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Abstract

To improve the state estimation accuracy of nonlinear induction motor with uncertain parameters, a robust desensitized rank

Kalman filtering (DRKF) is proposed to reduce state estimation error sensitivities to uncertain parameters. A new sensitivity

function is defined, and a novel desensitized cost function for the deterministic sampling methods is designed to obtain an

optimal gain matrix. The sensitivity propagation is summarized for deterministic sampling methods. Based on the rank sample

rule, the sensitivity propagation method is given, and the DRKF algorithm is derived. Two dynamic behaviors of the induction

motor with two uncertain stator and rotor resistances are simulated to demonstrate that the proposed DRKF has an excellent

performance.
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Abstract: To improve the state estimation accuracy of nonlinear induction motor with uncertain parameters, a robust 

desensitized rank Kalman filtering (DRKF) is proposed to reduce state estimation error sensitivities to uncertain 

parameters. A new sensitivity function is defined, and a novel desensitized cost function for the deterministic sampling 

methods is designed to obtain an optimal gain matrix. The sensitivity propagation is summarized for deterministic 

sampling methods. Based on the rank sample rule, the sensitivity propagation method is given, and the DRKF algorithm is 

derived. Two dynamic behaviors of the induction motor with two uncertain stator and rotor resistances are simulated to 

demonstrate that the proposed DRKF has an excellent performance. 
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1. Introduction 

To reduce the cost of the induction motor and improve the 

reliability, some key technologies of sensorless control strategy 

have been developed for induction motor[1-3]. One of the 

essential methods is estimating the motor position and speed to 

feedback the closed-loop speed control, in which the state and 

observation system is a highly nonlinear model. One of the 

popular technologies for motor speed sensorless control is the 

nonlinear Kalman filtering (KF) class, which includes the 

extended Kalman filter (EKF), unscented Kalman filter (UKF), 

cubature Kalman filter (CKF), rank Kalman filter (RKF), 

ensemble Kalman filter and particle filter[4-7]. Kim et al. first 

used the EKF algorithm to estimate the states in the speed 

sensorless vector control [8], and then many variants of the 

EKF are successfully applied in several sensorless AC drives [2, 

9, 10]. However, the EKF algorithm approximates the 

nonlinear function by using the Taylor series and ignoring the 

higher-order term. The linearization of the motor models will 

bring unexpected biases and decrease estimation accuracy. 

Then, some deterministic sample methods, such as UKF, CKF 

and RKF, are proposed to approximate the probability density 

function by using the propagation of sigma points [4, 6] and 

achieve higher accuracy in motor speed estimation [1, 11-13].  

The above filtering methods can obtain optimal state 

estimations under the assumption that state and measurement 

models can be accurately modeled without any uncertainties, 

such as color noises, disturbances or uncertain parameters. 

However, the models of practical engineerings, such as an 

induction motor, always have model uncertainties, and the state 

estimation accuracy may remarkably decrease or even lead to 

diverging. To degrade the adverse effects of uncertain model 

parameters, many technologies are proposed, such as 

augmented filtering, consider approach[14], H  filtering[6], 

and desensitized filtering[15]. The desensitized filtering is 

proposed based on a desensitized optimal control technique, 

and it is used to reduce state estimation error sensitivity 

respected to uncertain parameters[16]. The desensitized 

filtering defined the sensitivity matrix and 

sensitivity-weighting matrix and designed a novel desensitized 

cost function to calculate the gain matrix, which is used to 

balance the state estimation and the innovation. Then, this 

robust strategy is expanded to a nonlinear system, and many 

desensitized nonlinear filtering algorithms are proposed. There 

are desensitized extended Kalman filter[16], desensitized 

divided difference filter[17], desensitized unscented Kalman 

filtering [18], desensitized cubature Kalman filtering [19] and 

desensitized ensemble new Kalman filtering [20]. Then, Lou 

redefined sensitivities of state estimation error and redesigned a 

novel desensitized cost function to obtain an analytical form 

solution of a gain matrix, and saved the computational time [14, 

21]. Lou and Ishihara et al. respectively considered the 

selecting problem of the sensitivity-weighting matrix, and 

given some suggestions about this problem[22, 23]. Now, the 

desensitized filters are applied in many fields, such as Mars 

explore navigation[14, 17, 24], asteroid rendezvous navigation 

[16], hovering helicopter [19], induction motor [20, 23, 25]. 

This paper proposes a robust desensitized rank Kalman filter 

(DRKF) by introducing the desensitized optimal control 

method into the RKF algorithm to mitigate the sensitivities of 

uncertain parameters in dynamic systems. The RKF algorithm 

is lately proposed to solve the non-Gaussian nonlinear 

estimation problem by using rank statistics [7, 26]. A new 

desensitized cost function is modeled by using the posteriori 

covariance trace and a norm of the sensitivity-weighting matrix 

with the sensitivities. Then, an analytical gain matrix of the 

proposed DRKF is obtained by minimizing the above cost 

function to improve the accuracy of state estimation. 

This article is organized as follows. Section 2 introduces the 

nonlinear system model, which has some uncertain parameters. 

Desensitized technology is briefly summarized in Section 3. 

Section 4 gives the sensitivity propagation of general 

deterministic sigma points. The robust DRKF algorithm is 

proposed in Section 5. Section 6  analyzes the results of 

numerical simulations about two dynamic behaviors of 

induction motor. Conclusions are shown in the end. 

2. Nonlinear system model with uncertain 
parameters  

Consider a discrete-time nonlinear process and measurement 

models with uncertain parameters and additive noises 

following by 
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1 1 1, ,( )k k k k   x f x c u w                 (1) 

( , )k k k z h x c v                             (2) 

where n

k x  and m

k z are the state and the measurement, 

respectively; functions ( )f and ( )h  describe the nonlinear 

state and measurement equations, respectively; c  is an 

uncertain parameter vector, and n

k u is the control input 

vector. kw  is process noise and kv  is measurement noise. 

These two noises are independent zero-mean Gaussian 

processes with statistics following by 
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where n n

k

Q  and m m

k

R  are all positive semi-definite 

matrices, kj  is Kronecker delta function. 

3. Desensitized technology 

3.1. Sensitivity of state estimation error 

In the KF framework, the state estimation error is defined as 
ˆ x x x , in which x  and x̂  are true value and state estimation 

of state, respectively. Under the optimality condition of the KF, 

which does not include color noise, perturbation or uncertain 

parameter, the state estimations are unbiased and satisfies

[ ] 0E x . When the model has the above uncertainties, the state 

estimations may be biased. Here state estimation error 

sensitivity respected to uncertain parameters are defined by 

[21] 

1 2

ˆ ˆ( )
= ( , , , )

   
  
  

x x x x
S s s s

c c c
              (4) 

where =i i s x c represents state estimation error sensitivity to 

the ith uncertain parameter. Here, the sensitivity of true state to 

uncertain parameters is obviously zeros, that is to say =0 x c

[16].  

In the KF framework, the priori state estimation error is

ˆ
k k k

  x x x , and the posteriori estimation error is ˆ
k k k

  x x x . 

So, corresponding sensitivities of them are defined by 

k

ˆ
k k

 
  
 
 

x x
S

c c                                
 (5) 

k

ˆ
k k

 
  
 
 

x x
S

c c                                
 (6) 

where the superscripts “-“ and “+” denote the priori and the 

posteriori, respectively. ˆ
k


x and ˆ

k


x  are respectively the priori 

and the posteriori state estimation, kx is the true state value.  

Based on the computational formula of the gain matrix in the 

Kalman filtering framework, the relation between the priori 

sensitivities and the posteriori sensitivities are given by[21] 

k k k k

  S S K γ
                                      

  (7) 

where  

ˆ
k k

k

  
 
 

z z
γ

c c                                       
  (8) 

where ˆ
k k k

  z z z  is the predicted measurement error, and ˆ
k


z  

is the predicted measurement.  

Note that the sensitivity of the gain matrix is 

/ 0k  K c , and the details can be seen in the reference [16, 

18]. 

3.2. Desensitized cost function and gain matrix 

The core idea of the desensitized technology is using the 

penalty function to penalize the original cost function of the KF 

algorithm, and the penalty function is a weighted norm of the 

sensitivities of the state estimation error respected to uncertain 

parameters. The desensitized cost function is given by [21] 

( ) ( )T

d k k k kJ Tr Tr W   P S S                         (9) 

where “Tr” is the trace of a matrix, k


P  is the posteriori 

covariance, kW   is a semi-definite diagonal matrix. 

 Substituting expression of covariance

, , , ,

T T T

k xx k xz k k k xz k k zz k k

    P P P K K P K P K  and 
k


S  in Eq.(7) into 

Eq.(9), and taking partial derivation of dJ  respected to kK  

gives by 

, ,
2 2 2 2

T Td

k zz k xz k k k k k k

k

J



   


K P P S Wγ K γ Wγ

K    

(10) 

Setting 0d kJ  K
 
obtains  

1

, ,( )( )T T

k xz k k k k zz k k k k

   K P S W γ P γ W γ
    

 (11) 

Note that this is a general formula for the DKF framework, 

which includes the KF, EKF, UKF and their variants.  

4. Sensitivity propagation of deterministic sigma 
points 

The desensitized technology needs the sensitivities of the 

state estimation error to compose the penalty function. So, the 

calculation method of the sensitivities is essential for the 

desensitized cost function. For the KF and EKF, the 

sensitivities are calculated by the sensitivity propagation 

function, which can be obtained by the Jacobian matrix of the 

process function and measurement function respected to 

uncertain parameters [16]. For the deterministic sample 

Kalman filtering class, which includes the UKF, CKF, and 

CDKF, their sensitivities should be propagated by the sigma 

points [18, 19, 25]. Here, we summarized the sensitivities of the 

sigma points for the general deterministic sample filtering 

method.  

Assuming that the sigma points are given by 

( ) , 1, ,j x j j L  χ x P                       (12) 

where ( )x jP  is the jth column of xP ;  is weighting 

coefficient; L is the number of sigma points.  

The transformed set of sigma points are calculated by 

 * , , , 1, ,j j j L χ f χ c u                       (13) 

The corresponding mean, covariance and cross-covariance 

are calculated by 

*

1

ˆ
L

m

j j
j

w


 x χ                                          (14) 
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xx j j j
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  P χ x χ x                  (15) 
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ˆ

1

ˆ
L

T

xx j j j

j

w


  P χ x χ x                  (16) 

where, m

jw  and c

jw  are the weights of the jth sigma point, and 

the superscript m denotes mean value, c denotes covariance. 

Based on the above formulas, the sensitivities propagated by 

sigma points are given by 

 
, 1, ,

x
j j

j L
 

  
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Pχ x

c c c
           (17) 

where  x c  and  x
j

 P c  are the previous sensitivities of 

state estimation and xP , respectively.  

The transformed set of the sensitivities of sigma points are 

evaluated by 

   * , , , ,j jj j

j  

  
 
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c c c c

f χ c u f χ c uχ χ

c χ c c
    (18) 

The sensitivity of the state estimation error is  

  *

1

ˆ L
jm

j

j

w


 
 

 


χx x
S

c c
                         (19) 

The sensitivity of covariance and cross-covariance are 

following by 

   
* *
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χ χP x

χ x χ x S
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 (21) 

Remark 1: The detail of computation of the sensitivity of the 

square-root matrix P  is in references [19, 21]. 

5. ROBUST DRKF ALGORITHM 

The core idea of the RKF algorithm is the rank sample 

method, which is based on the rank statistic. The distribution of 

sigma points depends on the quantile of the median rank and the 

layer number of sampling. Based on the symmetrical 

distribution and two-sample layer, the sigma point set is given 

by 

1
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 (22) 

where 
jpu  is the standard normal deviator, which is calculated 

by the median rank
 

( 2.7) 5.4jp j  , and their values are 

respectively 1 0.6852p  ,
1

0.4823pu  and 2 0.8704p  ,

2
1.1283pu  . 

 Based on the above rank sample method and desensitized 

technology, the robust DRKF algorithm is derived and 

summarized as follows.  

 Step 1: Initializing the state 0x̂ , the error covariance 

matrix 0P , the sensitivity-weighting matrix W , the sensitivity 

matrix 0S , and sensitivity covariance matrix 0 / P c . 

Step 2: Calculating the propagated sigma points of the state 

, 1 1 1
ˆ( , )j k k kg  

  χ x P                            (23) 

where 
1

ˆ
k



x and 
1k



P  are the state estimation and the error 

covariance at a time step 1k   , respectively.  

 Calculating the propagated sensitivities of sigma points 

following by 

, 1 1

1( , )
j k k

kg



 



 


 

χ P
S

c c
                      (24) 

Step 3: Evaluating the predicted sigma points  
*

, , 1 1( , , ),     1,2, ,4j k j k k j n  =χ f χ c u    (25) 

and computing the sensitivities of the predicted sigma points 
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 (26) 

Step 4: Calculating the priori state 
4

*

,

1

1
ˆ

4

n

k j k

jn





 x χ                                    (27) 

and evaluating the error covariance matrix 
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    QP χ x χ x  (28) 

where   is the covariance weighting coefficient, which is 

calculated by 
1 2

2 22( )p pu u   . 

Then, the corresponding sensitivities of the priori state 

and covariance are given by 
*4
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Step 5: Resampling sigma points 

, ,
ˆ( , )j k k xx kg  χ x P                             (31) 

and computing the sensitivities of new sigma points 
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
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
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Pχ
S
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Step 6: Evaluating the predicted measurement using the 

sigma points 

, ,( , ),     1,2, ,4j k j k j n=Z h χ c         (33) 

and propagating the sensitivities of the predicted measurement 

points 
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Step 7: Estimating the priori measurement 
4
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and calculating the sensitivities of the priori measurement 
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                             (36) 

Step 8: Evaluating the innovation covariance matrix and the 

cross-covariance matrix 
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and calculating the sensitivities of two covariance matrices 
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(40) 

Step 9: Computing the gain matrix 
1

, ,( )( )T T

k xz k k k k zz k k k k

   K P S W γ P γ W γ     (41) 

Step 10: Estimating the posteriori state 

ˆ ˆ ˆ( )k k k k k

    x x K z z                               (42) 

and estimating the posteriori covariance matrix 

, , , ,

T T T

k xx k xz k k k xz k k zz k k

    P P P K K P K P K    (43) 

Then, sensitivities of the posteriori state and posteriori 

covariance are given respectively by 

k k k k

  S S K γ                                        (44) 
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 (45) 

6. Simulation 

To verify the performance of the novel robust DRKF, an 

induction motor with uncertain stator and rotor resistances are 

considered in simulation [20, 25]. The results of the DRKF with 

the results of the perfect RKF (perf. RKF) and imperfect RKF 

(imp. RKF) algorithms are selected to compare by using the 

root mean squared errors (RMSEs). The “perf. RKF” means 

that parameters are precisely known, and the “imp. RKF” 

denotes that the values of parameters come from the previous 

experience. 

In the stationary    reference frame, discrete state 

equation of induction motor is modeled by 
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where 1, 2, 3, 4, 5,[ , , , , ]T

k k k k k kx x x x xx , in which 1,kx  is the first 

stator current, 2,kx is the second stator current, 3,kx is the first 

rotor flux, 4,kx is the second rotor flux, 5,kx is the angular 

velocity;
 

TL  is the load torque, J  is the rotor moment of 

inertia, np  is the number of pole-pairs, rT  is the rotor time 

constant acquired by T /r r rL R  ,   is the no-load magnetic 

leakage factor of motor, sL  and rL  respectively are the stator 

winding inductance and rotor winding inductance, and mL  is 

mutual inductance between stator and rotor; 1,ku  is the first 

stator voltage control input at time step k , 2,ku  is the second 

stator voltage control input; dt is the sampling period; 

 ,
T

s rR Rc  is the uncertain parameter vector, in which sR  and 

rR  are the stator resistance and rotor resistance, respectively;

kw  is a white Gaussian noise with zero mean and covariance 

kQ . 

The measurements are the first stator current 1k
x and the first 

rotor flux 3k
x of the induction motor, and the measurement 

equation of the induction motor system is modeled by 

k k k k z H x v                                    (47) 

where kH is the observation matrix, satisfies  

1 0 0 0 0

0 0 1 0 0
k

 
  
 

H                       (48) 

where kv  is white Gaussian noise with zero mean with 

covariance kR , which is independent with the process noise 

kw . 

For the above system, the stator resistance and the rotor 

resistance may vary with different working conditions and the 

environment in the actual motor operation process. The stator 

resistance only has a relation with two stator currents. The rotor 

resistance has relations with two stator currents and two rotor 

fluxes. Therefore, the state estimation accuracy of the induction 

motor is sensitivity to the above two varying motor parameters. 

In this simulation, we assume that the stator resistance and the 

rotor resistance distribute to the uniform distribution 

(0.75 ,1.25 )s sU R R and (0.75 ,1.25 )r rU R R , respectively. Their 

reference values are 2.68 ΩsR  and 2.85 ΩrR  , respectively. 

Table 1 

Parameters of the induction motor system in simulation 
Parameter Value 

Number of pole pairs 
 

mutual inductance  
 

stator inductance 
 

rotor inductance 
 

supply voltage 
 

 



 

The sensitivity-weighting matrices are given by 1 7.1824W  and 

2 8.1225W   in simulation.  

The initial state  0 0,0,0,0,0
T

x , the initial covariance 

 0 10,10,20,20,50diagP . The covariance of the process and 

measurement noises are
 

 2 2 4 410 ,10 ,10 ,10 ,1k diag    Q and 

 2 410 ,10k diag  R , respectively. The sampling period 

310dt s  in simulation.  

Two dynamic behaviors of induction motor are 

simulated, which are the ideal no-load start and three-phase 

sudden short circuit fault. The values of the parameters of the 

induction motor system in the simulation are shown in Table 1.  

6.1. Ideal no-load start at rated voltage 

The induction motor is in a static state before starting, and 

T 0L  . Figure 1 shows the true values of the states and state 

estimations of three filters for one simulation. It can be seen 

that the rotation speed of the three-phase induction motor 

quickly has a peak value in the process of starting, and then 

tend to be stable. The same are the currents and rotor fluxes.  

Figure 1 shows the RMSEs of three filters for the process of 

ideal no-load start at rated voltage. During the process of ideal 

no-load start, the induction system model has uncertainties on 

the stator resistance and rotor resistance. As can be seen from 

Fig.2, the RMSEs of the perf. RKF is always the smallest 

because the true values of the stator resistance and rotor 

resistance are known. The RMSEs of the DRKF is obviously 

smaller than that of the imp. RKF. 

Figures 3-4 show that the state sensitivities with respect to 

the uncertain stator and rotor resistances for the ideal no-load 

start at rated voltage. Compared to the imp.RKF, the proposed 

DRKF has smaller sensitivities to two resistances. 

6.2. Three-phase sudden short circuit fault 

Assuming the motor has been running in the ideal no-load 

state, then a sudden short circuit fault, which is from 220V to 0 

in 0.12s moment, and from 0 to 220V in 0.22s moment, 

happens. Figure 5 shows the true values of the states and state 

estimations of three filters for one simulation. From Fig. 5, we 

can see that a three-phase symmetric short circuit fault occurs at 

the stator terminal at 0.12s, and the stator current and rotor flux 

are affected. After the fault was repaired at 0.22s, the motor 

terminal voltage suddenly recovered, the stator current and 

rotor flux generated a specific impact, which rose to the 

maximum value in an instant, then gradually decreased to the 

stable value, the speed rapidly rose to the stable value, and the 

motor returned to the ideal no-load running state. 

According to Fig.6, the DRKF algorithm also has a better 

performance than that of the imp. RKF as a whole when the 

three-phase sudden short circuit fault happens at 0.12s-0.22s.  

From the above two conditions of the induction motor, we 

can see that the proposed DRKF algorithm can mitigate the 

adverse effects of the uncertain stator and rotor resistances, and 

has a better performance than the imp. RKF. 

 
 Fig. 1. True values and state estimations 



 

 
 

 

 
  

 
Fig. 3. States sensitivities with the uncertain stator resistance for case one 

Fig. 2. RMSE of states 



 

 
 

 
Fig. 5. True values and state estimations 

 

Fig. 4. States sensitivities with the uncertain rotor resistance for case one 

 



 

 

7. Conclusion 

Based on rank sample rule, this paper introduces the 

desensitized optimal control technology into rank Kalman filter, 

and a robust desensitized rank Kalman filtering (DRKF) is 

proposed for nonlinear systems to mitigate the adverse effects 

of model parameter uncertainties. The sensitivity propagation 

of the deterministic sigma points is summarized, and a new 

desensitized cost function with a penalty function is designed to 

obtain the suboptimal gain matrix. Then, an ideal no-load start 

at rated voltage and a three-phase sudden short circuit fault of 

the induction motor are simulated, in which the stator and rotor 

resistances have uncertainties. The simulation results show that 

the proposed DRKF algorithm has excellent performance and 

can track the motor speed. 
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