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Abstract

Power traders and system operators need to balance the uncertain generation of renewable energy sources by adapting the

dispatch of conventional power plants. This poses a challenge to voltage control in power system operation. Accordingly, this

paper presents a method to determine voltage magnitude probability densities which are integrated into an optimal reactive

power flow to consider an uncertain active power generation. First, the probability densities are determined by Monte Carlo

simulations including a unit commitment problem to derive the dispatch of conventional power plants. Second, uncertainty

restrictions are used to create soft constraints for the optimal reactive power flow, which mitigates the risk of voltage limit

violations. By adapting the soft constraints slack costs, the consideration of uncertainties can be prioritized in relation to other

objectives, such as the reduction of active power losses, or reactive power costs.
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Abstract—Power traders and system operators need to balance
the uncertain generation of renewable energy sources by adapting
the dispatch of conventional power plants. This poses a challenge
to voltage control in power system operation. Accordingly,
this paper presents a method to determine voltage magnitude
probability densities which are integrated into an optimal reactive
power flow to consider an uncertain active power generation.
First, the probability densities are determined by Monte Carlo
simulations including a unit commitment problem to derive
the dispatch of conventional power plants. Second, uncertainty
restrictions are used to create soft constraints for the optimal
reactive power flow, which mitigates the risk of voltage limit
violations. By adapting the soft constraints slack costs, the
consideration of uncertainties can be prioritized in relation to
other objectives, such as the reduction of active power losses, or
reactive power costs.

Index Terms—optimal reactive power flow, uncertainty, voltage
control

I. INTRODUCTION

The progressive integration of renewable energy sources
(RES) increases the complexity of voltage control in transmis-
sion grids due to weather-based forecast uncertainty of active
power generation [1], [2] (Fig. 1).
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Fig. 1: Day-ahead relative forecast uncertainty for Germany
2018 according to [3], based on the actual generation PAG
and day-ahead forecast PDA.

To compensate these fluctuations and to maintain the active
power equilibrium of power systems, it is necessary to use
flexibilities of conventional power plants or loads. In practice,
power traders use electric power exchanges, such as the
EPEX SPOT for day-ahead or intraday trading, to balance

active power consumption and generation. In addition, short-
term imbalances are compensated by different stages of the
load-frequency control. These power flow fluctuations also
cause an uncertain reactive power demand QD of lines and
transformers, resulting in uncertain voltage magnitudes VM
in transmission grids. This aspect has to be considered in
operational voltage control by transmission system operators
(TSO) to maintain VM within its technical limits. Conse-
quently, a robust dispatch of reactive power compensators must
consider these uncertainties in addition to other objectives, for
instance the limitation of control actions [4]. Diverse optimal
power flow (OPF) formulations have been developed to enable
a risk-averse decision-making for RES-driven uncertainties.
Many methods, such as the chance-constrained OPF [5], [6]
focus on unimodal, symmetrical probability distributions for
constraints with zero skewness. Optimal reactive power flow
(ORPF) methods have been developed to specifically address
voltage control with available reactive power compensators
without active power flexibilities [7]. Different adaptions of
the ORPF take into account uncertain reactive power demand
and compensation [8], [9] and time coupled restrictions [10].
These approaches use pre-defined probability distributions
to model uncertainties. However, in order to determine and
validate a robust reactive power dispatch, detailed studies on
the uncertainty mechanism are required.
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reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
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This paper presents a method intended for transmission
system operation that enables robust reactive power dispatch
decisions based on the current system state. It is based on a
previously developed ORPF [11], which ignores operational
uncertainties. To consider these uncertainties, additional con-
straints are added to the existing ORPF based on a detailed
determination of voltage magnitude uncertainties using Monte
Carlo simulations. It is capable of considering uncertainties
from RESs leading to non zero skewness or multimodal
probability distributions. Voltage uncertainties driven by active
power fluctuations are in focus and dependencies between
reactive power reserves from conventional power plants and
unit commitment are therefore neglected.

II. MODEL

The ORPF, which optimizes the dispatch for a number of
continuous grid states, is expanded by two steps (Fig. 2).
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Fig. 2: Model overview.

First, Monte Carlo simulations determine the probability
distributions of active power generation P(PG) and voltage
magnitudes P(VM ) by using the flexibility of conventional
power plants determined by a unit commitment problem
(UCP). Second, soft constraints for lower and upper uncer-
tainty bounds Vl,u and Vu,u are added to the ORPF based on
the lower and upper voltage limits Vl and Vu. The violation of
these constraints is penalized by a cost term, which is added
to the objective function.

A. ORPF (base model)

Successive Linear Programming (sLP) is chosen as the
optimization algorithm for the nonlinear ORPF of the devel-
oped method, as it can be solved with robust algorithms like
interior point methods. Due to the nonlinear characteristics
of grid models, the linearized sensitivities are valid only
close to the initial operating point. To avoid this problem,
several LP subproblems are solved successively with artificial
variable restrictions to achieve a valid solution. After each
LP iteration, the results are applied to the grid model and
an AC power flow calculation is carried out to update the
operating point and calculate new linear sensitivities. The
time-coupled ORPF includes NT grid utilization cases (GUC)
between the starting time tb and the end time te. Variables
include shunt admittances Y , reactive power injections Q, and
ratio tap changers τ to set voltage controlled devices. The
reactive power injected by shunts is voltage dependent and is
modeled by means of discrete admittances. Transformer tap
changers are modeled with a discrete set of tap-levels. The set
of variables x is formulated as (1):

x =
[
xQ xY xτ

]
. (1)

They are classified into open loop and closed loop vari-
ables to represent manually switched and automated devices,
respectively. While open loop variables are fixed to the same
value for all GUCs between tb and te, closed loop values are
modeled without any time coupling restrictions. To this end,
open loop devices are modeled as a single variable for multiple
grid states xb−e, whereas closed loop devices are modeled as
multiple and independent variables [xb, . . . , xe] for each grid

state. In total, Nx variables are modeled. For all grid states to
be optimized, a set of relevant buses is defined comprising NV
PQ buses, NQ PV buses and one slack bus. The constraints
b yield from the lower and upper voltage magnitude limits at
each bus bV lb−e ∈ RNV ×1 and bV ub−e ∈ RNV ×1 and the lower
and upper reactive power limits of each voltage controlled
compensator bQlb−e ∈ R[NQ+1]×1 and bQub−e ∈ R[NQ+1]×1 (2):

b =
[
−bV lb−e bV ub−e −bQlb−e bQub−e bQ,c bQ,c

]T
. (2)

The voltage sensitivities of the variables AVb−e ∈ RNV ×Nx

and the reactive power sensitivities AQb−e ∈ RNQ×Nx are
calculated using the system Jacobian. Slack variables sVb−e ∈
R1×NV s and sQb−e ∈ R1×NQs as well as corresponding costs
cV ∈ R1×NV s and cQ ∈ R1×NQs are added to consider initial
NV s voltage limit violations and NQs reactive power limit
violations. This means that both voltage and reactive power
limits are modeled as soft constraints. While the cost terms
for the reactive power injected by shunts cY and reactive
power controlled devices cQ are directly added to the objective
function, the cost terms of the voltage controlled devices
are added using slack variables sτb−e ∈ R1×NQ , the matrix
As,τ ∈ RNQ×NQ (3), the limits bQ,c = 0, and the cost term
cτ ∈ R1×NQ :

As,τi,j =

{
−1, if i = j
0, else . (3)

Furthermore, the matrices As,Vb−e ∈ RNV ×NV s and As,Qb−e ∈
RNQ×NQs (4) are added to the constraint sensitivities A (5)
to consider slack variables:

Asi =

{
−1, if bi exceeds limit
0, else , (4)

A =



−AVb−e As,Vb−e
. . . . . . . . . . . .

AVb−e . . . . . . . . . . . .

−AQb−e . . . . . .
As,Qb−e

. . . . . .

AQb−e . . . . . . . . . . . .

−AQb−e . . . . . . . . . . . . −As,τ . . .

AQb−e . . . . . . . . . . . . . . . As,τ


. (5)

Variable costs are formed by cost parameters for the injected
reactive power and grid losses cL. The total cost term for each
variable is calculated by (6)-(8):

cQ,tot =
∆PLoss

∆xQb−e
· cL + cQ, (6)

cY,tot =
∆PLoss
∆xYb−e

· cL + cY , (7)

cτ,tot =
∆PLoss
∆xτb−e

· cL. (8)

Finally, the optimization problem is formulated with cost
terms (9), variables (10), the objective function (11), variable
limits (12), and constraints (13):
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c =
[
cQ,tot cY,tot cτ,tot cV cQ cτ

]
, (9)

ξ =
[
xQb−e xYb−e xτb−e︸ ︷︷ ︸

xb−e

sVb−e sQb−e sτb−e︸ ︷︷ ︸
sb−e

]
, (10)

min(c · ξT ), (11)

[
xlb−e

0

]
≤
[
xb−e
sb−e

]
≤
[
xub−e
∞

]
, (12)

A

[
xb−e
sb−e

]
≤ b. (13)

B. Monte Carlo simulations

During system operation, the current system state t0 is
known while future system states are unknown. A Monte
Carlo simulation is used to forecast future system states
and to derive robust dispatch decisions [12]. Within these
Monte Carlo simulations, all relevant uncertainties (e.g. pv and
wind power generation) are sampled to scenarios according
to their probability distribution. By using the law of large
numbers, the sampled scenarios inherit the same probability
distribution as the individual uncertainties. Interdependencies
(cross-correlations) between uncertainties, if applicable, are
modeled by including the Cholesky decomposition into the
sampling. Therefore, the developed method represents the
forecast uncertainties for wind and solar based generation
by Nmc Monte Carlo scenarios (MCS) indexed by m. The
renewable generation

∑Nres

g=1 Pres,g,m for each MCS is aggre-
gated with loads Pload and line losses Ploss. This represents
a residual power demand, which has to be supplied by Ncpp
conventional power plants. The dispatch of these power plants
is derived by a UCP based on [13] using mixed integer linear
programming. It models generation and load balancing (14)
using equality constraints for Nguc GUCs indexed by t:

Ncpp∑
g=1

Pg,t,m +

Nres∑
g=1

Pg,t,m − Pload,t − PLoss,t = 0. (14)

The UCP considers fuel-dependent constant and linear cost
terms and a distinction between warm and cold start costs.
In addition, time coupling is used to model minimal up-
and downtimes as well as ramping limitations. As a result,
a scenario and time series Pg,t,m (15) for each active power
generation indexed by g is derived for each MCS and GUC.

(15)

Next, a continuation power flow (CPF) based on [14], [15]
determines the voltage magnitude probability distributions for
each future grid state. To this end, the current grid state at t0
is set as base case. A target case for each MCS is created by
setting the corresponding power generation and demand. Fig.
3 visualizes the Monte Carlo simulation for target cases at
t ∈ [t1, . . . , Nguc] and MCSs m ∈ [m1, . . . , Nmc]. The CPF
is used instead of conventional power flow algorithms, such
as the Newton-Raphson method, to shift the current solution
of the base case iteratively. This ensures that the solutions of
the target cases are based on the base case solution.

Fig. 3: Continuation power flow target cases.

The CPF maintains the initial settings for voltage references,
tap ratios, and the dispatch of reactive power compensators
while shifting the active power generation and demand and
reactive power demand iteratively from base to target case.
Thus, a detailed forecast for voltage magnitudes at all buses
is derived. These voltage magnitudes form the probability
distributionP(VM,t) for each GUC, which is used to integrate
uncertainty constraints into the ORPF.

C. ORPF considering voltage magnitude uncertainties

The ORPF is extended by adding soft constraints, which
consider the maximal and the minimal forecasted voltage
magnitude. For each t ∈ [tb, . . . , te] an upper uncertainty
limit bV u,ub−e (16) and a lower uncertainty limit bV l,ub−e (17) are
formulated. Alternatively, it is possible to set any confidence
interval instead of using the full confidence interval between
min(P(VM,b−e)) and max(P(VM,b−e)).

bV u,ub−e = 2 · bV ub−e −max(P(VM,b−e)) (16)

bV l,ub−e = 2 · bV lb−e −min(P(VM,b−e)) (17)

Next, these limits are added to (2) to form the extended
constraints (18). The matrix Au (19) is derived by expanding
(5) with As,V,u = As,V . By adding cV,u to (9) the cost terms
are expanded to (20) and violations of uncertainty constraints
are penalized. The variation of cV,u enables the prioritization
of risk-averse voltage control in relation to other costs, such
as dispatch costs or active power losses.

bu =
[
b −bV l,ub−e bV u,ub−e

]T
(18)

Au =

 A . . . . . .
−AVb−e As,Vb−eAVb−e

 (19)
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cu =
[
c cV,u

]
(20)

Finally, slack variables sV,ub−e are added to formulate (21), an
updated objective function (22), and new variable limits (23):

ξu =
[
xb−e sb−e sV,ub−e

]
, (21)

min(c · ξTu ), (22)

xlb−e0
0

 ≤
xb−esb−e
sV,ub−e

 ≤
xub−e∞
∞

 . (23)

These are subject to the constraints (24):

Au

xb−esb−e
sV,ub−e

 ≤ bu. (24)

Thus, the adapted formulation considers uncertainties from
RESs and enables the determination of a robust reactive power
dispatch.

III. CASE STUDY

The method is studied for an adapted version of the IEEE
118 bus test system, using a load and generation scenario for
24 hours (Fig. 4) [16]. In total, 17 mechanically switched
reactors, 16 mechanically switched capacitors, and 5 STAT-
COMs are installed as reactive power compensators. HVDC-
terminals and conventional power plants provide additional
reactive power reserves. To model the forecast uncertainty,
the generation time series is sampled with Nmc = 50. Cost
parameters are chosen as listed in Table I.

Fig. 4: Test system topology with reactive power compensators

TABLE I: Cost terms

cL cY cQ cτ cV,u

35 0.0025 0.05 s 0.1 500

The reactive power dispatch is determined by the ORPF
for continuous GUCs, comprising one known initial grid state
and 3-4 future states, modeled by MCSs (Fig. 5). E.g. t1 is
set as base case and 50 MCSs for t2 − t5 are set as target
cases to be analyzed by the CPF. This models the operational
voltage control with the objective to set a robust reactive power
dispatch for the current system state and the next 3-4 hours.

Fig. 5: Base and target cases for the case study.

A. Active Power Generation Uncertainty

For given probability distributions of renewable power gen-
eration uncertainty, the UCP determines the corresponding
uncertainty of conventional power plants. The uncertainties
can be modeled by a normal distribution (Fig. 6), when
aggregated for all conventional and renewable power plants.

-1500 -1000 -500 0 500 1000 1500
0

0.05

0.1

0.15
Conv.
RES

Fig. 6: Forecast probability distributions of renewable and
conventional generation P(ω) = P(P )−mean(P(P )).

Fig. 7: Conventional and renewable power plant uncertainties.

The fluctuation of power plant types during all GUCs is
shown in Fig. 7. Although the system is only reaching a
renewable share of 55%, the scale of active power uncertainties
from RESs is effectively doubled due to the required dispatch
adaption of conventional power plants. A detailed analysis of
all MCSs for an exemplary conventional and a wind power
plant shows that normal distributions cannot always be used
to model the uncertainty of individual generators (Fig. 8).
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Fig. 8: Exemplary uncertainties.

Renewable active power generation in transmission grids is
injected by a high number of individual power plants (e.g. a
wind park). It is not constrained by a significant difference
between no generation and minimum generation. In contrary,
conventional active generation is constrained by a minimum
active power generation leading to a bimodal probability
distribution, which can be classified into no generation and
generation between minimum and maximum power.

B. Voltage Magnitude Uncertainty

Next, the CPF is applied to determine probability distri-
butions for voltage magnitudes based on the active power
dispatch for all MCSs before and after optimization with
uncertainty constraints. Diverse probability distributions are
identified for the case study (Fig. 9). Some probability dis-
tributions can be described by standard normal distributions
(Fig. 9a) or skewed normal distributions (Fig. 9b). Others are
bimodal (Fig. 9c), which is caused by the uncertain dispatch of
conventional power plants. Some extreme cases have bimodal
probability distributions spanning across more than 10% of the
rated voltage (Fig. 9d).
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(c) Bimodal distribution (1).
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(d) Bimodal distribution (2).

Fig. 9: Exemplary voltage distributions.

The distribution VM for all MCSs and GUCs is visualized
in Fig. 10 in reference to Vu. It shows that the application
of uncertainty constraints reduces the probability for voltage

limit violations from 3.22 % to 1.08 %. In this case study, no
violations of the lower voltage limit Vl are observed.
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Fig. 10: Difference between VM and the upper limit Vu.

Exemplary initial voltage magnitude distributions for all
buses with voltage limit violations at t15 are visualized in Fig.
11.
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Fig. 11: VM distributions at buses with initial limit violations
at t15.

Limit violations occur mainly at buses close to uncertain
renewable or conventional generation. Active uncertainty con-
straints shift the voltage magnitude probability distributions
and mitigate the risk of voltage limit violations as shown in
Fig. 12.
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Fig. 12: VM distributions at buses with initial limit violations
with active uncertainty constraints at t15.

Some MCSs, however, still lead to limit violations. This is
a result of using soft constraints, which do not strictly enforce
the limits. In this cases, other costs terms (e.g. cL) outweigh
the uncertainty cost term cV,u.
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C. Cost Term Sensitivity

The enforcement of voltage limits for every possible sce-
nario is not necessarily the major goal of voltage control in
transmission system operation. Isolation equipment typically
allows temporary overvoltages giving the TSO enough time to
react in case of minor violations of V u [17]. The variation of
cV,u adapts the method to decrease or increase the priority to
mitigate the risk of voltage limit violations. Fig 13 shows the
resulting probability for limit violations for different values
cV,u. Decreasing or increasing cV,u leads to a higher or
lower risk of limit violations, respectively. This proves the
effectiveness of the implemented approach. However, even
at the highest cost terms, a minor chance for voltage limit
violations remains. This is caused by the dependency of
P(VM ) on the operating point.
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Fig. 13: Sensitivity of cost terms on the probability of voltage
limit violations.

IV. DISCUSSION AND OUTLOOK

The developed method shows that skewed or multimodal
voltage magnitude probability distributions can be considered
for voltage control in transmission grids. However, there
is no straightforward approach to model such complex
distributions as simple algebraic functions. The modeling as
soft constraints enables the prioritization of uncertainty limits
in relation to different objectives, such as dispatch costs or
active power losses.

So far, the uncertain dispatch of conventional power plants
has been neglected. This leads to an over- or underestimation
of reactive power reserves. To make the method more robust,
a probabilistic modeling of the corresponding variables and
variable limits is required. In addition, a probabilistic analysis
of long-term voltage stability limits is enabled by the com-
bination of the CPF and Monte Carlo simulations. This will
be utilized in future studies, to assess the maximal loading
margins for each MCS.
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