
P
os
te
d
on

10
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
19
61
35
1.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

A Cloud RAN Architecture for LoRa

Christophe Delacourt 1, Patrick Savelli 1, and Vincent Savaux 2

1Affiliation not available
2b¡¿com

October 30, 2023

Abstract

This paper deals with a cloud radio access network (CRAN)

architecture for the LoRa system. In the suggested design,

the gateway embeds a limited remote radio head (RRH),

including the analog radio-frequency (RF) analog part, the

digital-to-analog and analog-to-digital conversion, and a

digital front-end (DFE). The other LoRa network functions,

including the physical (PHY) layer, the LoRaWAN medium

access control (MAC) layer, and the application and customer

servers are implemented as cloud resources. The

presented approach leads to a flexible RAN that is robust

to the variations of capacity needs. Furthermore, it allows

us to test very specific LoRa features, such as the detection

or demodulation, while bypassing the other ones including

the hardware RRH. The methodology and tools we

used to deploy a LoRa cloud RAN are detailed, and results

concerning the performance indicator (CPU load, memory

consumption) are provided as well.

1



URSI GASS 2020, Rome, Italy, 29 August - 5 September 2020

A Cloud RAN Architecture for LoRa

Christophe Delacourt(1), Patrick Savelli*(1), and Vincent Savaux(1)

(1) b<>com, Rennes, France

Abstract

This paper deals with a cloud radio access network (CRAN)
architecture for the LoRa system. In the suggested design,
the gateway embeds a limited remote radio head (RRH),
including the analog radio-frequency (RF) analog part, the
digital-to-analog and analog-to-digital conversion, and a
digital front-end (DFE). The other LoRa network functions,
including the physical (PHY) layer, the LoRaWAN medium
access control (MAC) layer, and the application and cus-
tomer servers are implemented as cloud resources. The
presented approach leads to a flexible RAN that is robust
to the variations of capacity needs. Furthermore, it allows
us to test very specific LoRa features, such as the detec-
tion or demodulation, while bypassing the other ones in-
cluding the hardware RRH. The methodology and tools we
used to deploy a LoRa cloud RAN are detailed, and results
concerning the performance indicator (CPU load, memory
consumption) are provided as well.

1 Introduction

LoRa is a low power wide area network (LPWAN) operated
in unlicensed frequency bands for Internet of things (IoT)
applications. This cost effective, long range and energy ef-
ficient technology is being actively deployed globally by
network operators, both for public or private networks cov-
erage. The typical architecture of a LoRa network relies
on gateways connected through an Internet protocal (IP)
based backhaul interface to the centralized LoRa network
servers. The gateway is the network equipment that ex-
changes data with the IoT devices through the air interface
and relays messages between these end-devices and the net-
work server.
The gateway typically implements the RF and PHY layer
functions, including the encoding of the transmit signal,
the radio frame generation and up-conversion in the up-
link direction, and the received signal down-conversion,
demodulation and channel decoding in the downlink di-
rection. Note that the PHY layer is a proprietary solu-
tion designed by Semtech. Basics of the modulation (chirp
spread spectrum), channel coding, PHY header and pay-
load construction are described in [1]. The gateway is con-
nected to the network server (NS), that implements the Lo-
RaWAN®MAC layer [2], and to the application server (AS)
that is involved in some of the LoRaWAN security pro-
cedures (e.g. management of join requests, encryption of

application payload). The AS provides an interface to the
end user to collect and send data to the devices, typically
through a web application. The LoRaWAN protocol is an
open specification maintained by the LoRa Alliance®.
The architecture proposed in this contribution consists in
offloading some of the processing functions of the gateway
in the cloud infrastructure. In this approach, the network is
deployed with limited hardware equipment installed on the
field, to implement the remote radio head (RRH) functions
with a software defined radio (SDR) approach. Basically,
this hardware contains the antennas, the RF analog parts,
the high speed analog-to-digital and digital-to-analog con-
verters, and a field programmable gate array (FPGA) recon-
figurable hardware to perform functions such as rate adap-
tation, filtering, channels multiplexing (in the transmit side)
and de-multiplexing (in the receive side), and the genera-
tion of the modulation signal. An overview of the possible
RRH solutions is provided in [3]. The other gateway func-
tions, such as the PHY layer baseband processing (demod-
ulation and channel encoding and decoding), as well as the
NS and AS functions, are implemented on cloud resources
managed through orchestration services, using virtualiza-
tion technology. This functional split between the cen-
tralized baseband functions, also named the baseband unit
(BBU), and the RRH installed on the top towers close to the
antenna is an architecture evolution referred to as C-RAN.
This approach offers easier deployment and scaling capa-
bility through dynamic shared resources allocation, where
the software network functions are instantiated on the fly
in cloud infrastructures according to the network load. It
allows for easier network upgrades, enhancements, testing,
monitoring, and maintenance. In additionn the centraliza-
tion of the PHY processing natively enables advanced sig-
nal processing techniques such as the joint demodulation of
frames received by multiple gateways

The rest of the paper is organized as follows: Section 2 is
dedicated to the description of our proposed architecture.
Sections 3 and 4 present the methodology and the results,
respectively, and Section 5 concludes this paper.

2 Cloud RAN Architecture

2.1 Overview

The cloud-RAN IoT architecture considered in this paper
is depicted in Fig. 1, where the receiver blocks only are il-



LNA
0°

90°

ADC

ADC

Channels
demux.

Filtering
Rate

adaptation

Digital front-endAnalog RF

AGC

AGC

GW

Cloud RAN
architecture

PHY

Packet 
forwarder

Network
Server

Application
Server

Customer
Server

LoRa Network
protocol stack

Figure 1. Cloud RAN Architecture: the gateways (GWs)
only embed the analog RF and the DFE, the whole LoRa
protocol stack is processed in external servers.

lustrated (simpler blocks are used in the transmitter). It is
composed of two main components: hardware RRH located
on the antenna towers, and the other functions of the archi-
tecture that are offloaded in the cloud infrastructure. The
hardware RRH is, in turn, is composed of analog and digital
functions: the analog radio-frequency (RF) blocks of am-
plification, down conversion, filtering, and analog-to-digital
conversion (ADC) in the receiver. A reconfigurable FPGA
embeds the DFE functions of rate adaptation [4], low-pass
filtering [5], and the channel demultiplexing. Note that the
RRH also contains the transmitter functions.

As illustrated in Fig. 1, the LoRa protocol stack is fully
implemented in software in the cloud. This includes the
PHY layer and packet forwarder, usually embedded in the
antenna tower hardware in state-of-the-art solutions. The
PHY layer contains the Rx digital processing chain: syn-
chronization, symbol demodulation and de-mapping, chan-
nel decoding. It also implements the channel encoding for
the Tx path. The processing is distributed in "dockerized"
micro-services1, interfaced through remote procedure call-
based interfaces, which allows for flexibility and dynamic
scaling according to the network processing load. The PHY
layer is interfaced with the LoRa network server through the
packet forwarder interface. The network server, application
server and customer server are based on open source soft-
ware. The software functions are orchestrated with Kuber-

1https://www.docker.com/

netes2, which offers deployment automation facilities, and
efficiently handles the maintainability and scalability of the
platform.

2.2 Detailed Functions

The PHY layer software architecture relies on a micro ser-
vice approach where each different functional component
of the Tx and Rx chains is a separated entity that provides a
specific service with a dedicated interface. Each of the dif-
ferent micro services run on a separate docker container, to
provide an abstraction that packages code and dependencies
together. Multiple containers can run on the same machine
and share the OS kernel with other containers, each running
as isolated processes in user space. Docker containers are
self contained software environments for development that
include all elements needed to run: code, runtime, system
tools and libraries. The use of containers ensures porta-
bility between different platforms and clouds, and enable
easier scaling of the application.
The different micro services that compose the suggested
LoRa PHY software are summarized as follows, and illus-
trated illustrated in Fig. 2:

• Driver: the driver is in charge of configuring the RF
and the FPGA components (DFE for the Rx path, and
modulator for Tx), and encapsulates IQ data stream
from each channel in network packets.

• Replay server: The replay server is intended to buffer
the incoming IQ packets stream for retransmission
when the synchronization or demodulation service re-
quests it. Its main goal is to overcome the network la-
tency introduced by the microservices. In any case the
introduced latency is negligible (of order 10−2s) com-
pared to the duration of the LoRa transmission win-
dow.

• Detection: this component implements the received
LoRa frame detection for all spreading factors. The
detection function is a continuous process as required
by LoRa standard and therefore it generates a constant
CPU load per channel.

• Triage: this service coordinates all the reception
chain. Triggered by a detection event, it manages syn-
chronization and demodulation processes.

• Synchronization: the synchronization service starts
by requesting retransmission of the packets to the re-
play server, then it processes the frame time and fre-
quency synchronization.

• Demodulation: the demodulation service is respon-
sible for demodulating and decoding the LoRa PHY
frame. This frame includes the PHY header and pay-
load parts. The service starts by requesting retransmis-
sion of the packets to the replay server, applies syn-
chronization corrections, and then decodes the header

2https://kubernetes.io/



Analog
RF

DFE

Detection

Replay
server

Triage

Synchronization Demodulation To LoRaWAN

..
.

..
.

Channel #n

...

... ...

signal

control

Driver

Figure 2. A possible implementation of LoRa PHY Layer hardware/software split.

part to determine the parameters required for the pay-
load decoding (channel coding rate, payload length,
presence or not of a cyclic redundancy check (CRC)
in the payload). It then performs the channel decoding
of the PHY payload part, prior to the decoded frame
transmission to the MAC layer.

It must be precised that each LoRa gateway channel has ex-
actly one replay server, detection and triage services. How-
ever, as depicted in Fig. 2, synchronization and demod-
ulation services are stateless and can be scaled/mutualized
among multiple gateways, depending on the load of the sys-
tem. This feature allows for a very flexible CRAN imple-
mentation.
In addition to the previous full-CRAN architecture, we also
suggest an alternative implementation of LoRa PHY layer
hardware/software split, where less blocks are deported in
the cloud. This architecture, depicted in Fig. 3, is espe-
cially relevant in use cases where the bandwidth between
the RRH and the cloud services is limited. Thus, we keep
the same hardware DFE, and we propose an ARM-based
cost-effective board embedding parts of the micro-services.
In this configuration, only synchronization and demodula-
tion are performed in the cloud, and thus the bandwidth be-
tween the gateway and the cloud is only required when a
message is detected. The peak load in this case is 1MB/s
per channel when a frame is detected, which is the average
load in the first functional plit proposed on the Fig. 2.

3 Methodology & Tools

In order to ease development and tests of the micro-
services, we developed a hardware simulator called LiveRF.
Given an input scenario described in json format, LiveRF
is able to generate, on the fly, the IQ data stream for each
LoRa channel. This microservice can replace the driver mi-

Analog
RF Synchronization Demodulation

Channel #n

...

... ...

DFE

Driver

Replay
server

Detection

Triage

Figure 3. Alternative implementation of LoRa PHY Layer
hardware/software split: driver, detection, triage, and re-
play server are deported in a low-cost ARM CPU based
card.

croservice in order to perform receiver performance simu-
lations, including signal generation, addition of noise and
RF effects and impairments such as frequency error and
drift, phase rotation, AGC, quadrature error, etc. LiveRF
is used to perform exhaustive message parameters testing,
load tests, and complex test such as frames collision, which
is difficult to reproduce in real enviromnent conditions. It
is also used for continuous integration, as it allows to per-
form functional non regression testing, and sensitivity per-
formance evaluation of the RX chain.
Moreover, the tool Monitor has been developed, a special-
ized monitoring microservice which consolidates all the in-
formation and events provided by the RX chain. Based on
Monitor, we are able to develop a number of tools, most no-
tably a dedicated PHY monitoring web application showed
in figure 4. This application is a viewer of the I and Q



Figure 4. LoRa PHY monitoring Web Application

signals, phase and frequency variations of the gateway re-
ceived signal, as well as parameters like the received signal
strength indication (RSSI). It also displays the spreading
factor (SF), the demodulated symbols, the decoded frames,
and the CRC decoding results.

We have also developed a frame capture tool that has proven
to be very useful for debugging purposes. This tool captures
I and Q signals of frames that can be replayed using LiveRF
for further analysis. This process can be triggered accord-
ing to a set a filtering events. For example, one may cap-
ture only the frames that have been unsuccessfully decoded,
for a given SF, or on a given frequency channel. Finally,
Monitor is also used within our automated GW sensitivity
measurement framework, used both in real condition with a
controlled LoRa RF generator, or in simulation mode with
LiveRF. In addition, during the whole development phase,
we have performed regular tests with real LoRa devices and
run numerous sensitivity performance campaigns to vali-
date the gateway and calibrate the simulator.

4 Results

Based on the proposed architecture and methodology, we
have developed an efficient, robust and perfectly inter-
operable platform with existing LoRa devices. The network
architecture has been deployed and tested using commercial
devices in a real environment. The inherent flexibility of the
architecture enables quick prototyping of any kind of new
processing algorithms and tools. Addition of new features
and upgrades are also greatly simplified. Intensive auto-
mated testing significantly reduces the development cycle,
thanks to continuous deployment and Kubernetes.
The major drawback of the approach is the network
overhead mechanically introduced by the microservices.
Futhermore, comparatively to a monolithic implementa-
tion, a lot of memory optimization are prevented, leading to
a slightly slower execution time. However, this limitation is
largely mitigated by the excellent scaling capabilities of the
architecture in a cluster environment. The frame detector
has a fixed CPU cost and memory usage (continuous detec-
tion), whereas synchronization and demodulation services
load depends on the number of detected messages. Those
two services are stateless and can be scaled or mutualized

frame/s CPU load Memory Used (MB)
6 321% 733
14 442% 741
24 593% 1263

Table 1. Preliminary load test results

depending on the network load. Furthermore, there is still
a lot of room for fine level software optimizations.
Anyway, we have performed preliminary load tests on a
Kubernetes cluster composed of 5 virtual machines with 4
cores and 8GB Ram, for a total of 20 cores and 40GB RAM.
The underlaying hardware is an Intel Xeon Gold 6138 CPU
@ 2.00GHz. Results are given in terms of CPU load (100%
corresponds to 1 full loaded core) and used memory in MB.
They are measured after 10 minutes of a constant load of 6,
14 and 24 LoRa frame/s as depicted in Table 1. It must be
noticed that 24 frames/s greatly overestimates a usual LoRa
devices deployment. We conclude that the proposed archi-
tecture is able to support practical use cases on small size
clusters.

5 Conclusion & Future work

In this paper we have presented a new cloud RAN archi-
tecture for the LoRa system. This architecture is flexible
and has been derived into two configurations: a full-RAN
solution and a cost-effective ARM based board to limit the
required bandwidth between the RRH and the cloud.
For the LoRa standard, we have planned to work on joint
demodulation of messages between multiple gateways to
further improve reception performance. Finally, our goal is
to extend this flexible and reconfigurable CRAN solution to
support multiple IoT protocols.

References

[1] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A
Study of LoRa: Long Range & Low Power Networks
for the Internet of Things,” Sensors, September 2016.

[2] “Lorawan™specification,” LoRa Alliance Technical
Committee, October 2017, ver. 1.1.

[3] P. Desnos, A. Zeineddine, V. Savaux, P. Savelli,
M. Kanj, and C. Delacourt, “Flexible multi-standard
digital front-end for lpwa technologies,” in General As-
sembly and Scientific Symposium (GASS) of the Inter-
national Union of Radio Science (Union Radio Scien-
tifique Internationale-URSI), August 2020.

[4] A. Zeineddine, S. Paquelet, A. Nafkha, P.-Y. Jezequel,
and C. Moy, “Efficient arbitrary sample rate conversion
for multi-standard digital front-ends,” in 2019 17th In-
ternational IEEE NEW Circuits and Systems Confer-
ence (NEWCAS), jun 2019.

[5] S. Paquelet and V. Savaux, “On the symmetry of FIR
filter with linear phase,” Elsevier Digital Signal Pro-
cessing, vol. 81, no. 10, pp. 57 – 60, October 2018.


