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Abstract

In order to quantify the manipulation process of acupuncture, in this article, a piezoelectric glove based wearable stress sensing

system is presented. Served as the sensitive element with small volume and high tensile resistance, PVDF greatly meet the

need of quantitative analysis. Through piezoelectric force sensing glove, the system is capable of detecting both perpendicular

stress as well as shear stress. Besides, key parameters including peak stress at needle are detected and extracted, potentially

allowing for a higher learning efficiency hence advancing the development of acupuncture.
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Abstract—Benefiting from the development of the Internet of 

Healthcare Things (IoHT) in recent years, locomotion mode 

recognition using wearable sensors plays an important role in the 

field of in-home rehabilitation. In this paper, a smart sensing 

system utilizing flexible electromyography (EMG) sensors and 

ground reaction force (GRF) sensors for locomotion mode 

recognition is presented, together with its use under the IoHT 

architecture. EMG and GRF information from ten healthy 

subjects in five common locomotion modes in daily life were 

collected, analyzed, and then transmitted to remote end terminals 

(e.g., personal computers). The data analysis process was 

implemented with machine learning techniques (Support Vector 

Machine), through which the locomotion modes were determined 

with a high accuracy of 96.38%. This article demonstrates a 

feasible means for accurate locomotion mode recognition by 

combining wearable sensing techniques and the machine learning 

algorithm, potentially advancing the development for IoHT based 

in-home rehabilitation. 

Keywords—Flexible sensors; Locomotion mode recognition; 

Internet of Healthcare Things; In-home Rehabilitation 

I. INTRODUCTION 

 It is of great significance to monitor the physical information, 
such as gait and muscle condition, of patients recovering from 
injuries or diseases under different locomotion modes to make a 
proper rehabilitation plan and evaluate the rehabilitation effect 
[1-5]. Tradition scenarios to obtain these data are mainly located 
in hospitals or therapy institutions [6, 7]. However, patients may 
suffer pressure when being monitored, resulting in low quality 
data, conversely influencing the evaluation of the rehabilitation 
effect [5].  

In recent years, with the fast development of wearable 
electronics and the Internet of Healthcare Things (IoHT) 
techniques, in-home rehabilitation has emerged quickly and 
gained worldwide attention, as in-home rehabilitation not only 
alleviates patients’ undesired stress but also is capable of 
collecting high volumes of useful data by conducting long-term 
monitoring [8-10]. For in-home rehabilitation, locomotion mode 
recognition is important, which is closely related to the 
interpretation of body signals picked up by wearable systems [5, 
11-13]. Hence, locomotion modes are must-have information 
delivered to hospitals under an IoHT architecture.  

A locomotion mode recognition system generally consists of 
two parts: a data acquisition front-end and a recognition 

algorithm back-end. For the former, wearable sensors, including 
kinematic sensors (IMUs) [14-16], kinetic sensors (interaction 
force or ground reaction force sensors) [17], and 
electromyography (EMG) sensors [16-19] are widely used. For 
the latter, machine learning is frequently used for analysis of the 
physical information received from the front-end. For example, 
in [19], EMGs from nine muscles and six GRF measurements 
from load cells were collected, and Support Vector Machine 
(SVM) and Linear Discriminant Analysis (LDA) were used to 
identify five locomotion modes continuously with an accuracy 
no lower than 93.44%. In [16], seven EMG and two 
accelerometer sensors were used, and five locomotion modes 
were classified by SVM and LDA, with an accuracy of 95.2%. 
In [17], EMG, GRF, interaction force and position sensors were 
integrated to classify five locomotion modes with Bayesian 
LDA and reached an accuracy of 96.1%. 

However, the successful broad use of locomotion mode 
recognition for in-home rehabilitation has not been reported yet. 
A possible explanation is that the utilization of multiple sensors 
not only increases the overall component cost, circuitry 
complexity, and energy consumption, which are undesirable 
factors for electronic products, but also brings users 
inconvenience when used. To address this, in this article, we 
present a smart locomotion mode recognition system with a high 
experimentally demonstrated classification accuracy of 96.38% 
by utilizing only two EMG and two GRF flexible sensors and a 
machine learning algorithm. Compared to the previous studies 
[14-19], the developed technique benefits from simplicity by 
smartly designing measurement locations and selecting highly 
correlated features for the machine learning algorithm while 
maintaining a high detection accuracy. 

II. METHODOLOGY 

A. Experimental Protocol 

The predefined locomotion modes were identified as follows: 

(1) level walking (LW), (2) ramp ascent (RA), (3) ramp descent 

(RD), (4) stairs ascent (SA), (5) stairs descent (SD). The above 

locomotion modes are consistent with those in other relevant 

works [16-19]. Ten healthy subjects (6 male and 4 female) were 

asked to walk using the five locomotion modes and ultimately 

produced 3,573,241 observations, with 2707 strides in total. The 

ramp was angled at 10 degrees, and the stair height was 10 cm 

[17]. 
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B. Flexible Sensors and Readout Architecture 

The setup of front-end system is conceptually depicted in 
Fig.1. The flexible EMG sensor is a 10 mm-circular gelled 
electrode utilizing electrolytic gel as the interface between the 
skin and the metallic part of the sensor, whose composition is 
silver-silver-chloride (Ag-AgCl) [20]. Three electrodes were 
used to detect the EMG signal for a muscle with bipolar 
electrodes attached to the surface of the muscle and a reference 
one attached to the ankle [21]. Tibialis Anterior (TA) and Soleus 
(SL) were selected as the detected muscles and therefore six 
electrodes were used for EMG detection. Two flexible Force 
Sensitive Resistors (FSR) were attached to the flat area of the 
heel and hallux to collect the GRF signal. 

The EMG and GRF signals were read out, preprocessed, and 
transmitted to a PC, as shown in Fig. 2. The raw EMG generated 
by the muscle was amplified by differential amplifiers to 
suppress the common mode input. An analog-to-digital 
convertor (ADC) and bandpass digital filtering (10 Hz–500 Hz 
[20-22]) was followed by the embedded MCU. For GRF signals, 
the resistance change of the FSR was linearly converted to a 
voltage change by a proportional operational amplifier and then 
converted to a digital signal by an ADC. Both the digital EMG 
and GRF signals were then conveyed to two Bluetooth devices 
(Huicheng, China) by the Serial Protocol and transmitted 
wirelessly via Bluetooth to PC. The major parameters of the 
front-end data detection system are summarized in Table I. 

C. Locomotion Mode Recognition Algorithms 

To recognize the locomotion modes of the user, a 
recognition algorithm using EMG and GRF signals from the 
front-end has been developed through three steps, as shown in 
Fig.3. Firstly, the EMG and GRF signals are preprocessed. All 
the datapoints are synchronized by timestamp. Normalization is 
performed to reduce the variability of each stride [23, 24], and 
the signal sequence is segmented into each stride by a binarized 
GRF signal. Secondly, twenty-one statistical features, like the 
time domain features of EMG [25] and the force/time 
information of GRF, are extracted from the segmented EMG and 
GRF sequence in each stride. Finally, the extracted features were 
used to train the machine learning model, i.e., the SVM model, 
and then the model was used to predict the locomotion mode. A 
10-fold cross validation was used to evaluate the accuracy of the 

trained model [26]. The above procedure was carried out in the 
MATLAB software and the classified locomotion mode 
together with the EMG and GRF profiles can be displayed in 
this software. 

III. RESULTS AND DISCUSSION 

The constructed wearable system is employed for 
recognizing users’ different locomotion modes. A typical profile 
of the EMG amplitude and normalized GRF stress values under 
different locomotion modes is demonstrated in Fig.4. This figure 
demonstrates that the EMG and GRF profiles vary from each 
other under different locomotion modes. For example, when 
walking on level ground, the main activities of SL occur at about 
50%–60% of the gait, and the heel will contact the ground prior 
to the hallux, as shown in Fig.4 (a), (f). In contrast, Fig.4 (e), (j) 
shows that SL is most active at about 10% of the stride, and 

   

Fig. 1.  The sensors locations and an overview of front-end EMG and GRF 

signals detection. 

 

 

 

  

Fig. 2.  The block diagram of the circuit and devices for detecting, 

processing and transmitting EMG and GRF signals. 

 
TABLE I.  SUMMARY OF THE MAJOR FRONT END SYSTEM PARAMETERS 

System Parameters 

GRF EMG 

ADC Resolution 12 Bit ADC Resolution 12 Bit 

Data Rate 115,200 bps Data Rate 115,200 bps 

Sampling Rate 100 Hz Sampling Rate 1 kHz 

Response Time 10 ms Passband 10-500 Hz 

Triggering force 0.2 N Magnification 500 

 

 

 

 

Fig.3.  Flowchart of locomotion modes recognition algorithms based on 

EMG and GRF signals 

 



conversely, the hallux contacts the ground first when walking 
downstairs. This is because the front foot must reach out first, 
and the SL should contract in order to maintain balance in such 
cases. The profiles in Fig.4 indicate that the muscle activities 
and gait information were different in each mode in order to 
adapt to the relevant terrain. However, the profiles are sensitive 
to many uncontrollable factors, such as changes in the bodily 
conditions of the user. It would be difficult to recognize different 
locomotion modes by simply evaluating a few metrics with 
some fixed thresholds. Therefore, machine learning method is 
applied to comprehensively evaluate the non-linear changes of 
the EMG and GRF inputs to obtain robust recognition  

Here, an SVM model was trained and tested with extracted 
features. Fig.5 shows the confusion matrix of the model. An 
average accuracy and variance of 96.38% and 1.08% was 
obtained by the trained model. This model achieved the best 
recognition performance in recognizing SD, with the highest 
accuracy of 99.64% among all modes. This is because the EMG 
and GRF profiles of SD are rather unique and thus are easier to 
classify. However, the performance when recognizing some 
modes of the model, like distinguishing LW from RD, is 
relatively lower and less robust, with an error rate at 5.04% and 
a variance of 3.49%. A possible explanation for this is that, in 
some particular cases, like accidentally stepping out with an 
unbalanced stride, the human body will adjust naturally to avoid 
falling down, resulting in unusual changes in the EMG and GRF 
patterns and possible misjudgment of the classifier. This 
phenomenon (i.e., the error rate of recognizing RD into LW) is 
higher than the overall error rate and is also found in relevant 
works [27-29] (a comparison is given in Table II). A potential 
solution is to enlarge the volume of the training dataset. 

Fig. 6 depicts the application of the system developed in this 
paper under an IoHT architecture. The EMG and GRF 
information for people who need rehabilitation are detected and 
processed by front-end detectors; then, the signals are analyzed, 
and locomotion modes are recognized in end terminals, such as 

personal computers or smartphones. Finally, the integrated 
information is transmitted to remote end terminals. By 
monitoring changes in the locomotion modes and EMG and 
GRF data of the user, further analyses can be applied for various 
purposes, such as disease diagnosis or rehabilitation guidance. 
The developed IoHT system enables related individuals or 
institutions to monitor medical data and evaluate therapy 
performance with the patients at home or in other daily scenarios, 
which potentially reduces the burdens of both the therapists and 
the patients and broadens the interaction methods in the 
rehabilitation field. 

IV. CONCLUSIONS 

Locomotion modes recognition is of significance for in-
home rehabilitation. The work presented here demonstrates the 
design and evaluation of a locomotion mode recognition system 
utilizing flexible sensors and machine learning technique. A 
recognition accuracy of 96.38% is obtained by merely utilizing 
two EMG and two GRF sensors, which offers a convenient and 
effective means to reach robust identification accuracy with 
lower complexity and energy consumption for IoHT based in-
home rehabilitation. 

 

Fig.4.  Typical profiles of EMG (left column) and GRF (right column) in five 

locomotion modes: (a), (f) level walking (LW). (b), (g) ramp ascent (RA). (c), 

(h) ramp descent (RD). (d), (a) stairs ascent (SA). (e), (j) stairs descent (SD). 

 

    

Fig.5.  Confusion matrix of the SVM model in recognizing five locomotion 

modes. 

 

 

 

 

 

 

 

 

 

 

 

TABLE II. COMPARISON OF ERROR RATE OF RECOGNIZING RD INTO 

LW AND OVERALL ERROR RATE OF OTHER RELEVANT WORKS AND THIS 

WORK 

 [27] [28] [29] This work 

RD-LW error rate 17.90% 2.02% 6.79% 5.04% 

Overall error rate 10.96% 1.65% 2.21% 3.62% 

 

   

Fig.6.  Block diagram for the IoHT architecture consisting of the four 

elements. 



REFERENCES  

[1] S. Nadeau, M. Betschart, and F. Bethoux, "Gait analysis for poststroke 
rehabilitation: the relevance of biomechanical analysis and the impact 
of gait speed," Physical Medicine and Rehabilitation Clinics, vol. 24, 
no. 2, pp. 265-276, 2013. 

[2]  J. P. Gavin, T. Immins, and T. Wainwright, "Stair negotiation as a 
rehabilitation intervention for enhancing recovery following total hip 
and knee replacement surgery," International journal of orthopaedic 
and trauma nursing, vol. 25, pp. 3-10, 2017. 

[3] H. Yano, S. Tamefusa, N. Tanaka, H. Saitou, and H. Iwata, "Gait 
rehabilitation system for stair climbing and descending," in 2010 IEEE 
Haptics Symposium, 2010: IEEE, pp. 393-400.  

[4]  M. Oh-Park, S. Perera, and J. Verghese, "Clinically meaningful change 
in stair negotiation performance in older adults," Gait & posture, vol. 
36, no. 3, pp. 532-536, 2012. 

[5] I. Bisio, A. Delfino, F. Lavagetto, and A. Sciarrone, "Enabling IoT for 
in-home rehabilitation: Accelerometer signals classification methods 
for activity and movement recognition," IEEE Internet of Things 
Journal, vol. 4, no. 1, pp. 135-146, 2016. 

[6]  S. Jeong, K. Kondo, N. Shiraishi, and Y. Inoue, "An evaluation of the 
quality of post-stroke rehabilitation in Japan," Clinical Audit, vol. 2, p. 
59, 2010. 

[7] J. J. Kraal, M. E. Van den Akker-Van Marle, A. Abu-Hanna, W. Stut, 
N. Peek, and H. M. Kemps, "Clinical and cost-effectiveness of home-
based cardiac rehabilitation compared to conventional, centre-based 
cardiac rehabilitation: Results of the FIT@ Home study," European 
journal of preventive cardiology, vol. 24, no. 12, pp. 1260-1273, 2017. 

[8]  J. P. Bettger et al., "Effects of Virtual Exercise Rehabilitation In-Home 
Therapy Compared with Traditional Care After Total Knee 
Arthroplasty: VERITAS, a Randomized Controlled Trial," JBJS, vol. 
102, no. 2, pp. 101-109, 2020. 

[9] Z. Moore, C. Sifferman, S. Tullis, M. Ma, R. Proffitt, and M. Skubic, 
"Depth Sensor-Based In-Home Daily Activity Recognition and 
Assessment System for Stroke Rehabilitation," in 2019 IEEE 
International Conference on Bioinformatics and Biomedicine (BIBM), 
2019: IEEE, pp. 1051-1056.  

[10]  F. Horak, L. King, and M. Mancini, "Role of body-worn movement 
monitor technology for balance and gait rehabilitation," Physical 
therapy, vol. 95, no. 3, pp. 461-470, 2015. 

[11] V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, M. Mordonini, 
and I. De Munari, "IoT Wearable Sensor and Deep Learning: An 
Integrated Approach for Personalized Human Activity Recognition in 
a Smart Home Environment," IEEE Internet of Things Journal, vol. 6, 
no. 5, pp. 8553-8562, 2019. 

[12] E. Kańtoch, "Human activity recognition for physical rehabilitation 
using wearable sensors fusion and artificial neural networks," in 2017 
Computing in Cardiology (CinC), 2017: IEEE, pp. 1-4.  

[13] J. Qi, P. Yang, A. Waraich, Z. Deng, Y. Zhao, and Y. Yang, 
"Examining sensor-based physical activity recognition and monitoring 
for healthcare using Internet of Things: A systematic review," Journal 
of biomedical informatics, vol. 87, pp. 138-153, 2018. 

[14] G. Ligorio and A. M. Sabatini, "A novel Kalman filter for human 
motion tracking with an inertial-based dynamic inclinometer," IEEE 
Transactions on Biomedical Engineering, vol. 62, no. 8, pp. 2033-2043, 
2015. 

[15] A. J. Young, A. M. Simon, and L. J. Hargrove, "A Training Method for 
Locomotion Mode Prediction Using Powered Lower Limb Prostheses," 

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 
vol. 22, no. 3, pp. 671-677, 2014, doi: 10.1109/TNSRE.2013.2285101. 

[16] D. Joshi and M. E. Hahn, "Terrain and Direction Classification of 
Locomotion Transitions Using Neuromuscular and Mechanical Input," 
(in English), Annals of Biomedical Engineering, Article vol. 44, no. 4, 
pp. 1275-1284, Apr 2016, doi: 10.1007/s10439-015-1407-3. 

[17] S. Kyeong, W. Shin, M. Yang, U. Heo, J.-r. Feng, and J. Kim, 
"Recognition of walking environments and gait period by surface 
electromyography," Frontiers of Information Technology & Electronic 
Engineering, 2019. 

[18] L. Ming, Z. Fan, and H. H. Helen, "An Adaptive Classification Strategy 
for Reliable Locomotion Mode Recognition," Sensors (Basel, 
Switzerland), vol. 17, no. 9, 2017. 

[19] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B. 
Englehart, "Continuous locomotion-mode identification for prosthetic 
legs based on neuromuscular–mechanical fusion," IEEE Transactions 
on Biomedical Engineering, vol. 58, no. 10, pp. 2867-2875, 2011. 

[20] S. Day, "Important factors in surface EMG measurement," Bortec 
Biomedical Ltd publishers, pp. 1-17, 2002. 

[21] H. J. Hermens et al., "European recommendations for surface 
electromyography," Roessingh research and development, vol. 8, no. 2, 
pp. 13-54, 1999. 

[22] A. Dutta, B. Khattar, and A. Banerjee, "Nonlinear Analysis of 
Electromyogram Following Neuromuscular Electrical Stimulation-
Assisted Gait Training in Stroke Survivors," in Converging Clinical 
and Engineering Research on Neurorehabilitation: Springer, 2013, pp. 
53-57. 

[23] A. Burden, "How should we normalize electromyograms obtained from 
healthy participants? What we have learned from over 25 years of 
research," (in English), Journal of Electromyography and Kinesiology, 
Review vol. 20, no. 6, pp. 1023-1035, Dec 2010, doi: 
10.1016/j.jelekin.2010.07.004. 

[24] J. W. Wannop, J. T. Worobets, and D. J. Stefanyshyn, "Normalization 
of ground reaction forces, joint moments, and free moments in human 
locomotion," Journal of applied biomechanics, vol. 28, no. 6, pp. 665-
676, 2012. 

[25] R. H. Chowdhury, M. B. I. Reaz, M. A. B. Ali, A. A. A. Bakar, K. 
Chellappan, and T. G. Chang, "Surface Electromyography Signal 
Processing and Classification Techniques," (in English), Sensors, 
Review vol. 13, no. 9, pp. 12431-12466, Sep 2013, doi: 
10.3390/s130912431. 

[26] A. Subasi, "Classification of EMG signals using PSO optimized SVM 
for diagnosis of neuromuscular disorders," Computers in biology and 
medicine, vol. 43, no. 5, pp. 576-586, 2013. 

[27] T. Afzal, K. Iqbal, G. White, and A. B. Wright, "A method for 
locomotion mode identification using muscle synergies," IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, vol. 
25, no. 6, pp. 608-617, 2016. 

[28] Y. Long et al., "PSO-SVM-based online locomotion mode 
identification for rehabilitation robotic exoskeletons," Sensors, vol. 16, 
no. 9, p. 1408, 2016. 

[29] C. Gong, D. Xu, Z. Zhou, N. Vitiello, and Q. Wang, "Real-Time On-
Board Recognition of Locomotion Modes for an Active Pelvis 
Orthosis," in 2018 IEEE-RAS 18th International Conference on 
Humanoid Robots (Humanoids), 2018: IEEE, pp. 346-350.

  


