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Abstract

Abstract:

To enable full-duplex (FD) in underwater acoustic (UWA) systems, a high level of self-interference (SI) cancellation (SIC) is

required. For digital SIC, adaptive filters are used. In time-invariant channels, the SI can be effectively cancelled by classical

recursive least-square (RLS) adaptive filters, such as the sliding-window RLS (SRLS) or exponential-window RLS, but their

SIC performance degrades in time-varying channels, e.g., in channels with a moving sea surface. Their performance can be

improved by delaying the filter inputs. This delay, however, makes the mean squared error (MSE) unsuitable for measuring the

SIC performance. In this paper, we propose a new evaluation metric, the SIC factor (SICF), which gives better indication of the

SIC performance compared to MSE. The SICF can be used in experiments and in real FD systems. A new SRLS adaptive filter

based on parabolic approximation of the channel variation in time, named SRLS-P, is also proposed. The SIC performance of

the SRLS-P adaptive filter and classical RLS algorithms (with and without the delay) is evaluated by simulation and in lake

experiments. The results show that the SRLS-P adaptive filter significantly improves the SIC performance, compared to the

classical RLS adaptive filters.
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Abstract—To enable full-duplex (FD) in underwater acoustic
(UWA) systems, a high level of self-interference (SI) cancellation
(SIC) is required. For digital SIC, adaptive filters are used. In
time-invariant channels, the SI can be effectively cancelled by
classical recursive least-square (RLS) adaptive filters, such as
the sliding-window RLS (SRLS) or exponential-window RLS, but
their SIC performance degrades in time-varying channels, e.g.,
in channels with a moving sea surface. Their performance can
be improved by delaying the filter inputs. This delay, however,
makes the mean squared error (MSE) unsuitable for measuring
the SIC performance. In this paper, we propose a new evaluation
metric, the SIC factor (SICF), which gives better indication of
the SIC performance compared to MSE. The SICF can be used
in experiments and in real FD systems. A new SRLS adaptive
filter based on parabolic approximation of the channel variation
in time, named SRLS-P, is also proposed. The SIC performance
of the SRLS-P adaptive filter and classical RLS algorithms (with
and without the delay) is evaluated by simulation and in lake
experiments. The results show that the SRLS-P adaptive filter
significantly improves the SIC performance, compared to the
classical RLS adaptive filters.

Index Terms—Adaptive filter, full-duplex, self-interference can-
cellation, time-varying channel estimation, underwater acoustic
communications

I. INTRODUCTION

In recent years, full-duplex (FD) operation of terrestrial
radio systems, such as communication systems, has demon-
strated an ability to significantly increase the system through-
put [1]–[5]. If FD operation can be adopted in underwater
acoustic (UWA) systems, e.g., in UWA communication sys-
tems, the capacity of the acoustic links can be almost doubled.
Active sonar systems can also benefit from the FD operation
by expanding the signal family used for transmission. Despite
the benefits of FD, it is not widely considered for UWA sys-
tems mainly due to the severe self-interference (SI) introduced
by the near-end transmission. Various active SI cancellation
(SIC) techniques have been proposed for FD terrestrial radio
systems. Normally, a certain amount of SI is cancelled in
the analogue domain before digital cancellation to avoid the
saturation in the analogue-to-digital converter (ADC) [1], [6],
[7]. For FD UWA systems, due to the lower frequencies of
acoustic signals, high resolution ADCs are available. Thus,
digital cancellation can be considered as the main practical
approach for SI cancellation in FD UWA systems [8], [9].

One of the major limitations of the digital cancellation per-
formance is due to the hardware imperfection in the transmit
and receive chains, among which the non-linearity introduced
by the power amplifier (PA) is the dominant factor [10]. A gen-
eral approach to deal with the PA non-linearity is to estimate

the non-linear distortion, e.g. using the Hammerstein model
and its extensions, and then compensate it in the received
signal [5], [8], [11]. To accurately model the non-linearity,
high order basis functions are required. The disadvantages of
this approach are the high complexity of the non-linear model
and a large number of parameters to be estimated. Another
approach is to use the PA output as the reference signal for
SIC [9], [12]. In this case, lower complexity linear adaptive
filters can be used for the SIC. In [9], we show that, with the
use of the PA output as the reference signal, a high level of
SIC can be achieved in slow-varying UWA SI channels by
using classical recursive least-square (RLS) adaptive filters.
The general block diagram of the FD system with digital
cancellation using PA output as the reference signal is shown
in Fig. 1.

Adaptive filters operate efficiently if the power spectral
density of the input signal (regressor) does not have zeros, i.e.
the regressor correlation matrix is full rank. This, however,
requires sampling the baseband signal at a (symbol) rate,
which is lower than the Nyquist frequency. As a result, the
performance of the adaptive filter is sensitive to the delay be-
tween the regressor (PA output) and the desired (hydrophone)
signal. To overcome this problem and ensure robust SIC
performance regardless of the delay, the digital cancellation
scheme from [9] is extended in [13]; the block diagram of the
scheme is shown in Fig. 2. In this scheme, two branches are
used with symbol rate sampling in each branch, with odd and
even samples, respectively, taken from a twice oversampled
baseband signal at the PA output. In this paper, we investigate
the SIC performance of this scheme using different adaptive
filters.

As observed in our lake experiments, another phenomenon
that limits the SI cancellation is the time-varying surface
reflections [14]. While a high level of SI cancellation can
be achieved for time-invariant SI channels (e.g., in a water
tank [9]) using classical RLS adaptive filters, the cancellation
performance is limited in experiments with a moving surface.
The main limitation is the tracking ability of the classical
adaptive filters. The Kalman filter is considered as a good
candidate for estimation of time-varying channels [15], [16].
However, for using the Kalman filter, the channel statistics
should be known, which is often not the case in practice. To
improve SIC performance in fast time-varying channels, other
schemes are required.

In time-varying channels, the SIC performance can be
significantly improved if the input signals are delayed with
respect to the time-varying estimate of the channel response as



MANUSCRIPT SUBMITTED TO IEEE JOURNAL OF OCEANIC ENGINEERING, NOV 2019 2

Fig. 1. Block diagram of the FD UWA system with digital cancellation. The system works at two sampling frequencies. The index of the signal sample with
the high (passband) sampling rate is denoted by n, and the low (baseband) sampling rate sample index is i. The analogue (passband) signals are: the PA output
s(t); the SI r(t); the noise n(t); the far-end signal z(t); and the received (hydrophone) signal x(t). The digital (passband) signals are: the PA output s(n)
and the received signal x(n). The digital baseband signals are: the transmitted data symbols a(i) and the residual signal after the digital cancellation e(i).
DAC is the digital-to-analogue converter. See more details in [9].

Fig. 2. Block diagram of the digital cancellation scheme. The PA output s(n) is down-sampled to twice the symbol rate and interleaved into two branches,
s1(i) contains odd samples and s2(i) contains even samples; x(i) is the baseband received signal; e1(i) and e2(i) represent residual signals in the two
branches; w1(i) and w2(i) are weights computed as suggested in [13].

Fig. 3. Adaptive filter with a delay.

shown in Fig. 3. However, to our knowledge, this opportunity
for FD systems has not been investigated yet.

Introducing a delay between the channel estimate and the
inputs to the adaptive filter results in a problem in measuring
the cancellation performance. The residual SI power is nor-
mally used to characterise the FD system performance [5],
[17], [18]. The mean squared error (MSE) is used to measure
the residual SI power [19]. However, the MSE in an adaptive
filter with a delay is unsuitable for this purpose, since, in this

case, unlike the classical RLS algorithms, the same data is used
for channel estimation and computation of the MSE, resulting
in over-fitting. Therefore, another measure of SIC performance
is required when using adaptive filters with a delay.

In this paper, we propose and investigate the SIC factor
(SICF) for measuring the cancellation performance and a new
adaptive algorithm for FD UWA systems with time-varying SI
channels. The contributions of this paper are as follows.

1) The SICF is proposed for evaluation of the SIC perfor-
mance in digital SI cancellers.

2) The dependence between the delay of the input signals
and the SIC performance for the exponential window
RLS (ERLS) and sliding window RLS (SRLS) adaptive
filters is investigated.

3) The new adaptive filter (SRLS-P) is proposed, which is
derived based on parabolic approximation of the channel
variation in time.

4) The proposed algorithm is investigated using numerical
simulations and lake experiments, and its performance
is compared with that of the classical RLS adaptive
algorithms.

The rest of the paper is organized as follows. In Section II,



MANUSCRIPT SUBMITTED TO IEEE JOURNAL OF OCEANIC ENGINEERING, NOV 2019 3

the new evaluation metric SICF is described. In Section III, the
SRLS-P adaptive filter is derived. Section IV and Section V
present simulation result in baseband and passband scenar-
ios, respectively. Section VI compares the SIC performance
provided by the adaptive filters using experimental data. In
Section VII, we draw the conclusions.

Notations: In this paper, we use capital and small bold fonts
for matrices and vectors, respectively; e.g, R and h. We also
denote the transpose of x as xT , and the Hermitian transpose
of h as hH .

II. EVALUATION OF SIC PERFORMANCE

Consider the SIC scheme shown in Fig. 3. In this scheme,
x(i) is a baseband version of the signal received by the
hydrophone, and it is modelled as:

x(i) = hH(i)s(i) + z(i), (1)

where h(i) is the baseband SI channel response at time
instant i, s(i) is the baseband version of the PA output signal,
s(i) = [s(i), . . . , s(i−L+ 1)]T , and L is the channel length.
The signal z(i) contains the far-end signal, as well as noise
signals such as the ambient noise, ADC noise, etc. In terms of
an adaptive filter operated in the identification mode, s(i) is
the regressor and x(i) is the desired signal [15], [16]. Using
these signals, the adaptive filter produces an estimate ĥ(i+T )
of h(i). Note that, in classical adaptive filters, T = 0 and it is
assumed that the estimate ĥ(i) is obtained using the regressor
and desired signal up to time instant i − 1. Based on this
channel estimate, the SI is cancelled by recovering the SI
signal as ĥH(i)s(i − T ) and subtracting it from the received
signal:

e(i) = x(i− T )− ĥH(i)s(i− T ). (2)

The performance of an adaptive filter is most often evalu-
ated using the mean squared error (MSE) and mean squared
deviation (MSD) [15], [16]. The MSE is defined as:

MSE(i) = E{|e(i)|2}, (3)

where E{·} denotes the expectation. The MSD is defined as:

MSD(i) = E{‖h(i)− ĥ(i+ T )‖22}. (4)

For a classical adaptive filter (with T = 0), the SIC
performance is normally evaluated by computing the MSE.
However, by adjusting parameters of an adaptive filter with
a delay, it is possible to make the MSE even lower than the
‘noise-plus-far-end-signal’ floor, although this does not mean
that the SIC performance is good. It means that not only the SI
is cancelled, but also a part of the far-end signal (i.e., the signal
of interest) is also cancelled. Essentially, the adaptive filter is
over-fitted, since, due to the delay, the same data is used for
training the adaptive filter and for the MSE computation. In
these scenarios, the MSE becomes an unreliable metric for
assessment of the SIC performance.

Using (1) and (2), the residual signal e(i) can be represented
as:

e(i) = ε(i) + z(i− T ), (5)

Fig. 4. Block diagram of FD system with SI cancellation.

where ε(i) = [h(i − T ) − ĥ(i)]Hs(i − T ). Then the SIC
performance can be evaluated by computing the output SNR
of the FD system:

SNRout(i) =
σ2
z

E{|ε(i)|2}
, (6)

where z(i) is treated as the signal of interest and ε(i) is an
interference. Assuming that s(i) are uncorrelated for different
i and uncorrelated to ĥ(i), we have:

E{|ε(i)|2} = σ2
sE{||h(i− T )− ĥ(i)||22} (7)

= σ2
sMSD(i− T ), (8)

where σ2
s = E{|s(i)|2} is the variance of the signal s(i), which

is assumed stationary. Then, finally, we obtain:

SNRout(i) =
σ2
z

σ2
s

· 1

MSD(i− T )
. (9)

Thus, the MSD is a useful characteristic of an adaptive filter
operating within an SI canceller. It shows how much the ratio
between powers of the far-end and near-end signals improves
due to the accuracy of channel estimation. It can also be
seen that the adjustment of parameters of an adaptive filter
to minimize the MSD will also result in the maximum output
SNR. However, the MSD computation requires knowledge of
the true channel response h(i), which is unavailable in most
practical scenarios. Another important issue is that (9) is only
applicable if ĥ(i) and s(i) are uncorrelated, which might not
be the case for adaptive filters with a delay.

We now propose the SICF, which provides a good indica-
tion of the cancellation performance. It does not require the
knowledge of the true channel response, and can be used in
practice for adaptive filters with and without the delay.

The following scenario is considered. There is only the
near-end transmission, the noise is ignored, and a known ‘far-
end’ signal is artificially added to the received signal. Fig. 4
illustrates our description below. We assume that the SI signal
x(i) = hH(i)s(i) is noise-free. We add to the SI signal a
known signal f(i) assumed to be a far-end signal. The level of
the signal σ2

f = E{|f(i)|2} is chosen to guarantee a predefined
input SNR:

SNRin(i) =
σ2
f

E{|x(i)|2}
. (10)

The SI canceller (shown in Fig. 4) subtracts the SI estimate
produced by the adaptive filter from the received signal x(i)+
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f(i). The canceller output e(i) contains the signal of interest
f(i) and a residual signal r(i):

e(i) = f(i) + r(i), (11)

and since both signals e(i) and f(i) are available after the
cancellation, the residual signal r(i) can be computed as
r(i) = e(i)− f(i).

Here we measure the SIC performance as a factor of
improvement in the signal-to-noise ratio due to the SI can-
cellation and compute the SICF as:

SICF(i) =
SNRout(i)

SNRin(i)
. (12)

The purpose of a SI canceller is to ‘clean’ the input sig-
nal for further application of a signal processing algorithm,
e.g. a communication detector. Such algorithms are typically
optimized under the assumption that the signal of interest
and the noise (the residual signal r(i), in our case) are
uncorrelated. If the signal of interest f(i) and the residual r(i)
are uncorrelated, the output SNR, SNRout(i), can be computed
as a ratio of their variances. However, due to the over-fitting in
the adaptive filter, in general, these two signals are correlated.

We now assume that the signal of interest f(i) is attenuated
due to the imperfection of the adaptive filter. More specifically,
we can rewrite (11) as:

e(i) = αf(i) + [(1− α)f(i) + r(i)] (13)
= u(i) + v(i), (14)

where the modified signal of interest u(i) = αf(i) and noise
component v(i) = (1− α)f(i) + r(i) are uncorrelated.

We now find the coefficient α that zeroes the correlation
between u(i) and v(i):

E{u(i)v∗(i)} = E{αf(i)[(1− α)f(i) + r(i)]∗} = 0. (15)

From (15), we find α as:

α = 1 +
1

σ2
f

E{f∗(i)r(i)}. (16)

After finding α, the modified signal of interest u(i) and noise
v(i) can be computed from (13).

In experiments, the mathematical expectation is replaced
by the average over a time interval after convergence of the
adaptive filter. The output SNR can be computed as:

SNRout =
‖u‖22
‖v‖22

, (17)

where u = [u(0), . . . , u(P − 1)]T is a P × 1 vector of the
signal of interest, v = [v(0), . . . , v(P − 1)]T , and P is the
averaging interval. The average interval P is preferred to be
longer than the time correlation of the SI channel.

III. PROPOSED SRLS-P ADAPTIVE FILTER

In this section, we review the ERLS and SRLS adaptive
filters, consider their delayed versions, and propose a new
adaptive filter based on the SRLS algorithm and parabolic
approximation of channel variation in time; we call it the
SRLS-P adaptive filter.

Fig. 5. Time-varying channel and time windows of the SRLS algorithm.

A. Classical ERLS and SRLS adaptive filters

At every time instant i, an RLS adaptive filter updates the
solution vector ĥ(i) according to the normal equation:

R(i)ĥ(i) = β(i), (18)

where R(i) is an L × L autocorrelation matrix, β(i) is an
L × 1 cross-correlation vector, and L is the filter length.
The autocorrelation matrix and cross-correlation vector are
approximated by averaging in time.

For the classical ERLS adaptive filter, R(i) and β(i) can
be updated as:

R(i) = (λ− 1)R(i− 1) + s(i)sH(i), (19)
β(i) = (λ− 1)β(i− 1) + x∗(i)s(i), (20)

where λ is the forgetting factor, s(i) = [s(i), s(i−1), . . . , s(i−
L + 1)]T is the regressor at the ith time instant, and x(i) is
the ith sample of the desired signal. The weights of the time
average window is the exponential e|i−p|λ, p ≤ i.

For the classical SRLS adaptive filter, the update of R(i)
and β(i) can be written as [20], [21]:

R(i) = R(i− 1) + s(i)sH(i)− s(i−M)sH(i−M), (21)
β(i) = β(i− 1) + x∗(i)s(i)− x∗(i−M)s(i−M), (22)

where M is the sliding window length. The time average
window is a constant over the time interval [i−M+1, i], and
zero otherwise. Fig. 5 shows the position of the time window
(top) in the SRLS algorithm with respect to the time varying
channel response h(i).

B. Delayed ERLS and SRLS adaptive filters

Since R(i) and β(i) are obtained by averaging in time,
the current channel estimate ĥ(i) can be seen as an average
of the true channel response over past time instants. If the
SI channel is time-invariant, ĥ(i) can be an accurate estimate
of h(i). However, for a time-varying channel, ĥ(i) is not an
accurate estimate of h(i).

For the SRLS adaptive filter, the channel estimate ĥ(i) can
be seen as an average of h(i) over the past M time instants.
If we assume that the channel response varies linearly in the
vicinity of i, then its average over the rectangular window
centred at i (middle time window in Fig. 5) is equal to h(i).
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In such a case, ĥ(i+M/2) is a more accurate estimate of h(i)
than ĥ(i). Therefore, using the delay T =M/2 in the scheme
shown in Fig. 3 should provide an improvement in the SIC
performance compared to the case T = 0. In Section IV, we
demonstrate that this is indeed the case. For the ERLS adaptive
filter, the time window is infinite in length, and it is more
difficult to determine the optimal delay which provides the
highest level of cancellation. Moreover, in Section IV, we also
show that even for the same λ, different channel realisations
require different T . Therefore, our proposed adaptive filter is
based on the SRLS algorithm, for which the optimal delay
is well defined. We call the ERLS and SRLS algorithms with
delays as ERLSd and SRLSd, respectively, to distinguish them
from the classical RLS algorithms.

C. SRLS-P adaptive filter

Compared to the SRLS algorithm, the SRLSd adaptive
filter improves the MSD performance, and, as a result, it
improves the SI cancellation performance by applying the
current channel estimate found at the ith time instant to the
delayed regressor s(i−M/2), corresponding to the middle of
the averaging time window of length M . It changes the way
the SI signal is reconstructed, but the channel estimates are
computed in the same way as in the classical SRLS adaptive
filter.

In fast time-varying channels, the channel estimation per-
formance provided by the SRLSd algorithm is still limited,
since the channel estimate can be viewed as simply an average
of the true channel response over the past M time instants.
To improve the tracking ability in fast time-varying channels,
we propose the SRLS-P adaptive filter. The key idea of the
algorithm is the parabolic interpolation of the channel time
variation using the estimates ĥ(i) provided by the SRLS
algorithm.

We assume that the time-varying channel response is a
second-order algebraic polynomial within a short time interval
around the time instant i, as shown in Fig. 5:

h(i+ k) = h0(i) + h1(i)k + h2(i)k
2, (23)

where k = −M + 1, . . . ,M , and h0(i), h1(i) and h2(i) are
three L× 1 vectors to be estimated. From (23), it can be seen
that h(i) = h0(i), and thus an estimate of h0(i) can be used
as an estimate of the channel response h(i) at time instant i.

The channel estimate ĥ(i + k) computed by the SRLS
algorithm in scenarios without noise can be expressed as (see
Appendix):

ĥ(i+ k) =
1

M
R−1(i+ k)

k∑
m=−M+k+1

Ri+mh(i+m), (24)

where R(i) = SH(i)S(i) is the L×L auto-correlation matrix
of the regressor, S(i) = [s(i), s(i− 1), . . . , s(i−M + 1)]T is
an M × L observation matrix, s(i) is the regressor at the ith
time instant and Ri+m = s(i+m)sH(i+m).

By substituting (23) into (24) for k = 0, k = M/2, and
k = M , we obtain a system of equations with respect to the
unknown 3L× 1 vector z = [h0(i);h1(i);h2(i)]. By solving

the system, we obtain an estimate ĥ0(i) of h0(i), which is
also the new channel estimate h̃(i) of h(i).

More specifically, we have:

ĥ(i) =
1

M
R−1(i)

×
0∑

m=−M+1

Ri+m[h0(i) +mh1(i) +m2h2(i)]

= h0(i) +A1h1(i) +A2h2(i), (25)

where

A1 = R−1(i)

0∑
m=−M+1

mRi+m, (26)

A2 = R−1(i)

0∑
m=−M+1

m2Ri+m. (27)

Similarly, we obtain:

ĥ(i+M/2) = h0(i) +B1h1(i) +B2h2(i), (28)
ĥ(i+M) = h0(i) +C1h1(i) +C2h2(i), (29)

where

B1 = R−1(i+M/2)

M/2∑
m=−M/2+1

mRi+m, (30)

B2 = R−1(i+M/2)

M/2∑
m=−M/2+1

m2Ri+m, (31)

and

C1 = R−1(i+M)

M∑
m=1

mRi+m, (32)

C2 = R−1(i+M)

M∑
m=1

m2Ri+m. (33)

We now arrive at the system of equations:
h0(i) +A1h1(i) +A2h2(i) = ĥ(i), (34)
h0(i) +B1h1(i) +B2h2(i) = ĥ(i+M/2), (35)
h0(i) +C1h1(i) +C2h2(i) = ĥ(i+M) , (36)

or, in a compact form,

Dz = ĥ, (37)

where ĥ = [ĥ(i); ĥ(i+M/2); ĥ(i+M)] and

D =

 IL A1 A2

IL B1 B2

IL C1 C2

 . (38)

After solving the system in (37), the estimate of the impulse
response is found as the first L elements in the vector z:

h̃(i) = ĥ0(i) = [z]1,...,L. (39)

The SRLS-P adaptive algorithm is summarized in Al-
gorithm 1, where ε is a regularization parameter, s is an
N × 1 vector of the transmitted signal, N is the number of
samples in the transmitted signal, x is an N × 1 vector of
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Algorithm 1: SRLS-P algorithm
Input: s, x
Output: h̃
Initialization: ĥ(0) = 0
for every sample i do

y(i) = ĥH(i− 1)s(i)
e(i) = x(i)− y(i)
R(i) = SH(i)S(i) + εIL
β(i) = SH(i)x(i)
ĥ(i) = R−1(i)β(i)
Compute A1,A2,B1,B2,C1,C2 as in (26), (27), and

(30)-(33)
Generate the matrix D as in (38) and
vector ĥ = [ĥ(i); ĥ(i+M/2); ĥ(i+M)]T

Solve the system of equations Dz = ĥ
h̃(i) = ĥ0(i) = [z]1,...,L

end

the desired signal samples, IL is an L × L identity matrix,
x(i) = [x(i), x(i−1), . . . , x(i−M+1)]T is an M×1 desired
signal vector at the ith time instant.

IV. BASEBAND SIMULATION

In this section, we first show that the delayed RLS algo-
rithms provide improvement in the MSD performance and then
investigate the dependence of the performance on the delay.
It will be shown that, for the SRLSd algorithm, the optimal
delay is T = M/2, as discussed in Section III-B. However,
for the ERLSd algorithm, there is no one-to-one relationship
between the optimal delay and the forgetting factor λ.

We show that the MSE is useful for characterising the SIC
performance if T = 0, i.e., for classical RLS algorithms.
However, if T > 0, the MSE is not a useful characteristic
for this purpose. We then show that the proposed SICF metric
is suitable for characterising the SIC performance for both
the cases, in particular by comparing it with the bit error rate
(BER) performance of a far-end transmission.

In the simulation, we set the filter length to L = 50, and
model the SI channel as follows. Every element [h(i)]` of h(i)
is a stationary random process with a power spectral density
c`G(f), where G(f) is uniform within a frequency interval
[−fmax, fmax], and c` is the variance of the `th channel tap.
The UWA channel normally has a decaying power delay
profile due to the spreading and absorbtion loss [22]. The
power delay profile c` is generated as:

c` = e−γ`, ` = 0, . . . , L− 1, (40)

and γ is chosen to control the ratio between the variance of
latest arrivals (` = L−1) and that of the first arrivals (` = 0).
In this scenario, γ is chosen to make this ratio equal to 80 dB.

The random processes [h(i)]` are independent for different
`, and they are generated using the FFT-method [23]. We
assume a sampling frequency of 1 kHz, so that one channel tap
delay is 1 ms. The parameter fmax determines the maximum
speed of the channel variation. To model fast time-varying
channels, we use fmax = 1 Hz; for slow time-varying
channels, fmax = 0.1 Hz.

In Fig. 6, a snapshot of the channel impulse response gener-
ated through the aforementioned process is shown, which has

Fig. 6. A snapshot of the channel impulse response.
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Fig. 7. MSD performance of the SRLS (Delay T = 0) and SRLSd algorithms.
The optimal delay minimising the MSD is T = M/2.
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Fig. 9. MSD, MSE and SIC performance of the SRLS, SRLSd, and SRLS-P adaptive filters in slow and fast varying SI channels: (a) MSD in slow varying
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in fast varying channels.

a similar shape as the SI channel impulse response obtained
in our water tank experiments [9].

A. MSD performance of RLS algorithms with a delay

Fig. 7 shows the normalized MSD (MSD(i)/||h(i)||22) as a
function of the delay T against M for the SRLSd algorithm.
The SRLSd algorithm can provide a significant improvement
in the MSD performance compared to the SRLS algorithm
(T = 0). It can also be seen that the optimal delay is T =
M/2. The minimum MSD is achieved at T = M/2 = 50
for M = 100. Fig. 7 also shows that with further increase in
the delay T , the MSD increases and, as expected, reaches the
same level at T =M as at T = 0.

In Fig. 8, we observe that the MSD performance of the
ERLS algorithm can also be improved by introducing a delay,
but the criterion of selecting the optimal delay is not obvious.
As can be seen that, in this simulation scenario, the minimum
MSD is achieved for λ = 0.955 and T = 37.

To test if the dependencies between the optimal delay and
the window parameters can be applied generally, we ran 1000
simulation trials to find the distribution of the optimal delay
for the SRLSd and ERLSd adaptive filters, with M = 100 and
λ = 0.955. The results show that, for the SRLSd algorithm,
the optimal delay is always T =M/2 in all simulation trials.

However, for the ERLSd adaptive filter, the minimum MSD is
obtained at T = 37 in 91.5% of the trials, while, in the other
trials, the optimal delay is T = 36 or T = 38.

B. MSE, MSD and SIC performance of SRLS, SRLSd and
SRLS-P algorithms

Fig. 9 presents the MSE, MSD and SICF performance of the
adaptive filters in slow and fast varying channels. We consider
the case when the power of the far-end signal is significantly
higher than the noise power, thus the noise is not added to the
far-end signal. The far-end signal to SI ratio is set to −43 dB.

We can see that, for the SRLS algorithm (T = 0), the
optimal sliding window length M found from the MSE and
MSD curves is about the same (M = 60 or 70). However, for
the other algorithms with T > 0, the optimal M corresponding
to the minimum MSE and MSD are different.

The SRLS-P adaptive filter has a significantly improved
MSD performance compared to the SRLSd algorithm, which
in turn outperforms the SRLS algorithm. Note that, in the
SRLS-P algorithm, there are 3L unknown parameters to be
estimated. Therefore, since the estimation interval in the
SRLS-P algorithm is 2M , the estimation requires the window
length to be at least M = 3L/2 = 75; this explains the
increase of the MSD at low M .
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The results in Fig. 9 show that the MSE is lower than the far-
end signal to SI ratio for the SRLSd adaptive filter with M <
80. This indicates that the far-end signal is partly cancelled,
therefore the MSE is not useful as a performance measure
here. In Fig. 9, the SIC performance of the adaptive filters
is also shown. We can see that the optimal M for the SICF
and MSD curves are very close but not exactly the same. We
will show in the next section that the proposed SICF metric
provides a better indication of performance of the SI canceller
than the MSD.

C. MSD, SIC and BER performance of the SRLSd algorithm

We now investigate the relationship between the MSD,
SIC and BER performance provided by the SI canceller
in fast time-varying channel (fmax = 1 Hz) based on the
SRLSd algorithm. Fig. 10 shows these three characteristics
for different values of M . We run 500 simulation trials, and
in each trial a new time-varying channel is generated. The
length of the realization is 15s. The symbol rate is 1 kHz.
The received signal is generated by adding the far-end signal
and noise to the SI channel output. Samples of the far-end
signal and noise are generated as Gaussian random zero-mean
numbers. The noise variance σ2

n is set according to the SI to
noise ratio (SNRSI), which is defined as

SNRSI =
E{|x(i)|2}

σ2
n

. (41)

The far-end signal level is defined by the far-end SNR as
σ2
f/σ

2
n. Here we set SNRSI = 43 dB, and the far-end SNR

varies from 10 dB to 19 dB. The SICF is computed over the
convergence period from 2 to 15 s, which is about ten times
longer than the time correlation of the SI channel.

The BER shows the detection performance of the far-
end data after SIC, which is an important indicator of the
FD system performance. The best detection performance is
achieved with M = 140 or M = 160 when the far-end SNR
lower than 16 dB. The BER slightly degrades for M = 120,
and further degrades for smaller M . However, the MSD gives
a different indication as the minimum MSD is achieved with
M = 100 or M = 120 when the far-end SNR is lower than
16 dB.

The SICF indicates that the best performance is achieved
with M = 140 when the far-end SNR lower than 14 dB and
with M = 160 when the far-end SNR between 14 dB and
19 dB. It is clear that the SIC provides a better indication of the
optimal M for the detection performance. More importantly, in
practice, the MSD is difficult to compute since the true channel
response is unknown, whereas the proposed SICF metric is
computed without such knowledge as explained in Section II.

V. PASSBAND SIMULATION RESULTS

In this section, we investigate the SIC performance of the
SRLS, SRLSd and SRLS-P adaptive filters in scenarios with
time-varying SI channels. We use the SIC scheme shown
in Fig. 2. The SI channel has one direct path between the
projector and hydrophone and one path due to reflection from
a time-varying surface. The reflected path is 20 dB weaker
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Fig. 10. MSD, SICF and BER performance in the fast varying SI channel.

than the direct path. The surface is modelled as a sinusoid
wave of 0.5 m amplitude and 3 s period. The projector and
hydrophone are vertically separated by a distance of 0.5 m,
their depths are 9.5 m and 10 m, respectively. We will show
that the SIC performance can be significantly improved by the
SRLS-P adaptive filter which accurately models the channel
variation caused by the time-varying surface reflection.

In the simulation, a 10 s signal with BPSK (binary phase-
shift keying) modulation at a 12 kHz carrier frequency and
with 1 kHz signal bandwidth is transmitted. The BPSK sym-
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Fig. 11. SIC performance of adaptive filters in the passband simulation.

bols are pulse shaped using the root-raised cosine filter with a
roll-off factor of 0.2. The sampling rate of the passband signal
is 96 kHz.

The received signal at the hydrophone is generated by
adding the far-end signal and noise to the SI channel output.
Here we set SNRSI = 100 dB and consider the far-end SNR
between 0 dB and 15 dB.

Fig. 11 shows the SIC performance of the SRLS, SRLSd
and SRLS-P adaptive filters, which is computed over the time
interval from 2 s to 10 s (after the convergence of adaptive
filters). For each adaptive filter, the parameter M is adjusted
to provide the highest SICF. The filter length is L = 40, which
is long enough to cover both the main path and the surface
reflection. For the SRLS adaptive filter, around 81 dB of SIC
can be achieved at 0 dB far-end SNR (M = 60). The SICF is
improved by 3 dB when the SRLSd adaptive filter (M = 110)
is used, and it is further improved to 98 dB (by 14 dB) with
the SRLS-P adaptive filter (M = 240).

VI. EXPERIMENTAL RESULTS

In this section, we investigate the SIC performance of
the SRLS, SRLSd and SRLS-P adaptive filters in the lake
experiment with the SIC scheme shown in Fig. 2. The config-
uration and experimental setup are shown in Fig. 12 and 13,
respectively. The lake depth at the experimental site is around
8 m. The distance between the projector and the hydrophone
is around 1.3 m. The hydrophone is placed at 4 m depth. In
the experiment, we transmit a 15 s BPSK signal at the carrier
frequency 14 kHz and with a bandwidth of 1 kHz; the pulse
shaping roll-off factor is 0.2. The amplitude of the lake surface
wave varies from 5 cm to 10 cm during the transmission.

In Fig. 14, we show the SI channel estimates obtained with
the SRLS-P adaptive filter, which provides the highest SICF
among the adaptive filters we considered. It can be seen that
the SI channel consists of a strong and stable main path and
multiple fast time-varying multipaths reflected from the lake
surface and bottom.

In the experiment, the SI to noise ratio is around 48 dB.
The filter length is L = 80, which is long enough to cover the

Fig. 12. The configuration of the lake experiments.

Fig. 13. The experimental setup. The distance is shown in meters.

Fig. 14. SI channel estimate for the lake experiment.
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channel delay spread, including the direct path and multiple
reflections from the surface and bottom. The SIC performance
is computed over the time interval from 2 s to 15 s. Fig. 15
shows the SIC performance of three adaptive filters with the
optimal sliding window lengths M . For the SRLS adaptive
filter, at 0 dB far-end SNR, 25.5 dB of SIC is achieved when
M = 110. The SICF is improved to 29 dB when the SRLSd
adaptive filter with M = 190 is used. The SRLS-P adaptive
filter with M = 220 achieves 32 dB of SIC.

The experimental results demonstrate that the SRLS-P adap-
tive filter provides the best SIC performance among the three
adaptive filters. More than 6 dB improvement in the SICF can
be achieved by using the SRLS-P adaptive filter compared to
that of the SRLS adaptive filter.

It can be seen that the improvement in SICF for the
lake experiment is lower than that achieved in the passband
simulation. The power spectral density computed for the first
reflection from the lake surface (with an amplitude of about 0.4
as seen in Fig. 14), has shown that fmax > 2 Hz. For
the further reflections from the lake surface and bottom, as
can be seen in Fig. 14, the variation speed is even higher.
With M = 220, the product of the estimation window length
(0.44 s) by fmax is already close to one, which is less than
the Nyquist lower boundary. With such settings, one cannot
expect high accuracy of estimating the SI channel due to
high modelling errors [24]. Still, the SRLS-P algorithm shows
improvement by 5.5 to 6 dB against the SRLS algorithm and
by 1.5 to 2.5 dB against the SRLSd algorithm.

The estimation accuracy could have been improved using
lower M . However, for the identifiability, the number of
available signal samples (2M ) should be higher than the
number of unknown parameters (3L), i.e. M > 3L/2. For M
very close to the boundary 3L/2, the algorithm performance
is limited (see Fig. 9). Reduction in L allows smaller M , but,
in this case, the SIC performance will be limited by the SI
arrivals being truncated by the filter.

VII. CONCLUSIONS

In this paper, the SICF has been proposed as a practical
measure of the SIC performance in FD UWA systems. The
SICF has been investigated in comparison with the MSE, MSD
and BER. It is shown through numerical simulation that the
proposed metric provides a good indication of the SI canceller
performance.

To improve the SIC performance of the RLS adaptive filters,
we have considered their delayed versions, the SRLSd and
ERLSd adaptive filters. The dependence of the SIC perfor-
mance on the delay of the input signals for these adaptive
filters has been investigated using numerical simulations. We
have shown that, for the SRLSd adaptive filter, the optimal
delay is the half of the sliding window length. For the ERLSd
adaptive filter, the relationship between the optimal delay and
the forgetting factor can differ for different channel realiza-
tions, although, with an optimal delay, the ERLS adaptive filter
can provide the same level of SIC performance as the SRLSd
adaptive filter.

We have proposed the SRLS-P adaptive filter, which is
based on the SRLS algorithm and modelling the channel re-
sponse variation within a short time interval as a second-order
algebraic polynomial. The SIC performance of the SRLS-P
adaptive filter has been investigated and compared with that
of the SRLS and SRLSd adaptive filters using numerical and
lake experiments. The SRLS-P algorithm achieves the highest
SICF among these adaptive filters.
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APPENDIX

We now derive the presentation (24) for the channel estimate
ĥ(i) obtained by the SRLS algorithm.

In the SRLS adaptive filter, without the noise, the estimate
at time instant i is given by

ĥ(i) = [SH(i)S(i)]−1SH(i)x(i),

= R−1(i)SH(i) diag{S(i)H(i)},

= R−1(i)SH(i)

M−1∑
m=0

emeTmS(i)H(i)em,

=
1

M
R−1(i)

M−1∑
k=0

SH(i)emeTmS(i)H(i)em, (42)

where em is a column vector of zero elements, apart from the
mth element which equals one, S(i) = [s(i), . . . , s(i −M +
1)]T is an M×L observation matrix, H(i) = [h(i), . . . ,h(i−
M + 1)] is an L ×M channel matrix, and h(i) is the true
channel impulse response at the ith time instant. Here, we used
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the fact that, in the absence of noise, x(i) = diag{S(i)H(i)}.
Equation (42) can be further written as:

ĥ(i) =
1

M
R−1(i)

M−1∑
m=0

s∗(i−m)sT (i−m)H(i)em

=
1

M
R−1(i)

M−1∑
m=0

s∗(i−m)sT (i−m)h(i−m)

=
1

M
R−1(i)

M−1∑
m=0

Ri−mh(i−m)

=
1

M
R−1(i)

0∑
m=−M+1

Ri+mh(i+m),

(43)

where we use H(i)em = h(i −m), SH(i)em = s∗(i −m),
and denote Ri−m = s∗(i−m)sT (i−m). By replacing i with
i+ k, this can also be rewritten as:

ĥ(i+ k) =
1

M
R−1(i+ k)

k∑
m=−M+k+1

Ri+mh(i+m).

(44)
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