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Abstract

Optical artificial neural networks (ONNs) — analog computing hardware tailored for machine learning —

have significant potential for ultra-high computing speed and energy efficiency. We propose a new approach

to architectures for ONNs based on integrated Kerr micro-comb sources that is programmable, highly scalable

and capable of reaching ultra-high speeds. We experimentally demonstrate the building block of the ONN —

a single neuron perceptron — by mapping synapses onto 49 wavelengths of a micro-comb to achieve a high

single-unit throughput of 11.9 Giga-FLOPS at 8 bits per FLOP, corresponding to 95.2 Gbps. We test the

perceptron on simple standard benchmark datasets — handwritten-digit recognition and cancer-cell detection

— achieving over 90% and 85% accuracy, respectively. This performance is a direct result of the record small

wavelength spacing (49GHz) for a coherent integrated microcomb source, which results in an unprecedented

number of wavelengths for neuromorphic optics. Finally, we propose an approach to scaling the perceptron to a

deep learning network using the same single micro-comb device and standard off-the-shelf telecommunications

technology, for high-throughput operation involving full matrix multiplication for applications such as real-time

massive data processing for unmanned vehicle and aircraft tracking.
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Soliton crystal microcomb generation 

Critical for micro-combs is the ability to phase-lock the frequency comb modes, and many oscillation states 
have been explored to achieve this, including feedback-stabilized Kerr combs [s1], dark solitons [s2] and 
dissipative Kerr solitons (DKS) [s3]. While many of these approaches have enabled breakthroughs [27], all 
(particularly DKS and dark soliton states described by the Lugiato-Lefever equation [27]) require 
sophisticated feedback systems and complex dynamic pumping schemes to initiate and sustain [s1, s3]. 
Here, we employ a new and powerful class of micro-comb based on what have been termed “soliton 
crystals” that are generated from a fundamentally different process and which offer significantly improved 
simplicity compared to DKS states. They are naturally formed in micro-cavities that display the appropriate 
form of mode crossings, without the need for the complex dynamic tuning mechanisms that DKS require. 
They were termed ‘soliton crystals’, due to their crystal-like profile in the angular domain in micro-ring 
resonators [36, 37]. To generate coherent micro-combs, a CW pump laser (Yenista Tunics – 100S-HP) was 
employed, with the power amplified to 30dBm by an optical amplifier (Pritel PMFA-37) and the 
wavelength subsequently swept from blue to red. The acquired soliton crystals optical spectra are shown in 
Fig. S1. We note that when locking the pump wavelength to the resonance of the MRR, the stability of the 
microcomb can be further enhanced that could even serve as frequency standards [22]. 

Datasets and pre-training 

The datasets we employed was from MNIST (Modified National Institute of Standards and Technology) 
handwritten digit database [s4] and part of the publicly available Wisconsin Breast Cancer dataset [s5]. The 
datasets of recognition tasks were first separated as training sets and test sets. The training sets were used 
for the offline training with the Back Propagation algorithm [s6], performed on an electronic computer 
using MatlabTM, to acquire pre-trained weights and bias. The test sets were tested with both the ONN and 
an electronic computer for comparison. We note that, since the number of training sets is sufficiently large 
compared with the number of synaptic connections, the cross validation process was not employed in this 
work—and in any case, it could be performed offline before the pre-training. 

Experimental setup 

During the experiment, the 7×7 gray scale data of the handwritten digit figures were first converted into a 
one dimension array X=[x(1), x(2), …, x(49)] by assembling each column head-to-tail. Then a 49-symbol 
waveform was generated and coded with the intensities at each time slot in proportion to the values of X at 
corresponding sequences, thus the input data X were multiplexed in the time domain. The 49-symbol 
waveform was generated by an arbitrary waveform generator (Keysight M8195A), which supported a 
sample rate of 65 Giga-Samples/s and an analog bandwidth of up to 25 GHz. To acquire stepwise 
waveforms for the input nodes, we used 5 sample points at 59.421642 Giga Samples/s to form each single 
symbol of the input waveform, which also matched the progressive time delay τ (84 ps) of the dispersive 
buffer.  

The optical power of the 49 microcomb lines was shaped according to the intensity of pre-trained neuron 
weights W=[w(1), w(2), …, w(49)]. We shaped the comb lines’ power with a programmable optical spectral 
shaper using liquid crystal on silicon techniques (Finisar WaveShaper 4000S), which could dynamically 
reconfigure the ONN connections within 500 ms with a resolution of 1 GHz. Two stages of programmable 
optical spectral shapers were employed for a larger loss dynamic range. The first WaveShaper was used to 
flatten the microcomb, while the second one was used to achieve pre-trained neuron weights. A feedback 
loop was used to enhance the shaping accuracy, where the comb lines’ power after shaping was measured 
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by an optical spectrum analyser (Anritsu MS9710C) and compared with the pre-trained weights to generate 
an error signal for the calibration of the WaveShapers’ loss characteristics.  

Then the waveform was multicast via intensity modulation on the wavelength channels established by 
shaped comb lines, such that the optical signal at the kth (k=1, 2, …, 49) channel was w(k)⸱X. Next the 
optical signals at all wavelength channels passed through 13-km dispersive single mode fibre and obtained 
a time delay of (49 – k )×τ for the kth channel, and τ was measured to be 84 ps. Thus, the optical signals 
were progressively shifted in the time domain. The optical signal after the single mode fibre was converted 
to the electrical domain by a photodetector (Finisar VPDV2120), and the waveform was then measured by 
a high-speed oscilloscope (Keysight DSOZ504A). The sampled output of the photodetector was added to 
the bias symbol and rescaled in intensity by the reference symbol to extract the recovered output of the 
ONN and locate the hyper-plane (a trained subspace in the high-dimension space of the input data, which 
serves as a decision boundary that separates different classes of data). 

We note here that the accuracy of the ONN predictions was experimentally limited by the performance of 
the arbitrary waveform generator, which introduced errors to the symbols’ intensities and thus deteriorated 
the correctness of the matrix multiplication. This can be addressed by using an arbitrary waveform generator 
with a larger analog bandwidth, or a higher sampling rate. Addressing this issue would result in higher 
levels of correctness than reported here. 

Speed calculation of the scaled ONN 

Following our definition of throughput and latency introduced in the manuscript, the overall throughput of 
the deep ONN is roughly the product of each hidden layer’s speed and the number of hidden layers, although 
we note that rigorous and accurate calculation of the throughput is only possible with specific configurations 
of the network.  

Here is a simple example of calculation (this example is just to show the calculations of throughput and 
latency, the actual performance in terms of prediction accuracies is not the focus of our discussion here): 
the input waveform/layer is the same as the demonstrated perceptron (49×1 vector at 11.9 Giga Baud with 
8-bit resolution, τ= 84ps), the network has a hidden layer that each has 7 fully connected neurons, and an 
output layer that has 10 fully connected neurons (to match with the number of categories for digits from 0 
to 9). As a result, 343 (49×7) and 70 (7×10) wavelengths would be needed in the hidden and output layer, 
respectively. This can be achieved by using smaller FSR microcombs such as 25GHz across the wide optical 
band (the C + L bands already reach >11THz wide).  

In the hidden layer, each initial electrical output waveform (right after the photodetection and before the 
digital signal processing) corresponds to the output of a single neuron and has a duration of 
(49×2−1)×84ps=8.148 ns. Only one time slot of each group of symbols represents the result of matrix 
multiplication between the input vector and the weight vector that constitutes of 49×2=98 floating point 
operations. As a result, the throughput of each neuron is given as 98/8.148=12.0275 Giga-FLOPS. Since 
different neurons are multiplexed in both the spatial and wavelength domain and detected in parallel, the 
total throughput of the hidden layer would be 12.0275×7=84.1925 Giga-FLOPS. 

In the output layer, the generated electrical waveform of each neuron has a duration of (7×2−1)×84ps=1.092 
ns. Only one time slot of each group of symbols represents the result of matrix multiplication between the 
input vector (sampled and re-multiplexed waveform from the hidden layer) and the weight vector that 
constitutes of 7×2=14 floating point operations, thus the throughput would be 14/1.092=12.8205 Giga-
FLOPS for each neuron and the total throughput of output layer would be 12.8205×10=128.205 Giga-
FLOPS. As such, the total peak throughput of the network would be 84.1925+128.205 =212.3975 Giga-
FLOPS. In addition, the latency of the overall network is the sum of each layer’s latency, which mainly 
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comes from the dispersive optical buffer and the electrical sampling and multiplexing module. We assume 
the latency to be 200 ps for the buffer in integrated forms and to be twice of the waveform duration for the 
re-sampling unit (2×8.148 ns and 2×1.092 ns for the hidden and output layer, respectively), the total latency 
of the example network would roughly be 18.68 ns. We note that the latency is just a very rough estimation 
showing how to calculate or measure the performance of our approach, the practical calculations of the 
latency are subject to more detailed parameters. 

The speed of the network has the potential to reach 10 Tera-FLOPS, determined as follows. With 20 layers, 
each layer featuring 20 neurons and a modulation rate of 25 Giga baud, the overall throughput should be 
around 20×20×25=10 tera-FLOPS, according to the discussion in the above section. With 8-bit resolution, 
the total potential throughput in terms of bit rate could reach 10×8=80 Tbps. We note that other widely used 
techniques in telecommunications such as polarization multiplexing and coherent modulation formats could 
also potentially boost the computing speed of the proposed neuron network in this work. 

Table S1 shows the performance matrices of state-of-art ONNs. We note that it is difficult to directly 
compare different kinds of ONNs, since on one hand, there are no universal and specific definitions of 
ONN’s parameters. On the other hand, the operation principles of existing ONNs are quite different and 
have their unique advantages. As such, here we highlight the decent advances of existing works and focus 
on the speed parameters, including the latency and throughput, to reflect our ONN’s advantages in this 
aspect. 

Table S1 Performance comparison of state-of-the-art ONNs 

Approach\Parameter Compatibility with 
digital electronics Latency 

Throughput speed per unit 
FLOPS bits/s 

Diffraction devices [10] — < 10 ns — — 
Integrated couplers [4] — < 0.1 ns — — 

Reservoir computing [13] Yes < 1 µs 17.6 G — 
Spike computing [16] Yes < 1 µs 8 G 8 G 
Spike computing [17] — < 0.1 µs — — 

This 
work 

Demonstrated single 
Perceptron Yes 64 µs 11.9 G 95.2 G 

Designed deep ONN Yes >18.68 ns >10 T >80 T 
 
“—” denotes the corresponding parameter is either not demonstrated or not indicated in the work. 

References of the supplementary 
[s1] P. Del’Haye et al., Optical frequency comb generation from a monolithic microresonator. Nature 
450, 1214 (2007). 

[s2] X. Xue et al., Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature 
Photonics 9, 594–600 (2015).  

[s3] T. Herr et al., Temporal solitons in optical microresonators. Nature Photonics 8, 145–152 (2013). 

[s4] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document 
recognition. Proceedings of the IEEE 86, 2278-2324 (1998). 

[s5] O. L. Mangasarian, W. N. Street, W. H. Wolberg, Breast cancer diagnosis and prognosis via linear 
programming. Operations Research 43, 570-577 (1995). 

[s6] C. M. Bishop, Neural networks for pattern recognition.  (Oxford university press, 1995).   
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Fig. S1 | a, Different states and measured RF intensity noise of the microcomb. b, Measured low intensity 
noise states. 
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Fig. S2 | ONN predictions of handwritten digits labeled according to their correct answers. 
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Fig. S3 | Time-domain multiplexed input layer of cancer diagnosis test. Generated 11.9 Giga-baud data stream of the 
encoded 75 sets of features showing 30-symbol encoded data for each set and 3 symbols padded for post measurement, 
including a trigger symbol to trigger the oscilloscope, a reference symbol to calibrate the reference level, and a bias symbol 
encoded with the pre-trained bias to locate the decision boundary.  
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Fig. S4 | Experimental recognition of cancer diagnosis. a, Optical spectrum of the shaped (soliton crystal) micro-comb 
measured by an optical spectrum analyser. b, Measured and sampled output waveform from the photodetector. c, Recovered 
ONN predictions X×W+b acquired by rescaling the sampled results via the reference symbol, and the hyper-plane 
X×W+b=0 (black line).  
 



1 
 

Photonic perceptron based on a Kerr soliton crystal 

microcomb for high-speed, scalable, optical neural networks 

Xingyuan Xu,1 Mengxi Tan,1 Bill Corcoran,2 Jiayang Wu,1 Thach G. Nguyen,3 Andreas Boes,3 Sai T. Chu,4 

Brent E. Little,5 Roberto Morandotti,6 Arnan Mitchell,3 Damien G. Hicks,1,7 and David J. Moss1,* 

Affiliations: 

1Optical Sciences Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, 

Australia   

2Department of Electrical and Computer Systems Engineering, Monash University, Clayton, 3800 VIC, 
Australia  

3School of Engineering, RMIT University, Melbourne, VIC 3001, Australia  

4Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Hong 

Kong, China. 

5Xi’an Institute of Optics and Precision Mechanics Precision Mechanics of CAS, Xi’an, China. 

6INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 

1S2, Canada. 

7Bioinformatics Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, 

Australia 

*Correspondence to:  dmoss@swin.edu.au 

 

  

mailto:dmoss@swin.edu.au


2 
 

Abstract 

Optical artificial neural networks (ONNs) — analog computing hardware tailored for machine 

learning [1, 2] — have significant potential for ultra-high computing speed and energy efficiency [3]. 

We propose a new approach to architectures for ONNs based on integrated Kerr micro-comb sources 

[4] that is programmable, highly scalable and capable of reaching ultra-high speeds. We 

experimentally demonstrate the building block of the ONN — a single neuron perceptron — by 

mapping synapses onto 49 wavelengths of a micro-comb to achieve a high single-unit throughput of 

11.9 Giga-FLOPS at 8 bits per FLOP, corresponding to 95.2 Gbps. We test the perceptron on simple 

standard benchmark datasets — handwritten-digit recognition and cancer-cell detection — 

achieving over 90% and 85% accuracy, respectively. This performance is a direct result of the record 

small wavelength spacing (49GHz) for a coherent integrated microcomb source, which results in an 

unprecedented number of wavelengths for neuromorphic optics. Finally, we propose an approach to 

scaling the perceptron to a deep learning network using the same single micro-comb device and 

standard off-the-shelf telecommunications technology, for high-throughput operation involving full 

matrix multiplication for applications such as real-time massive data processing for unmanned 

vehicle and aircraft tracking.  
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Introduction 

Artificial Neural Networks (ANNs) have demonstrated unprecedented success in making predictions from, 
and capturing simpler representations of, complex high-dimensional data. When trained on enough data, 

ANNs can outperform humans and other computational algorithms [5] in tasks ranging from image 

recognition and language translation to risk evaluation and, interestingly, sophisticated board games [6]. 

The computing power and speed of ANNs is dictated by matrix multiplication operations. Current electronic 
devices designed for ANNs, including the IBM TrueNorth and Google TPU [7, 8], generally employ ultra-

large-scale parallel arrays of processors, such as the systolic array [8], to enhance the parallelism for higher 

computing speeds. Electronic approaches, however, are subject to either relatively inefficient digital 
protocols or the electrical bandwidth bottleneck of each single processor (~700 MHz) [9]. 

Photonic ANN hardware, or optical neural networks (ONNs), are promising next-generation neuromorphic 

processors, since they potentially offer ultra-large optical bandwidths in order to reach dramatically 

accelerated computing speeds [3]. The key to achieving ONNs is to realize the weighted synapses that 
connect the neurons and nodes. Unlike digital approaches where the synapses are stored in memories, 

photonic approaches not only rely on physical embodiments of synapses where the number of synapses 

(i.e., the network scale) relies on the physical parallelism, but it is inherently analog. 

Significant progress has been made on ONNs that explore different multiplexing approaches to realise 

parallel synapses. Spatially multiplexed schemes such as integrated coherent photonic circuits [3] and 

diffractive frameworks [10], have successfully demonstrated classification tasks involving vowels and 
handwritten digits with low-power passive operation, although with a direct tradeoff between parallelism 

and footprint. Other approaches to ONNs, such as photonic reservoir computing [11-13] and spike 

processing [14-17], employ advanced multiplexing techniques to establish synapses with much more 

compact schemes. Photonic reservoir computing begins with using time-domain multiplexing to achieve 
large-scale input layers with hundreds of nodes. Spike processing, on the other hand, employs wavelength-

division multiplexing and has achieved significant success at pattern recognition tasks through the use of 

integrated phase-change devices [17].  

Despite these successes, however, current schemes have limitations of one form or another. Time-division 

multiplexed networks are difficult to either dynamically train or scale up to form deep (multi-layer) neural 

networks. Spike processing has so far been limited in its degree of parallelism by the use of discrete laser 
arrays. The simultaneous use of all three types of multiplexing (wavelength, time, spatial) would offer the 

greatest benefits in terms of scale and processing power and speed. 

Here, we propose a new approach to ONNs, based on a Kerr frequency optical micro-comb source in an 

integrated micro-ring resonator (MRR). This approach to ONNs employs the combined use of wavelength, 
time and spatial multiplexing, and can perform matrix multiplication operations at high throughput speed 

and in an intrinsically scalable and dynamically trainable network structure. We experimentally 

demonstrate the key building block of the full ONN, a single neuron photonic perceptron with 49 synapses, 
that operates at a single-unit matrix multiplication (vector dot product) throughput of 11.9 Giga floating 

point operations/s (FLOPS), that, at 8 bits per FLOP, corresponds to a bit rate of 95.2 Gbps. We achieve 

this record throughput for ONNs by simultaneously weighting the synapses in the wavelength domain and 

scaling the input data in the time domain, enabled by the microcomb source. We apply the single perceptron 
to standard benchmark tests including the classification of handwritten digits, where we achieve > 93% 

accuracy, as well as to predicting benign/malignant cancer classes using a feature set extracted from 

microscopy images of biopsied tissue, achieving > 85% accuracy.  

Finally, we show how this approach can be readily scaled using the same single micro-comb chip source to 

form ultrahigh speed deep neural networks using standard off-the-shelf telecommunications tools. Scaling 

to multiple levels offers the full potential of wavelength multiplexing for speed enhancement together with 
the deep learning network structure. Both the perceptron and deep learning ONN are dynamically trainable 
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and fully compatible with state-of-art electrical interfaces, making them highly promising for next 
generation real-time massive data processing.  

Photonic single perceptron 

Figure 1 shows the mathematical model of the single neuron perceptron [18] while Figure 2 shows the 

detailed experimental configuration that we use based on an integrated optical micro-comb source. The 

perceptron uses simultaneous time and wavelength multiplexing based on 49 wavelengths from the 
microcomb source, each wavelength forming a single synapse. Its core function is a matrix multiplication 

operation (for a single perceptron, reducing to a vector dot-product) between the input electronic data of 

the image to be analysed with the synaptic weights that are implemented in a multiple-step approach in the 
optical domain. The raw input data for classification is a 28×28 matrix in electronic digital grey-scale values 

with 8-bit intensity resolution. We first resample this digitally (effectively performing digital down-

sampling) into a 7×7 matrix which is then rearranged into a 1D vector: X = [x(1), x(2), …, x(49)]. This 

vector is then sequentially multiplexed in the time-domain via a high-speed electrical digital-to-analog 
converter at a data rate of 11.9 Giga Baud (symbols per second), where each symbol corresponds to the 8-

bit pixel of the input data and occupies one time-slot of length  =84 ps, so that the entire waveform duration 

is given by N τ = 4.12 ns (N=49). In traditional digital approaches, the input nodes to the neural network 

generally reside in electronic memories and are routed via the memory addresses. In contrast, for our ONN 
the input nodes are defined by temporally multiplexed symbols that can be routed according to their 

temporal location.  

Next, the electronic time-division multiplexed input waveform signal is multicast onto all 49 (e.g. equal to 

the number of components of the X vector) wavelength channels from the micro-comb source via an electro-
optic modulator, such that each wavelength contains an identical replica of the temporal data waveform X. 

The optical power of each comb line is then weighted with an optical spectral shaper (Waveshaper) 

according to the trained synaptic weight vector W = [w(1), w(2), …, w(49)], which therefore effectively 
multiplexes the synaptic weights in the wavelength domain. Assuming X and W are both 49×1 column 

vectors, the resulting weighted replicas of input X then become 

 

(1) (1) (1) (2) (1) (3) (1) (49)

(2) (1) (2) (2) (2) (3) (2) (49)

= (3) (1) (3) (2) (3) (3) (3) (49)

(49) (1) (49) (2) (49) (3) (49) (49)

T

w x w x w x w x

w x w x w x w x

w x w x w x w x

w x w x w x w x

    
 

    
     
 
 
     

X W   (1) 

where the nth row (n∈ [1, N]) corresponds to the weighted temporal waveform replica at the nth wavelength 

channel. Hence, the diagonal elements denote the N weighted input nodes, i.e., the nth weighted input node 

is represented by the 8-bit symbol w (n)·x(n) residing in the nth timeslot of the nth wavelength channel.  

The replicas then pass through a dispersive element providing second-order dispersion to progressively 

delay the weighted replicas so as to line up all of the diagonal elements into the same timeslot, with the 

delay step satisfying  = delay(λk) − delay(λk+1). Thus, the dispersive element serves as a time-of-flight 

addressable memory that aligns the sequentially weighted temporal symbols w (1) · x(1), w (2) · x(2), …, w 

(49) · x(49) across the wavelength channels as 
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(1) (1) (1) (47) (1) (48) (1) (49)

(2) (1) (2) (2) (2) (48) (2) (49)

(3) (1) (3) (2) (3) (3) (3) (49)

(49) (1) (49) (47) (49) (48) (49) (49)

w x w x w x w x

w x w x w x w x

w x w x w x w x

w x w x w x w x

   

   

   

   

 
 
 
 
 
 
 
 

 

 (2) 

While for the single perceptron demonstrated here (single layer, single neuron) this process does not 

increase the speed of the network since only the diagonal elements are used, dramatic increases in speed 

can be realized by scaling to deep networks through simultaneous time, wavelength and spatial multiplexing 
(see section 5).  

Finally, the optical intensity of the aligned time slots are summed by photodetection (high speed – with 

enough bandwidth to resolve the different timeslots of width ) and sampling to finally yield the result for 

matrix multiplication (in this case a vector dot product) of the neuron, given by 

49

1

( ) ( )
k

w k x k


  X W                                    (3) 

After this matrix multiplication, the weighted and summed output is then biased and mapped onto a desired 

range through a nonlinear sigmoid function (achieved in this initial demonstration offline with digital 

electronics, see supplementary for details), yielding the neuron (single-neuron perceptron) output. Finally, 
the prediction of the input data’s category is generated by comparing the neuron output with the decision 

boundary, which is a hyper-plane in a 49-dimension space found during the learning process (in this case 

achieved offline digitally) that can well separate the two input categories. 

Soliton crystal microcomb 

The key to our approach lies in the use of an integrated optical micro-comb source [19-21]. Micro-combs 
have enabled many fundamental breakthroughs through their ability to generate optical signals with the 

same precision as microwave and RF signals, yet at 100’s of terahertz for optical frequency synthesis [22], 

ultrahigh capacity communications [23], complex quantum state generation [24], advanced microwave 
signal processing [25], and more. They offer the full power of optical frequency combs [26] but in an 

integrated platform with much smaller footprint and higher scalability, performance, and reliability [27-

35].    

The microcomb we employ here operates in a unique coherent state termed “soliton crystals”, which 
originate from optical parametric oscillation in an on-chip micro-ring resonator (MRR). Soliton crystals are 

a unique and powerful class of soliton microcomb featuring deterministic formation originating from a 

mode crossing-induced background wave, driven by the Kerr nonlinearity, together with the high intra-
cavity power. Because the intracavity energy of the soliton crystal state is almost identical to that of the 

chaotic state from which they originate, there is no significant change in intracavity energy when they are 

generated and, in turn, there is no resulting self-induced shift that requires complex tuning methods as, e.g., 

for DKS solitons [27]. This results in simple and reliable initiation via adiabatic pump wavelength sweeping 
[36], as well as much higher energy efficiency (ratio of optical power in the comb lines relative to the pump 

power) [37]. Soliton crystals are thus a very promising category of optical frequency combs for wavelength 

multiplexing based systems including microwave and RF photonic processors [25, 38-53] as well as the 
ONN reported here.  
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The MRR used here was fabricated in a CMOS compatible doped silica glass platform [20] with a Q factor 
of ~1.5 million and radius of ~592 μm, corresponding to an FSR of ~0.4 nm or 48.9 GHz. This is a record 

low FSR spacing for any coherent integrated microcomb source and is a critical feature of this work since 

it resulted in a large number of available wavelengths over the telecommunications C-band. The chip was 

coupled with a fibre array, featuring a fibre-chip coupling loss of only 0.5 dB per facet brought about by 
integrated mode converters. The cross-section of the waveguide was designed to be 3 μm × 2 μm, which 

yielded anomalous dispersion in the C band as well as a unique mode crossing observed at ~ 1552 nm. 

To generate coherent micro-combs, a CW pump laser was employed, with the power amplified to 30dBm 
by an optical amplifier. Next, the wavelength was subsequently manually swept from blue to red. When the 

detuning between pump wavelength and MRR’s cold resonance became small enough such that the intra-

cavity field reached a threshold value, a modulation instability driven oscillation was initiated. As the 
detuning was changed further, distinctive ‘fingerprint’ optical spectra (Fig. 3) were observed that are a 

signature of soliton crystals [36, 37], which arise from spectral interference between the tightly packed 

solitons circulating along the ring cavity.  

Experimental results 

We experimentally demonstrated the building block of the network – a single layer, single neuron photonic 
perceptron (Fig. 4) which is suitable for binary classification problems. Problems with more classes can be 

addressed using more than one neuron, even with only a single layer (non-deep) ONN system. This can 

easily be achieved by sub-dividing the comb into wavelength groups that each define a neuron (See Section 
5). We first tested the perceptron on several pairs of handwritten digits (Fig. 5 and 6), using 500 figures for 

each digit, from which 920 figures were randomly selected for offline pre-training, leaving the remaining 

80 figures for experimental testing. The 2D handwritten digit figures were pre-processed electronically 

using a down-sampling method to reduce the image size from 28×28 to 7×7, followed by transforming it 
into a one-dimensional array of 49 symbols. This was then time multiplexed with ~ 84 ps long timeslots for 

each symbol (Fig. 5b), equating to a modulation speed of 11.9 Giga-baud. 

As discussed above, the optical power of the 49 microcomb lines was shaped according to pre-learned 
synaptic weights (Fig. 6a) to boost the parallelism and establish synapses for the neuron. Then the input 

data stream was multicast onto all 49 shaped comb lines followed by a progressive (linear with wavelength) 

delay using a ~13 km standard single-mode fibre (SMF), which served as the time-of-flight optical buffer 
via its second-order dispersion (~17 ps/nm/km). Hence, the weighted symbols on different wavelength 

channels were aligned temporally, allowing them to be summed together via photodetection and sampling 

of the central timeslot, to generate the results of the matrix multiplication and accumulate (MAC) operation. 

The output was then compared with the decision boundary obtained from the learning process, which 
yielded the final ONN prediction (Fig. 6b). 

We evaluated the performance of the optical perceptron in determining the classification of two standard 

benchmark cases (see Supplementary and Figures 6, 7), handwritten digits and cancer cells. In the first case, 
two categories of handwritten digits (0 and 6) were distinguished by the decision boundary. Our device 

achieved an accuracy (ACC) of 93.75%, compared to 98.75% success for the calculated results on a digital 

computer (see Fig. 6d). Despite being a rudimentary benchmark tests, the perceptron nevertheless achieved 

a very high success rate and, most importantly, at unprecedented speeds (see below). This was a result of 
the large number of synapses (optical wavelengths over the C-band), in turn enabled by the record low FSR 

soliton crystal micro-comb.  

We also determined the classification of cancer cells from tissue biopsy data (Fig. 6e and supplementary). 
Individual cell nuclei, from breast mass tissue extracted by fine needle aspirate and imaged under a 

microscope, have previously been characterized in terms of 30 features such as radius, texture, perimeter, 

etc. In our analysis, data for 521 cell nuclei were employed for pre-training, with another 75 used for 
experimental diagnosis, following a similar procedure to the above handwritten digit test. We achieved an 

accuracy of 86.67% as compared to 98.67% success for the calculated results on a digital computer. 
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There is currently no commonly accepted standard that establishes benchmark systems for classifying and 
quantifying the computing speed and processing power of the widely varying types of ONNs that have been 

reported. Therefore, we explicitly outline the performance definitions that we use for throughput and 

latency (see Supplementary) in characterizing our ONN. We follow the approach Intel has used to evaluate 

digital micro-processors [54]. Considering that in our system the input data and weight vectors for the MAC 
calculation originate from different paths and are interleaved in different dimensions (time, wavelength), 

we use the temporal sequence at the electrical output port to clearly define the throughput. According to the 

broadcast-and-delay protocol, each computing cycle of matrix multiplication between the 49-symbol data 
and weight vectors generates an output temporal sequence with a length of 48+1+48 symbols and thus a 

total time duration of 84ps×97. While the 49th symbol corresponds to the desired matrix multiplication 

output as a result of 49 multiply-and-accumulate operations, the throughput of our ONN is thus given as 
(49×2)/(84 ps×97)=11.9 Giga-FLOPS.  

The input data stream consisted of symbols with 8-bit (256 discrete levels) values, determined by both the 

original grey scale values of the image pixels and the intensity resolution of our electronic arbitrary 

waveform generator. The optical spectral shaper (Waveshaper) featured an attenuation control range of 35 
dB, which could support up to 11-bit resolution (10∙log10(211)=33 dB). As such, each computing cycle also 

corresponded to an equivalent throughput of (49×2)×8/(84 ps×97)=95.2 Gbps in terms of bit rate. For 

analog systems such as the one used here, the bit rate/intensity resolution is limited by the signal-to-noise 
ratio of the system. Hence, to achieve 8-bit resolution, the system would have to feature a signal-to-noise 

ratio of >20∙log10(28)=48 dB in electrical power or 24 dB in optical power. This is well within the capability 

of analog microwave photonic links including the ONN system reported here (with OSNR >28 dB).  

Our results represent the fastest throughput (in bit rate) claimed so far for any ONN, although a direct 

comparison of the widely varying systems is difficult (Supplementary Table S1). For example, while 

systems that use CW sources to perform single-shot measurements [4, 10, 17] may have a low latency, they 

always suffer from a very low throughput since the input data cannot be updated rapidly. While the latency 
of our single perceptron is relatively high (~64 μs) due to the fibre spool, this does not affect the throughput 

of our system. In any event the latency can be readily reduced to < 200 ps through the use of compact 

devices to implement the delay function — devices with high group velocity dispersion and much lower 
overall time delay such as photonic crystal waveguides or sampled Bragg gratings (in fibre or on-chip) [55], 

for example. Finally, although we implemented the nonlinear function digitally offline, which did not 

impact the predictions, this could also be done with electro-optical modulators or electrical amplifiers 

operating at saturation point. 

 

Scaling to deep ONNs 

The single neuron perceptron can be readily scaled, using many different approaches, to multi-layer 

deep ONNs using only the same single micro-comb source together with standard off-the-shelf 

telecommunications technologies. Deep neural networks can achieve much more complex tasks than the 
single perceptron demonstrated here, and at much higher speeds. Here, we outline in detail one possible 

example of a scaled deep learning network (Fig. 7). It consists of an input layer (serving as an interface 

between the input raw data and the neural network), multiple hidden layers (each containing multiple 

neurons) and an output layer. The deep ONN also uses wavelength division multiplexing to establish the 
synapses but, in contrast with the single perceptron, makes full use of time, wavelength and spatial 

multiplexing with all layers’ synapses being established from the same single soliton crystal source and 

using the same single WaveShaper device. The microcomb is replicated and spatially multiplexed into the 
multiple hidden layers with each layer (and each synapse, or wavelength, within each layer) all being 

uniquely weighted. The simultaneous power splitting and spectral shaping can be achieved with a single 

commercially available Waveshaper. At each layer, the comb is further divided spectrally with into M(k) 

groups, where M(k) is the number of neurons and k is the layer number, with each group defining one 
neuron. Because the neurons are defined by their wavelength sub-comb, rather than physically, in effect 
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they are “virtual”— as are the synapses. The layers each have an electrical input port to receive the electrical 
output of the previous layer and an electrical output port to generate the calculated results of the current 

layer. The network is scalable in that each hidden layer can have a different number of neurons and 

synapses. The only requirement, assuming a fully connected network, is that the number of synapses for 

each neuron — equal to the number of neurons in the previous layer M(k−1) — needs to satisfy the relation 
M(k−1)⸱M(k) ≤ Ncomb where Ncomb is the total number of generated microcomb lines. 

Figure 7b shows what the signal looks like at the different locations in the network. The weighted combs 

(neuron synapses) input to each layer are modulated by the time multiplexed electrical signal (with a 
waveform duration of Tin= M(k−1)⸱τ, where τ is each symbol’s duration) input from the previous layer. 

Following this, the WDM waveforms for each neuron are progressively delayed by a dispersive device. In 

contrast with the single perceptron where all time slots in the full comb need to be aligned to a single slot 
(since there is only one neuron), here only the wavelengths within each individual neuron need to be 

aligned. One of the most elegant methods to achieve this would be through the use of chirped sampled 

Bragg gratings. Each segment of the grating individually serves as the buffer for the wavelengths associated 

with each neuron, with the delay between wavelengths matching the symbol duration of the input electrical 
waveform — both equal to τ. The sampled Bragg grating is not only capable of imposing segmented delays 

on many wavelengths simultaneously, but does so without any significant overall delay, or latency. The 

delayed replicas of each neuron are then demultiplexed in wavelength and summed separately via photo-
detection. Since the network uses spatial multiplexing to address the different hidden layers, it requires 

multiple delay components (e.g., chirped sampled Bragg gratings)—equal to the number of hidden layers. 

We note that since the different layers can have different numbers of neurons, the grating structure would 
also be layer dependent — the number of segments must equal the number of neurons while the bandwidth 

of each segment depends on the number of synapses. 

The last stage consists of digital signal processing the electrical waveforms generated by the previous levels 

of neurons to sample the central summing slot to obtain the matrix multiplication result of each neuron. 
This is followed by imposing a nonlinear function that rescales the weighted sum, and finally by retiming 

and digital-to-analog (D/A) conversion to generate the final output of the layer, with a time duration of 

Tout= M(k)⸱τ and a modulation rate equal to the electrical input waveform. Note that while the digital signal 
processing adds to the overall latency, it does not affect the net throughput rate. The resampling needed to 

preserve the input data rate of each layer can easily be achieved with high-speed electronic circuits (such 

as field programmable gate arrays (FPGAs)) or potentially even using optical approaches [56].  

After the sequence processing by the different layers, the ONN then predicts the class of the raw input data 
as before by comparing with multi-dimensional hyperspace decision boundaries determined through prior 

training. This overall network structure results in a series of wavelength, time and spatially multiplexed 

signals that dramatically boosts the network scale to multiple hidden layers each having multiple neurons, 
operating at ultra-high speed, and yet within a compact footprint. The potential throughput of the deep ONN 

can easily reach the TeraFLOP/s regime, and be capable of solving much more complex tasks than the ones 

achieved by the single perceptron demonstrated here — see Supplementary section for detail. 

Finally, there is strong potential for substantially higher levels of integration — ultimately towards fully 

monolithic embodiments of our ONN. The central component of our system, the optical frequency comb 

source, is already integrated, while all of the other components have been demonstrated in integrated forms, 

including integrated InP spectral shapers [57], high-speed integrated lithium niobate modulators [58], 
integrated dispersive elements [59], and photodetectors [60]. Finally, low power-consumption (98mW) 

Kerr combs have recently been demonstrated [61], that would greatly reduce the energy requirements. 

 

 

Conclusion  
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We propose a novel and powerful approach to optical neural networks based on integrated optical Kerr 
micro-comb sources. We demonstrate the key building block - a single layer, single neuron perceptron -  

operating at a record single-unit throughput of 11.9 GFLOPS or 95.2 Gbps. We successfully perform 

standard benchmark real-life tasks including the recognition of handwritten digits and the diagnosis of 

cancer cells. We propose a specific architecture to realize a deep learning ONN with greatly enhanced 
throughput speed and processing power, enabled by the high degree of parallelism achieved through 

simultaneous wavelength, time, and spatial multiplexing. This approach offers significant potential for real-

time analysis of high-dimensional data, such as identifying astrophysical fast radio bursts or pathology 
identification in clinical scanning applications [62]. 
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Fig. 1. Mathematical model of the perceptron. The perceptron featured 49 input nodes X = [x(1), x(2), …, x(49)], which were 

connected to the neuron with 49 reconfigurable weights W = [w(1), w(2), …, w(49)]. After the matrix multiplication, the input data 

X was weighted and summed, then added with a bias b and passed through a nonlinear sigmoid function to generate the output y. 

The output y was compared with the desired output d to generate an error signal err to adjust the weights. The training was 

performed offline.  

 

 
 
Fig. 2. Operation principle of the perceptron or single photonic neuron. PD: photodetector.  
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Fig. 3. Schematic of soliton crystal microcombs and generated optical spectrum. The soliton crystal is generated in a 4-port 
integrated micro-ring resonator (MRR) with an FSR of 49GHz. 
 

 
Fig. 4. The experiment setup of the optical perceptron. CW pump: continues-wave pump laser. PC: polarization controller. EDFA: erbium doped 

fibre amplifier. MRR: micro-ring resonator. OSS: optical spectral shaper. EOM: electro-optical Mach-Zehnder modulator. SMF: standard single 
mode fibre for telecommunications. PD: photodetector. OSC: high-speed oscilloscope.  
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Fig. 5. Time-domain multiplexed input layer of handwritten digits 0 and 6. a, Preprocessing flow of the handwritten digits test. Each handwritten 
digit figure was a 28×28 array of gray-scale pixels. To match the number of input nodes—49 in our case, the figures were resampled to 7×7 pixels. 
Then the gray scale data was rearranged into a one-dimensional array. Negative neuron connections were achieved by multiplying the data stream 
with the symbols of pre-trained weights. b, Generated 11.9 Giga-baud data stream for the encoded 80 figures of the handwritten digits, showing 
49-symbol encoded data for each figure and 3 symbols padded for post measurement, including a trigger symbol to trigger the oscilloscope, a 
reference symbol to calibrate the reference level, and a bias symbol encoded with the pre-trained bias to locate the decision boundary.  
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Fig. 6. Experimental classification of the handwritten digits and cancer cells. a, Optical spectrum of the shaped soliton crystal micro-comb for the 

handwritten digits recognition. b, Measured and sampled output waveform from the photodetector. c, Recovered ONN predictions X×W+b of the 
handwritten digits acquired by rescaling the sampled results via the reference symbol, and the decision boundary given by the hyper-plane 
X×W+b=0 (black line). d, Predictions for handwritten digit recognition labeled according to their correct answers, showing an accuracy (ACC) of 
93.75% (“Experimental”). This is compared to the numerical results, calculated offline using the designed ONN parameters, which had an accuracy 
of 98.75% (“Calculated”). e, Labelled predictions for benign versus malignant tumor cell classification, showing an accuracy of 86.67% for the 
ONN, and 98.67% for the numerical results. 
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Fig. 7. Designed deep optical neural network based on micro-combs. a, Schematic of the full multilayer ONN. The shaded region indicates the 
scaled part of the designed deep neural network. The full network is composed by the input layer, L hidden layers (L=1, 2, 3, …) with the kth layer 
containing M(k) neurons (M(k) is an integer), and an output layer that is constituted by M(L+1) neurons. The raw input data stream contains multiple 
equal-size 2D data samples, each is first converted into a 1D vector with a length of N and then sequentially multiplexed into a temporal waveform 
via electrical digital-to-analog conversion. b, Detailed schematic of layer k, illustrating how multiple neurons within each layer are implemented.  

 

 


