if T is (M,N)-immanent, then
there exists a unique mapping w 7→ S(w) which yields a
unique faithful model of T , as perceived through M and N ,
namely, S(w) = N ◦ T ◦M−1(w) for every w ∈ W . In this
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case, T can be “fully explained” by the combined abilities of
the pair (M,N) justifying the use of the term “immanence”
used here. On the other hand, if T is (M,N)-transcendent,
then S = N ◦ T ◦ M−1 is a (multivalued) relation which
cannot be described by any mapping, whatsoever, and hence
no faithful model exist; a “full explanation” of T is beyond
the combined abilities of the pair (M,N), justifying use of
the term “transcendence.”

Still concerning modeling problems, approximation of S
becomes essential in the following situations: either T is
(M,N)-transcendent, or T is (M,N)-immanent but the so-
lution N ◦ T ◦ M−1 is excluded from the allowable set of
candidate model mappings, based on prior considerations.
In these situations, the only remaining course of action is
to select a qualifying approximation Ŝopt : W → X that
approximates S optimally according to some nonnegative-
valued optimality criterion J(e), with the error-relation e
defined by X ⊆e(t, ·) := S(t, ·)− Ŝ(t), for all time t.6

Corollary II.5. Let M , T , N and S be as depicted in Fig. 1.

a. If M is given and T is of canonical form T = F ◦M for
some fixed F : W → V , then T is (M,N)-immanent
for every N .

b. If M is injective then every T is (M,N)-immanent for
every N .

c. If M is many-to-one, T is not of canonical form and N
is one-to-one, then T is (M,N)-transcendent.

d. If the condition for (M,N)-immanence holds every-
where in B ⊆ U , then T |B is (M |B,N)-immanent.7

e. If M is one-to-one, N ◦ T is many-to-one and T is
(M,N)-immanent, then the mapping S is many-to-one.

f. If mappings M , N and S are given and there exists a T
satisfying the identity N ◦T = S◦M , then T is (M,N)-
immanent. As a candidate solution, N−1◦ S ◦M is a
well-defined mapping if and only if N is injective.

g. If M = I then a necessary and sufficient condition for
the relation8 T ⊂ U × V to be a mapping is that T is
(I,N)-immanent.

Notes.
a. If M is many-to-one and T is not of the canonical form

T = F ◦M , then the (M,N)-immanence of T depends
on the choice of N .

b. In Corollary II.5(f), if N is injective, then the expression
N−1 ◦S ◦M gives an explicit formula for T . However,
if N is not injective then T satisfies the expression
N−1 ◦ N ◦ T = N−1 ◦ S ◦M which is generally not
solvable for T since N−1 ◦N 6= I . So, unless additional
information about T is available, we can merely test
candidate mappings T to determine if they satisfy this
expression; if one does, it follows immediately that T is
(M,N)-immanent.

6When S is multivalued, then the difference in the expression for e(t, ·)
refers to the value Ŝ(t) subtracted from every element in the set S(t, ·). When
S is single-valued, e(t, ·) ≡ e(t) is a real number for each time instant t.

7Here, T |B is the restriction of T to the subset B of its domain U .
8Such a relation T can be interpreted as a generalized system.

Now, a little thought reveals the following to be true
for configurations similar to that shown in Fig. 1, but with
additional exogenous causes entering:

Lemma II.6. (Resolution of Exogenous Causes) Suppose
that, along one of the paths of a counter-cased pair, another
cause enters. Proceed to adjoin this cause to the original
cause and adjoin the identity operator to the up-stream (i.e.,
unaffected) portion of the affected path, both by direct-sum
operations. After this transformation, the mappings M and T
may now be defined as before.

This is best demonstrated by the simple example consisting
of two cascaded systems ṽ = T1(u) and v = T2(ũ, ṽ)
with ũ the exogenous cause entering. Lemma II.6 states that,
algebraically ũ can be referred toward the “root cause” u as
follows,

v = T2(ũ, T1(u)) = T2(Ĩ(ũ), T1(u)) ≡

T︷ ︸︸ ︷
T2 ◦ (Ĩ ⊕ T1)

u︷ ︸︸ ︷
(ũ, u),

with the direct-sum cause (ũ, u) feeding into the direct-sum
system Ĩ ⊕ T1 obtained by adjoining the identity mapping Ĩ
to the up-stream unaffected portion T1 of the affected path
T2(· , T1(u)). The exogenous cause ũ has now been resolved
yielding v = T (u), the new system of interest.

In the case of counter-cascaded systems, there are two pos-
sible directions to be considered for immanence or transcen-
dence. The following definition extends the previous definition
to cover both these possibilities. For this, N is removed by
choosing it to be the identity mapping.

Definition II.7. (Bi-immanence, Bi-transcendence) In Fig. 1,
if T is (M, I)-immanent and M is (T, I)-immanent, then
T and M are called bilaterally immanent or bi-immanent.
Similarly, if T and M are (M, I)-transcendent and (T, I)-
transcendent, respectively, then T and M are called bilaterally
transcendent or bi-transcendent.

Note.
Considering both directions for two counter-cascaded sys-
tems, in principle, all four of the following cases are possi-
ble: immanent-immanent (I-I), immanent-transcendent (I-T),
transcendent-immanent (T-I) and transcendent-transcendent
(T-T). For the case I-I the mapping relating the outputs is
a bijection while, for the case T-T, there is no mapping that
relates the two outputs in either direction. The case I-T implies
that such a mapping exists in one direction but not in the other;
vice versa for the case T-I.

III. APPLICATION: NODE RATIONALIZATION

The results of the previous section will now be applied to
structural reduction in directed networks in a novel manner. We
start by introducing the necessary terminology. The process of
expressing node mappings in factored form, with the right-
most factors chosen from as few as possible unique ones,
is referred to as functional uniformization. Furthermore, the
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A

B

C

D

Fig. 2. A directed geographical network immediate neighbor interaction.

process of minimizing the number of nodes in a functionally
uniformized network, by merging as many nodes as is possible
to share common right-most factors and (node) inputs, is
termed node rationalization. This form of structural trans-
formation of a network results in a reduction in the number
of nodes, with each of the resultant nodes possessing either
multiple inputs or multiple outputs or both. The resulting
network has fewer connected dynamical systems, represented
by nodes, with vector (i.e., parallelized) edges joining them.

Consider the simple yet general four-node directed geo-
graphic network with immediate neighbor interaction, shown
in Fig. 2. As before, the same symbol is used to present both
the node and the mathematical model describing its behavior,
i.e., its mathematical description. For example, A identifies the
upper-most node in Fig. 2; it also represents the mathematical
mapping A(·, ·) that describes this node’s behavior.

Unless additional information is available, no structural
reduction of this network is possible. So, suppose that C is
(A, I)-immanent. Then, according to Corollary II.4, there ex-
ists a modeling mapping C, as indicated in Fig. 3.9 Following
Lemma II.6, we can adjoin the inputs feeding into nodes A
and C to obtain a common vector input feeding into both
A and C, as depicted by the bold line in Fig. 4(a). Fig. 4(b)
shows that the mapping C can be replaced by the composition
C ◦A as follows from Corollary II.4. This means that we can
now replace node C of the network with a “node” C which
has a single input, fed by the output of node A as shown in
Fig. 5(a). The output of node C then replaces the output of
node C, feeding into nodes B and D (Fig. 5(a)). To reduce this
network to a three-node network requires us to merge A and
C into a single node with mathematical description (I⊕C)◦A
yielding a vector output which feeds into nodes B and D via
the bold edges in the graph shown in Fig. 5(b). The symbol
⊕ represents the direct sum operation.

Now, if there were no further immanence present in the
network, then Fig. 5(b) shows the simplest network to which
the original network can be structurally reduced, using node
rationalization.

Next, in addition, assume that D is (B, I)-immanent. Once
again, by application of Lemma II.6 and Corollary II.4, there
exists a modeling mapping D such that D = D◦B. Following
the same procedure as above, the network can now be reduced

9In order to simplify matters, during the intermediate steps that follow, we
relate back to earlier theoretical results by using the systems representation
employed before.

B
A

D
C

///
/// ////

///
///

C

////

Fig. 3. Node C is (A, I)-immanent with model C.

A A

C
C

C C

(a) (b)
Fig. 4. Node C is (A, I)-immanent with model C. (a) Nodes A and C with
the common vector input. (b) Node C = C ◦A by virtue of Corollary II.4.

to the form shown in Fig. 6(a)—effectively the two-node
uniformized network shown in Fig. 6(b). To see this simply
define the two nodes to have the mathematical descriptions10

(I ⊕ C) ◦ A and (I ⊕ D) ◦ B, respectively, resulting in
the interconnecting edges to become vector-valued. The final
result consists of only two coupled systems. This reduction
is striking, considering the generality of the mathematical
descriptions of the four nodes of the original network.

To summarize, if our example network was completely
void of immanence, i.e., all counter-cascaded node pairs were

10For economy of presentation and for readability, we represent the two
identity mappings IA and IB , operating on the ranges of A and B,
respectively, using the same symbol, namely I .

A

BCD

D B

(I⊕C)◦A

(a) (b)

Fig. 5. Reduced network: (a) With node C represented by C◦A thus sharing
the existing node A. (b) With the outputs of the new node consolidated.

A

B

D

C

(I⊕C)◦A (I⊕D)◦B

(a) (b)
Fig. 6. Uniformized network: (a) With the explicit factorizations C ◦A and
D ◦B explicitly shown. (b) With the outputs of the new nodes consolidated.
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transcendent, then by Theorem II.2, the original network
would not in any way have been structurally reducible using
node rationalization. In other words, except perhaps for cos-
metic changes, Fig. 2 would then represent the simplest form
possible for this network and imposing node rationalization
in such a case, would yield unavoidable and unresolvable
modeling errors, an inevitable consequence of transcendence.

To the other end, if bi-immanence was present, then options
to interchange the roles of relevant nodes would have existed,
while producing equivalent results.

In conclusion we point out that, in this example application,
we stretched the presence of immanence to the limit in order
to demonstrate the compactness of representation produced
by the node rationalization. However, in real-world network
investigations, node rationalization will usually only be applied
selectively to expose important latent properties that would
otherwise have gone unnoticed.

IV. CONCLUSION

In this note, the fundamental phenomenon of multivalued-
ness in systems and networks was reported and studied. For
this purpose, the novel notion of counter-cascaded configura-
tion was first introduced. This, together with the new concepts
of immanence and transcendence, facilitated the statement and
proof of the key theoretical result in Theorem II.2, namely a
necessary and sufficient condition for implicit multivaluedness
to be exhibited by counter-cascaded nodes of a directed
network. Subsequent corollaries provided further useful results
for determining multivaluedness, given specific conditions.
The configuration framework considered for this theoretical
development, includes both the cases of counter-cascaded and
cascaded node configurations which implies that these results
can be applied to both configurations.

For the particular class of modeling problems considered
by Corollary II.4, transcendence is an adverse characteristic.
However, some work currently in progress suggests that tran-
scendence is not necessarily always undesirable.

Next, a systems-and-signals type application, namely net-
work uniformization via node rationalization, applied to a sim-
ple yet very general four-node directed geographic network,
was presented. This demonstrated these results’ potential to
contribute toward the arsenal of tools for studying networks.
As a fundamental phenomenon and its mathematical character-
ization, this work contributes toward the discipline of systems
and networks science.

Further work is in progress to apply these theoretical results
to distributed measurement systems and mixed modeling in
networks, big data and neural networks and analysis of signal
processing algorithms. Also underway, is work to extend these
theoretical results to include the case of noise contamination
in networks.
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