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Abstract

With recent rapid advances in photonic integrated circuits, it has been demonstrated that programmable photonic chips can be

used to implement artificial neural networks. Convolutional neural networks (CNN) are a class of deep learning methods that

have been highly successful in applications such as image classification and speech processing. We present an architecture to

implement a photonic CNN using the Fourier transform property of integrated star couplers. We show, in computer simulation,

high accuracy image classification using the MNIST dataset. We also model component imperfections in photonic CNN and

show that the performance degradation can be recovered in a programmable chip. Our proposed architecture provides a large

reduction in physical footprint compared to current implementations as it utilizes the natural advantages of optics and hence

offers a scalable pathway towards integrated photonic deep learning processors.
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Photonic convolutional neural networks using
integrated diffractive optics

Jun Rong Ong, Chin Chun Ooi, Thomas Y. L. Ang, Soon Thor Lim, Ching Eng Png

Abstract—With recent rapid advances in photonic
integrated circuits, it has been demonstrated that pro-
grammable photonic chips can be used to implement
artificial neural networks. Convolutional neural net-
works (CNN) are a class of deep learning methods
that have been highly successful in applications such as
image classification and speech processing. We present
an architecture to implement a photonic CNN using the
Fourier transform property of integrated star couplers.
We show, in computer simulation, high accuracy image
classification using the MNIST dataset. We also model
component imperfections in photonic CNN and show
that the performance degradation can be recovered
in a programmable chip. Our proposed architecture
provides a large reduction in physical footprint com-
pared to current implementations as it utilizes the
natural advantages of optics and hence offers a scalable
pathway towards integrated photonic deep learning
processors.

Index Terms—Artificial neural networks, Neuromor-
phics, Photonic integrated circuits, Silicon photonics

I. Introduction
Deep learning methods like CNNs have received a huge

amount of interest from the research community as well
as the general public after it was shown to approach
human level performance in image recognition tasks [1].
This breakthrough was due in part to the availibility of fast
graphical processing units (GPUs) that greatly accelerated
the implementation of deep neural networks [2]. Recent
efforts in developing hardware machine learning acceler-
ators include massively parallel high-throughput devices
[3], as well as neuromorphic computing architectures in
which aspects of the design mimic principles present in
biological neural networks [4], [5]. The search for alterna-
tive computing paradigms is also fueled by the impending
end of Moore’s law, which is a result of the fundamental
limits of transistor scaling, as well as related bottlenecks
in power dissipation and interconnect bandwidth [6].

On the other hand, optical computing platforms po-
tentially offer a number of attractive advantages such as
parallelism through wavelength and temporal multiplexing
[7], [8] as well as ideally non-dissipative interconnects [9].
Such potential advantages could be harnessed in high-
performance computing systems, such as dedicated hard-
ware accelerators for machine learning. Artificial neural

J.R. Ong, C.C. Ooi, T.Y.L. Ang, S.T. Lim and C.E. Png are with
the Institute of High Performance Computing, Agency for Science,
Technology and Research (A*STAR), 138632, Singapore. (e-mail:
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networks are particularly suited for optical implementa-
tion as they mainly rely on computing matrix multipli-
cations, which can be performed with high speed and
throughput with optics [10], [11]. In fact, the inherent
advantages of optical neural networks were studied in
detail decades ago using bulk optics [12]. Recent progress
in photonic integrated circuits and programmable photon-
ics has enabled the demonstration of a chip-scale optical
neural network (ONN) using a mesh of interferometers and
phase shifters [13]. The authors used the abilty of such
meshes to implement general unitary transformations, and
together with a singular value decomposition [14], showed
a ONN equivalent to a fully-connected multi-layer percep-
tron (MLPs). CNNs, in contrast to such fully-connected
networks, take advantage of hierarchical patterns in the
underlying data by having shared weights between net-
work nodes (i.e. a convolution operation) and hence have a
reduced scale of complexity and connectedness. The CNN
architecture takes its inspiration from the animal visual
cortex [1] and is in that sense a neuromorphic computing
system.

Coherent optical information processing systems, for
example optical correlators, rely heavily on the natural
Fourier transform property of optics [15]. Convention-
ally, the correlation filters are hand designed by human
experts. More recently, diffractive optics systems have
demonstrated a high degree of success in image clas-
sification tasks [16], [17]. Such systems are constructed
using sequential amplitude and phase masks, with each
individual pixel in the masks being a trainable parameter
in a deep learning optimization algorithm. In this way,
the filter masks are generated automatically using machine
learning. With the lenses arranged in a “4f” system, the
optics performs convolutions in a similar fashion as in the
convolution layers in a CNN. However, most proposals of
optical CNNs have focused on a hybrid optical-electronic
system configuration, with a optical convolution front-end
in combination with an electronic implementation of the
fully-connected layers [18]–[20].

Programmable integrated photonics has made signifi-
cant advances, potentially eliminating the need for such a
hybrid system [21]. As compared to bulk optics, integrated
photonics is a scalable solution in terms of alignment sta-
bility and total network size. Additionally, rapid advances
in performance of integrated silicon photonics devices
could enable such photonic CNNs to be faster and more
energy efficient than electronic implementations [22]. In
fact, a recent proposal implements a photonic CNN by
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Fig. 1: Schematic of N ×M star coupler. R is the radius
of the confocal circles that make up the free-space propa-
gation region. θn is the angle of the nth input waveguide,
θ′m is the angle of the mth output waveguide. w is the
waveguide mode width parameter.

employing the patching technique to vectorize the input
and kernel matrices [23]. However, the proposed architec-
ture requires integrating long on-chip delay lines which
requires overcoming some severe engineering challenges. In
this work, we propose to use a star coupler (i.e. integrated
diffractive optics) [15], which implements the discrete
Fourier transform (DFT), to perform the convolution
operation. Combined with phase and amplitude masks,
we construct an integrated photonics CNN. We present
the performance of the photonic CNN on various datasets,
study the performance degradation with imperfections and
also provide discussion on scalability and possible future
directions.

II. Photonic CNN
A typical CNN architecture consists of convolution

layers, pooling layers, activation layers, a fully-connected
layer and finally an output layer. In this section, we first
show the details of the star coupler DFT. Subsequently,
we describe how to physically implement the convolution,
pooling and activation layers using photonic components.
Lastly, we present a variety of photonic CNN architec-
tures together with prediction results on standard machine
learning datasets.

A. DFT using star couplers
The unitary DFT operation F and inverse F−1 for a

discrete signal x[n] of length N can be defined,

X[m] =
1√
N

n0+N−1∑
n=n0

x[n]e−i2π nm
N (1)

x[n] =
1√
N

m0+N−1∑
m=m0

X[m]e+i2π nm
N (2)

where n0 and m0 equals −N
2 if N is even and −N−1

2 if
N is odd. Here, we use a star coupler to implement the
DFT, as in [24], [25].

A star coupler is a N ×M device, with N single-mode
input waveguides and M single-mode output waveguides
connected by a “free-space” propagation region like a slab
waveguide [26]. The input and output waveguides are
arranged along the circumference of two confocal circles
of radius R. Under scalar diffraction theory and using the
paraxial approximation, the coupling between an input
waveguide at angle θn to an output waveguide at an angle
θ′m is [27]

κ(θn, θ
′
m) = U(θ′m)

∫
Φ(θ′ − θ′m)e−ik̃R(θ′−θ′

m) sin θnRdθ′

(3)
where

U(θ′m) =
eik̃R√
iλ̃R

∫
Φ(θ− θn)e

−ik̃R sin θ sin θ′
mR cos θdθ (4)

with k̃ = 2π
λ ns and λ̃ = λ

ns
, ns being the slab effective

index. Φ is the waveguide mode field, which we take to be a
power normalized Gaussian, Φ(θ) = 4

√
2

πw2 e
−(Rθ/w)2 and

w is the width parameter of the waveguide. Since w ≪ R,
we can approximate θ′ = θ′m and θ = θn for the phase
terms in Eq. 3 and 4.

Then, apart from a constant phase term,

κ(θn, θ
′
m) ∝ e−i 2π

N
NR
λ̃

sin θn sin θ′
m . (5)

Comparing with Eq. 1, assuming N ≥ M , to get
correspondence with DFT

θn = sin−1

n

√
λ̃

NR

 (6)

θ′m = sin−1

m

√
λ̃

NR

 . (7)

Hence, by choosing the angular locations of the nth
input and mth output waveguides by Eq. 6 and 7, the
star coupler can implement a DFT.

In Fig. 2, we plot the phase and amplitude response of
a 21 × 21 star coupler DFT, Fsc, calculated using Eq. 3.
Note that we have subtracted the constant phase term in
the plot. The star coupler physical parameters are detailed
in the figure captions and are chosen to ensure that the
paraxial approximation is satisfied. Comparing with the
ideal DFT, the greatest deviation in amplitude and phase
response occurs at the waveguides furthest from the center.
Adopting the fidelity measure as a distance metric [28],

F =

∣∣∣∣∣Tr(||Fsc||†F)

N

∣∣∣∣∣
2

(8)
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Fig. 2: (Top) Phase and amplitude response of 21 × 21
star coupler DFT, calculated using Eq. 3, with physical
parameters: λ = 1550 nm, ns = 2.85, w = 500 nm,
R = 340.9 µm. (Bottom) Ideal DFT phase response and
relative phase error in radians of star coupler DFT.

gives F = 0.997 for the star coupler described above,
where || · || denotes division by the Frobenius norm.
Another useful summary metric is the overall transmission

T =
Tr(F†

scFsc)

N
(9)

with T = 0.162 for the star coupler above. There is a
trade-off between T and F and in a later section we will
study this in more detail.

We can compare the star coupler DFT with several
other existing designs that implement the DFT with in-
tegrated photonics. Since the DFT is a unitary matrix,
we can implement it directly using a mesh of Mach-
Zehnder interferometers (MZIs) and phase shifters [29],
[30]. Such a direct implementation of N×N DFT requires
N(N−1)

2 MZIs, each consisting of twice that number of
phase shifters and beam splitters. A more efficient de-
sign using the Cooley-Tukey FFT algorithm reduces the
number of MZIs needed to N log2(N)

2 [31], [32]. However,
the waveguide crossings needed grows as a triangular
number TN

2 −1, which can introduce a significant insertion
loss. Alternatively, 3D integration would be required to
circumvent the need for crossings [33]. In comparison,
the N × N star coupler DFT needs only a single ”free-
space” propagation region, which is a major reduction in
complexity.

B. Convolution, pooling and activation layers
The convolution and pooling layers are linear and can be

straightforwardly implemented optically. The convolution
layer can be implemented optically in a “4f” system, by
using a cascade of two optical DFT operations with a
phase and amplitude filter mask in between. Hence the
convolution layer is defined CN = FNN

sc · AN · FNN
sc , with

the superscripts denoting the size of the matrices. Note
that the second star coupler performs an inverse transfor-
mation back from the Fourier domain, except that the data
is flipped vertically. Programmable phase and amplitude
modulation can be applied to each individual waveguide
using fast phase shifting mechanisms like thermo-optic
and electro-optic effects [34]–[36]. Alternatively, if a fast
response is not essential, then reconfigurability using post-
fabrication trimming or phase-change materials are attrac-
tive alternatives that do not need additional energy and
control to maintain the state [37]–[40].

The pooling layer can be implemented as a low-pass
filter [41], by passing only the M < N low-frequency
components of the optical DFT, which correspond to the
waveguides near to the central waveguide. Hence, the
pooling layer is defined P = FMN

sc . We may also combine
convolution and pooling functions by transforming back
from Fourier domain like so: CNM = FMM

sc ·AM · FMN
sc .

TABLE I
Photonic CNN physical implementation

Network Layer Operation Optics
Convolution DFT N ×N star coupler

Filter Phase/Amp. mod.
DFT N ×N star coupler

Pooling DFT, Low-pass N ×M star coupler
Activation modReLU O-E-O

Activation functions are nonlinear functions that allow
the neural network to learn complex mappings between
inputs and outputs [42]. Nonlinear activation functions
are regarded as one of the key reasons for the power
of deep learning compared to classical machine learning
methods. Adding nonlinearity into a photonic network
substantially changes the functionality compared with
previously demonstrated linear photonic circuits [21], [43],
[44]. Several different kinds of optical nonlinearities have
been proposed for implementation in optical neural net-
works, such as saturable absorption, optical bistability and
two-photon absorption, to name a few [45]–[47]. However,
all-optical nonlinearities are generally very weak and hence
require high signal powers. As such, enhancing optical
nonlinearities remains an area of active research. Recent
advances in photonic integration have enabled demonstra-
tion of low-energy and high speed optical-electrical-optical
or O-E-O devices, which act as pseudo-optical nonlinear
devices [48]. Such O-E-O devices are reconfigurable to
show a variety of output responses, including an approxi-
mation of the widely used ReLU function [49], [50].

Figure 3 shows a comparison of a typical CNN ar-
chitecture schematic and an equivalent photonic CNN
implementation. We implemented the photonic CNN using
TensorFlow [51] with the data encoded as the amplitudes
of the complex field u0 at the input waveguides. The
filter mask A is a diagonal matrix with complex-valued
entries ane

iϕn , which are the trainable parameters for the
convolution layers. This can be physically implemented as
phase shifters and attenuators at each of the n waveguides.
For the pointwise activation function G, we formulate it as
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modReLU(zn, {bn, φn} = 0) = abs(zn), i.e. discarding the
phase. See the Appendix for more details on modReLU.
Hence, the complex field at the (k+1)th convolution layer
is related to the kth layer as

uM
k+1 = G(CMN

k · uN
k ) = G(FMM

k ·AM
k · FMN

k · uN
k ) (10)

for a generic N ×M convolution-pooling layer. Finally,
we implemented the fully-connected layers in the same way
as in Ref. [13]. Optically, it will be

uM
k+1 = G(WMN

k ·uN
k ) = G(UMM

k ·ΣM
k ·(V NN

k )† ·uN
k ) (11)

with W as the weight matrix decomposed as W =
UΣV † using singular value decomposition (SVD). More
details of the implementation and network training proce-
dures are found in the Appendix.

C. Results on MNIST dataset
In Table II, we consider the performance of various

different photonic ONNs on a standard machine learning
task of digit recognition on handwritten images (MNIST)
[52]. The 784 real-valued image pixels are fed into each of
the 784 input waveguides using amplitude-only encoding.
The PCNN-784 architecture is as follows: C784 → C392 →
C196 → W 56 → W 10, where we omit the input size for
clarity. We compare four different variations of PCNN-
784 with modifications in only the convolution layers: am-
plitude and phase modulation (i.e. AM

k = diag(ameiϕm)),
amplitude-only modulation (i.e. AM

k = diag(am)), phase-
only modulation (i.e. AM

k = diag(eiϕm)), and finally phase-
only modulation with a linear activation function (i.e.
modReLU(zm, bm = 0)). We find the best performance is
obtained with amplitude and phase modulation, but only
narrowly better than phase-only modulation. Amplitude-
only modulation has the poorest performance. Below, we
choose to focus on phase-only modulation since it achieves
very good accuracy with less parameters, and it is also well
adopted in existing literature [17], [18], [53].

The training (test) accuracy obtained is 99.2%(97.9%),
which is below the state-of-the-art test accuracy of ≈
99.6%. However, we expect the result to improve with
advanced techniques like data augmentation, learning rate
scheduling etc. We also tested the performance of the
phase-only PCNN-784 on a more challenging dataset (F-
MNIST) [54] and obtained an accuracy of 91.0%(88.6%)
which is comparable to generic CNNs.

To test the potential advantage of the PCNN architec-
ture as compared to existing ONN architectures, we also
simulate the performance of two other kinds of networks:
MLP-784 is a fully-connected network (W 16 → W 10) of
the kind found in Ref. [13]; while D2NN-16 is a stack of 17
star couplers (F784

sc ) sandwiching 16 activation and phase
layers, similar to Ref. [17]. We intentionally chose the
network architectures to have roughly the same number of
trainable parameters for comparison. The results (Table
II) show that the PCNN, which has a combination of

TABLE II
Comparison of different ONN architectures

ONN Param. Data Acc. (%)
PCNN-784 (Amp. & Phase) 14280 MNIST 99.6 (98.2)
" (Amp.) 12908 MNIST 97.4 (95.3)
" (Phase) 12908 MNIST 99.2 (97.9)
" (Phase, Linear) " MNIST 99.0 (97.6)
" (Phase) " F-MNIST 91.0 (88.6)
MLP-784 [13] 12704 MNIST 95.9 (93.8)
D2NN-16 [17] 12544 MNIST 96.6 (95.6)
PCNN-256-32 4800 MNIST 97.7 (96.6)
PCNN-256-16 2592 MNIST 96.1 (95.6)
PCNN-112-32 2280 MNIST 93.9 (93.6)
PCNN-112-16 1224 MNIST 91.2 (91.1)

convolution and fully-connected layers, indeed has an
additional benefit in this classification task.

Since the bulk of the trainable parameters in the PCNN
come from the fully-connected layers, whereas the param-
eters in the convolution layers only grow linearly with
the size of the input, we studied the trade-off between
performance and complexity by being more aggressive
with the pooling layers. The PCNN-x-y architecture is:
Cx → Cx/2 → W y → W 10, with phase-only modulation
and linear activation in the convolution layers. We have
introduced a pooling operation in the first layer to extract
the low frequency components. A similar strategy of re-
taining only the low frequency features was adopted in
Ref. [50], [55], in which the authors reported achieving a
high accuracy of 98.9%(97.8%). There is some degradation
of accuracy but potentially a great reduction in size and
complexity of the network.

III. Component imperfections
Here, we study the effect on performance of two kinds

of imperfections in the photonic CNN: first, the inherent
imperfection of the star coupler DFT; second, imperfec-
tion in implementation of pre-trained ideal components
parameters.

A. Imperfect DFT implementation using star couplers
The radius R of a N ×N DFT star coupler is given by

Eq. 6 as,

√
R =

1

| sin θn0 |

√
|n0|2
N

λ̃. (12)

Since N is determined by the size of the input, we have
freedom to choose the angle of the waveguide furthest from
the central line, θn0 , as long as the paraxial approximation
is satisfied. In Fig. 4, we plot the fidelity F and transmis-
sion T of 784 × 784 star couplers with 5◦ < θn0

< 15◦,
i.e. within paraxial limits. We defined a N independent
normalized radius Rnorm = λ̃

| sin θn0
|2 , with R ≈ N

4 Rnorm.
As can be seen, a very good fidelity is obtained with
small θn0

, but the transmission suffers and the star coupler
radius is very large. By choosing a bigger θn0

, there is
much better transmission and nearly order of magnitude
reduction in radius, with some sacrifice of fidelity. The
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*

activationconvolution pooling fully-connected

Convolution Neural Network

convolution activation pooling fully-connected

Photonic CNN

†

Fig. 3: Comparison between generic CNN architecture and corresponding photonic CNN implementation. The
convolution is performed using a first star coupler DFT, then applying the filter mask in the Fourier domain and finally
a second star coupler. Pooling is performed by passing only the low-frequency components through the output of the
star coupler. Fully-connected layers are implemented as meshes of MZIs (dark gray boxes) and amplifiers/attenuators
(light gray boxes).

Fig. 4: (Left) Trade-off between fidelity and transmission
for star coupler DFT when varying normalized radius
Rnorm. (Right) Change in prediction accuracy versus in-
put star coupler radius R for different PCNN architec-
tures, using the MNIST and F-MNIST data.

reason for this trend is the following: choosing a small
θn0

(large radius) concentrates the receiving waveguides
near the axis and thus some of the optical power further
away from the axis is not captured. On the other hand,
choosing a large θn0

(small radius) angularly spreads out
the receiving waveguides which are better able to cover
the Gaussian shaped far-field envelope of the emitting
waveguides.

To study the effect of the reduced fidelity, we simulated
different PCNN with varying θn0 . In Fig. 4, we plot the

accuracy of these PCNN when trained on the MNIST and
F-MNIST image recognition tasks. We observed almost no
degradation of accuracy with increasing θn0 in the MNIST
task and a small reduction of accuracy of about 0.6% in
the F-MNIST task. This indicates that the reduced fidelity
can be compensated by the network training and is an
advantageous trade-off for the gains in transmission and
reduction in star coupler footprint.

B. Non-idealities and fabrication imperfections
The current standard procedure to implement a optical

neural network begins with training performed using a
software simulation model of the system, followed by
translation of the trained parameters to the optical device
parameters and finally fabrication of the device. This
method relies heavily on the accuracy of the mapping
process from trained parameters to physical parameters.
This includes, for example, non-idealities introduced by
thermal cross-talk and the finite precision of electronic
control circuits [13]. In addition, there will inevitably
be fabrication imperfections of the photonic components
(star couplers, waveguides, phase shifters, beam-splitters
etc.) which break the correspondence between the trained
software model and the hardware implementation [28],
[56]. Such additional uncertainty introduced by physical
implementation becomes non-negligible especially when
scaling to a large number of components, hence it is
important to evaluate its effects on the photonic CNN
performance.

To study the effects of such imperfections, we evaluated
the degradation of the MNIST classification accuracy of a
pre-trained PCNN-784 (phase, linear) by introducing both
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Fig. 5: Degradation in prediction accuracy with increasing
noise. Additional phase noise has standard deviation of
2πσ, while amplitude noise is aδ = 1 − |δ| with δ having
standard deviation of σ. “Final” and “Full” indicates
restoration of accuracy after re-training the weights of
the output layer and the full network when phase noise
is added. (Inset) Zoom-out of plot, showing the complete
randomization of the network when noise is large.

amplitude and phase gaussian noise to the star coupler
matrices Fk and the complex-valued filter masks Ak. We
avoided adding noise to the fully-connected layers as this
has been studied in previous literature along with several
methods to ameliorate its effects being suggested [28],
[56]. The added phase noise ∆ϕ is zero mean normally
distributed with width 2πσ, whereas the amplitude noise
is modeled as an additional loss i.e. aδ = 1 − |δ|, where
δ is zero mean normally distributed with width σ. Hence,
each element of the matrices Fk and Ak is multiplied by
a random complex factor aδ · ei∆ϕ.

Previous studies have considered phase noise of width
up to 0.02 rad, which is justified for low index contrast
platforms [28], [56]. However, for high index contrast plat-
forms like silicon-on-insulator, the phase errors resulting
from imperfections could be up to 2 orders of magnitude
greater [57] and hence we considered much larger phase
errors.

Figure 5 shows a comparison of the resulting degrada-
tion when adding purely phase noise, purely amplitude
noise and complex-valued noise. We plot the mean and
standard deviation of the accuracies, with each point in the
plot consisting of 20 random instances. We can see from
the results that the performance begins to degrade when
σ > 0.02. Additional phase noise is especially detrimental
to the PCNN accuracy, as expected for such a coher-
ent optical system, and it is imperative that mitigation
strategies are in place for high index contrast platform
like silicon photonics [57], [58]. Several such proposals and
demonstrations of post-fabrication reconfiguration and op-
timization of programmable coherent optical meshes can

be found in the literature [13], [55], [59], [60]. As hoped,
re-training PCNN-784 with added phase noise restores
the network accuracy (see Fig. 5), except in the most
noisy configurations (see Appendix for details on training).
Drawing inspiration from substantial previous work on
randomly weighted networks in the literature [61]–[64], we
attempted to restore the performance of noisy PCNN-784
by training only the weights of the output layer. Although
the restored accuracy is reduced from the ideal case, we
see a substantial improvement from the noisy state, which
suggests that full reconfigurability may not be necessary
for photonic CNNs to function despite the presence of a
large amount of noise.

IV. Physical footprint
Recently, progress has been made in demonstrations of

silicon photonic integrated circuits with a large number
(∼1000s) of reconfigurable components [13], [21], [43], [59],
[65]–[67] and it should be possible to implement photonic
neural networks with a comparable number of trainable
parameters. As the complexity of the ONN increases,
the physical footprint of photonics components will be
an important limiting factor on scalability. As mentioned
previously, the star coupler DFT potentially provides sub-
stantial reduction in footprint required. For concreteness,
let us consider a 256× 256 DFT. A typical MZI will have
physical size of ∼ 60 µm × 100 µm [50]. Implementing
the DFT using the Cooley-Tukey FFT algorithm requires
1024 MZIs, which will have a footprint of 6.14 mm2. In
comparison, for a star coupler DFT of Rnorm = 10 µm, the
footprint would be ∼ 0.6 mm× 0.3 mm, which is 34 times
smaller. This considerable reduction in footprint makes
deep CNNs feasible to be implemented using photonic
integrated circuits.

V. Conclusion
In conclusion, we have proposed and simulated a scal-

able architecture for photonic convolutional neural net-
works using the Fourier transform property of star cou-
plers. We described in detail methods to use photonic
components to implement various layers of a generic
CNN, including convolution and pooling. We compared
our proposed architecture to existing designs and found
a boost in performance as well as a significant reduction
in complexity and footprint. We also considered effects
of component imperfections and noted that the photonic
CNN is robust to small amounts of noise and in the case
of very noisy networks, required minimal re-training to
restore network accuracy.

Real implementations of photonic CNNs still requires
important engineering work in practical areas such as la-
tency, energy consumption etc. [50]. Fortunately, interest
in the successes of deep learning has spurred significant
efforts towards the realization of photonic neural networks,
as evidenced by the numerous publications in recent years.
We expect our proposed architecture to enable the imple-
mentation of scalable deep CNN on integrated photonic
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Fig. 6: Loss and accuracy history over 80 epochs training
of PCNN-784 (phase-only, linear) for MNIST training and
test set.

platforms and further the efforts towards the goal of fully
optical neuromorphic computing platforms.

Appendix
A. Network training

We implemented the photonic convolutional neural net-
work (PCNN) using TensorFlow [51]. The PCNN consists
of convolutional layers and fully-connected layers. Classi-
fication is done by taking the location of the maximum
power at the output layer.

We used the stochastic gradient descent algorithm,
Adam [68], for training. The loss function used for training
is the cross-entropy with softmax function applied to the
power at the output layer. The training batch size and
the number of epochs was set to be 8 and 80, respectively.
Figure 6 shows an example of loss and accuracy training
history. The MNIST and Fashion-MNIST datasets consist
of 28×28 images split into a training set of 60,000 examples
and a test set of 10,000 examples.

B. Layer details
The PCNN convolutional layers are made up of star

couplers and filter masks. The k-th layer N × M star
coupler coupling matrices FMN

k are calculated using Eq.
3 and are fixed. Since FMN

k has no trainable parameters,
it is unchanged during network training.

The k-th layer filter masks AM
k have complex-valued

coefficients ameiϕm . We define the filter mask coefficients
am and ϕm as [19]

am =
|αm|

max
1≤m≤M

|αm|
(13)

ϕm = 2πθm (14)

with αm and θm being the trainable parameters. The
normalization of am ensures that it remains in the interval
[0,1], whereas ϕm does not need normalization due to the
periodicity of the phase eiϕm . For phase-only modulation,
we fix all am = 1.

For the nonlinear activation functions, we considered the
modReLU function acting on the complex number zm =
ameiφm [69]. As an example, for the complex field vector
z of the neural network layer, the activation on the m-th
element

modReLU(zm, bm) = ReLU(am + bm) · eiφm (15)
where the bias vector b is a trainable parameter. Table

IIIa shows the accuracy results on the MNIST data for
the phase-only PCNN-784 network when using different
variations of modReLU. With b0, we assume a single
shared trained value for the bias vector b. When {b,φφφ} =
0, modReLU is equivalent to taking the abs(zm) as in
the main text. Also, when b = 0, modReLU is just a
linear activation. Table IIIb shows the effect of zero mean
normally distributed bias noise of width ∆b.

TABLE III
(a) Comparison of different nonlinear activations
Convolution Fully-connected Acc. (%)
modReLU(b) modReLU(b) 98.8 (96.7)
modReLU(b = 0.01) modReLU(b = 0.01) 97.9 (96.6)
modReLU(b = b0) modReLU(b = b0) 98.7 (96.6)
modReLU(b = b0) modReLU({b,φφφ} = 0) 99.3 (97.7)
modReLU(b = 0) modReLU(b = 0) 92.6 (92.4)

(b) Effect of bias noise ∆b on accuracy of modReLU(b)
∆b Train Acc. (%) Test Acc. (%)
0.005 98.3±0.1 96.6±0.1
0.01 97.1±0.2 95.7±0.2
0.02 92.7±0.9 91.9±0.9
0.05 63.7±3.4 63.8±3.5
0.1 36.6±3.1 37.2±3.0
0.2 23.0±3.6 23.5±3.6
0.5 16.9±3.7 17.3±4.0

The k-th fully-connected layers of the PCNN are de-
scribed by a real-valued weight matrix WMN

k , which can
be decomposed by SVD into a product of two unitary
matrices and a non-negative real diagonal matrix, i.e. W =
UΣV †. For the purposes of training the network, we take
the tunable parameters as the real-valued elements of W ,
with the knowledge that it can be implemented optically
through the decomposition [13]. In general, attenuators
can be used to implement a scaled matrix Σ′ = Σ

β , such
that the singular values are ≤ 1. In that case, a global
optical amplification β is needed and the weight matrix is
W = β · UΣ′V † [28]. In the main text, the choice of acti-
vation function is multiplicative, i.e. abs(βz) = β · abs(z).
Hence, using a scaled weight matrix W ′ = UΣ′V † would
give the same prediction result as using W .

C. Re-training noisy networks
For the re-training of noisy networks, the training batch

size and the number of epochs was set to be 8 and
10, respectively. Gaussian noise was added to the star
coupler matrices Fk and the complex-valued filter masks
Ak. During re-training, only the Ak and Wk matrices are
trainable, while the Fk are fixed in their noisy state.
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