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Abstract

Piezoelectric force touch panels are extensively utilized as human-machine interfaces for 3-dimensional touch sensing in internet

of things (IoT) applications. However, the unstable force voltage responsivity issue induced by different touch orientations limits

the successful use of piezoelectric touch panels. In this article, a piezoelectric touch panel, which is sensitive to both capacitive

and force stimulation, is assembled; and a touch orientation classification technique is developed to calibrate the detected force

amplitude by training a machine learning model with finger induced capacitive information. Finally, a high stable force voltage

responsivity of 87.5% is achieved experimentally.
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Abstract—Piezoelectric force touch panels are attractive as 
human-machine interfaces and 3-dimensional touch sensing in 
internet of things (IoT) applications. The piezoelectric material 
has the intrinsic ability to convert mechanical to electrical signals. 
But the force responsivity issue induced by different touch 
orientations can be unstable. This paper presents a piezoelectric 
touch panel that is sensitive to both capacitive and force 
stimulation. A touch orientation classification technique is 
developed to calibrate the detected force amplitude by training a 
machine learning model with finger induced capacitive 
information. A high and stable force voltage responsivity of 87.5% 
is achieved experimentally, demonstrating its potential 
significance in force touch based human-machine interactivity.   

Keywords—Piezoelectric touch panel; touch orientation; force–
voltage responsivity; internet of things. 

I. INTRODUCTION  
With the fast development of electronic and information 

technologies, the internet of things (IoT) is entering into our 
daily lives [1-2]. In an IoT architecture, the human machine 
interface (HMI) is a fundamental element. Among various HMI 
techniques that have been developed, the force touch based 
three-dimensional interactivity has gained interest, in view of 
high force detection sensitivity, passive mechanical-to-
electrical conversion ability and simple readout circuitry [3-6]. 
However, the successful use of force touch in commercial 
products has rarely been reported. One of the main reasons is 
the inconsistent force-voltage responsivity induced by the 
user’s distinct touch orientations [5]. When a user applies a 
force touch on the touch panel’s surface, only the perpendicular 
component is detected by the piezoelectric d33 coefficient. This 
same force can give rise to different amplitude response for 
different touch orientations.  

To address this issue, a piezoelectric material-based touch 
panel capable of detecting both the force and capacitive signal 
by utilizing the piezoelectric and dielectric properties of the 
piezoelectric layer was reported [7]. Touch orientation was 
estimated by using finger induced capacitance distribution. 
When the finger contacts the touch panel with different 
orientations, the capacitance value at each electrode changes, 

thereby modifying the whole capacitance matrix. The 
relationship between the capacitance matrix and touch 
orientation was modeled, and an averaged orientation detection 
accuracy of 85% was experimentally obtained. Although the 
stability of force voltage responsivity was boosted, it is still 
expected to be higher where precise force interpretations are 
required, such as in piano-type apps. 

To improve the detection accuracy of the touch orientation, 
this article presents a gaussian process regression (GPR)-based 
technique, in which touch-generated capacitive patterns are 
used to train the GPR to predict touch orientations, increasing 
the average stability of the force–voltage responsivity is by 
2.5%. A conceptual description of the proposed technique is 
described in Fig. 1. 

 
 
 

II. METHODOLOGY  
A. Touch Panel Fabrication 

In order to detect finger induced capacitance information, a 
multi-layered piezoelectric touch panel is constructed as follows: 
Polyethylene terephthalate (PET) / Cu / PET / Cu / PET / Cu / 
Polyvinylidene fluoride (PVDF) / Cu / PET. A conceptual 
description and corresponding photograph of the touch panel are 
given in Fig.2. Electrode 1 is used for self-capacitive sensing. 
Electrode 2 is used to shield the crosstalk between the capacitive 
and force sensing layers. Electrode 3 is the force sensing layers. 
The parameters of the experimental testbed are listed in Table Ⅰ. 

 
Fig. 1. Conceptual depiction of force–voltage responsivity stabilization 
technique for piezoelectric touch panels. 

 
 
 



 

 

 
 

 

B. Readout Circuitry 

The capacitance readout circuit is based on the capacitance-
to-digital converter (AD7147). For piezoelectric force sensing, 
a charge amplifier-based circuit is established, which converts 
force-induced charges into voltage outputs. The diagram of the 
readout circuitry for obtaining capacitive and force information 
is shown in Fig.3. 

 

C. Touch Orientation Detection and Classification 

In order to establish the correlation between capacitive 
information and the touch orientation, a gyroscope (MPU9250) 
is used to precisely recognize the touch orientation. This 
gyroscope is aligned to the finger, and, when a touch is 
performed, the real touch orientation of the finger is measured 
by the gyroscope. The capacitance values and gyroscope angles 
are collected as the dataset to train several widely used machine 
learning models. After comparing the outputs, the optimized 
machine learning model is determined and the relationship 
between capacitive information and touch orientation is 
established. 

 

D.   Force Measurement Testbed and Experiment Setup 

A triaxial force sensor (VC40D), capable of measuring force 
components in the x-y-z directions, is used to recognize the force 
information. The assembled force touch panel is placed above 
the force sensor.  

The arrangement of experimental devices is illustrated in 
Fig.4. When touch events are applied to the touch panel, the 
readout circuitry obtains the capacitive and force signals. The 
former is sent to a trained GPR model to predict the touch 
orientation. Then the interpreted touch orientation is employed 
to calibrate the perpendicular force amplitude as per Eq.1: 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝐹𝐹

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (1) 

where 𝑠𝑠 is the interpreted touch orientation, 𝐹𝐹 is the detected 
perpendicular force amplitude, and  𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the 
interpreted force amplitude. 

Finally, the calibrated force is compared to the force 
obtained from the triaxial force sensor to evaluate the accuracy 
of the proposed method. The procedure for calibrating the touch 
force is shown in Fig.5. 

  
                                 (a)                                                      (b) 
Fig. 2. (a) Structure of the touch panel. (b)Prototype of the touch panels. 

 
 

TABLE Ⅰ. PARAMETERS OF EXPERIMENTAL TESTBED 

 

 
Fig. 3. Diagram of the readout circuitry for obtaining capacitive and force 
information. 

 
Fig. 4. The arrangement of the experiment devices.  

Fig. 5. The procedure for calibrating the touch force. 
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III. RESULTS AND DISCUSSION 
The force and capacitive sensing sensitivities are given in 

Fig6. a. Fig.6 b shows the distribution of the force voltage 
responsivity of each electrode in the touch panel. The 
experimental device yield an average of force sensing sensitivity 
of 63 mN, capacitive sensitivity of 0.06 pF and force-voltage 
responsivity of 106.4 mV/N. The performances of the device are 
listed in Table Ⅱ. 

A total of 192 samples of capacitive information and touch 
orientation were used to establish the relationship between them, 
and 80 percent of the samples were used for training, the rest 
were used for validation set. We compared common machine 
learning algorithms and used different kernel functions. The 
performance gaussian process regression [8-11] with kernels [12] 
of rational quadratic (Quadratic), squared exponential (Squared 
Exp), matern 5/2 and exponential is shown in Fig.6 (c). The error 
and accuracy of support vector machine [13,14] with different 
kernels [15] of linear, quadratic, cubic, fine gaussian (Fine), 
medium gaussian (Medium) and coarse gaussian (Coarse) is      
given in Fig.6 (d). And Fig.6 (e) shows the performance of 
different algorithms, including exponential gaussian process 
regression (GPR), medium gaussian support vector machine 

(SVM), fine tree (FT) [16], boosted trees (BOT) [17], bagged 
trees (BAT) [18] and random forest (RF) [19,20]. The 
exponential GPR model has the best performance with a mean 
absolute error of 2.81°and an average accuracy of 92.3% for 
the validation set. The accuracy is defined as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1 −
|𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑠𝑠𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 𝐴𝐴𝑠𝑠𝑎𝑎𝑎𝑎𝑝𝑝 − 𝑎𝑎𝐴𝐴𝐴𝐴𝑔𝑔𝑠𝑠𝐴𝐴𝑔𝑔𝑝𝑝𝑝𝑝 𝐴𝐴𝑠𝑠𝑎𝑎𝑎𝑎𝑝𝑝|

𝑎𝑎𝐴𝐴𝐴𝐴𝑔𝑔𝑠𝑠𝐴𝐴𝑔𝑔𝑝𝑝𝑝𝑝 𝐴𝐴𝑠𝑠𝑎𝑎𝑎𝑎𝑝𝑝
        

                                                                                        (2) 

Fig. 6 f shows that the finger performs touch events from 
seven different angles. Among them, the accuracy is the highest 
at 90° (90.04%) and the lowest at 30° (78.12%). An average 
detection accuracy of 87.5% is achieved. In an interactive touch 
system, the value of perpendicular force is low, hence the 
importance of performing calibration is reflected.  

 
 

 

IV. CONCLUSION 
The issue of inconsistent force-voltage responsivity in 

piezoelectric touch panels induced by different touch 
orientations constrains the full scope of force touch sensing for 
the internet of things (IoT) applications. The technique reported 
here addresses this responsivity issue by estimating touch 
orientations using touch induced capacitive information. The 
experimentally obtained high detection accuracy of 87.5% 
validates the feasibility of the technique proposed here. The 
technique can be used by piezoelectric touch panels to precisely 
interpret different orientations of force touch, enhancing the 
user experience in piezoelectric-based human-machine 
interactivity. 

 

 
                                               (a)                                                                             (b)                                                                                  (c) 

 
                                               (d)                                                                            (e)                                                                                    (f) 
Fig. 6. (a) Sensitivities for force sensing and capacitive sensing. (b) The distribution of the force voltage responsivity of each electrode in the touch panel (c) 
Gaussian process regression with different kernels. (d) Support vector machine with different kernels (e) Performance for the different algorithms in estimating 
the touch orientation (f). Accuracy of uncorrected and corrected force at different touch orientations. 
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TABLE Ⅱ. PERFORMANCES OF EXPERIMENTAL DEVICE 
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