
P
os
te
d
on

25
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
20
18
50
7.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

A breach into the Authentication with Built-in Camera (ABC)

Protocol

Cezara Benegui 1 and Radu Tudor Ionescu 2

1Affiliation not available
2University of Bucharest

October 30, 2023

Abstract

[Paper accepted at ACNS 2020]

In this paper, we propose a simple and effective attack on the recently introduced Smartphone Authentication with Built-in

Camera Protocol, called ABC. The ABC protocol uses the photo-response non-uniformity (PRNU) as the main authentication

factor in combination with anti-forgery detection systems. The ABC protocol interprets the PRNU as a fingerprint of the

camera sensor built-in a smartphone device. The protocol works as follows: during the authentication process, the user is

challenged with two QR codes (sent by the server) that need to be photographed with a pre-registered device. In each QR code,

the server embeds a unique pattern noise (not visible to the naked eye), called probe signal, that is used to identify potential

forgeries. The inserted probe signal is very similar to a genuine fingerprint. The photos of QR codes taken by the user are then

sent to the server for verification. The server checks (i) if the photos contain the user’s camera fingerprint (used to authenticate

the pre-registered device) and (ii) if the photos contain the embedded probe signal. If an adversary tries to remove (subtract)

his own camera fingerprint and replace it with the victim’s camera fingerprint (computed from photos shared on social media),

then he will implicitly remove the embedded probe signal and the attack will fail. The ABC protocol is able to detect these

attacks with a false acceptance rate (FAR) of 0.5%. However, the ABC protocol wrongly assumes that the attacker can only

determine his own camera fingerprint from the photos of the presented QR codes. The attack proposed in our work is able to

get past the anti-forgery detection system with a FAR of 54.1%, simply by estimating the attacker’s camera fingerprint from a

different set of photos (e.g. five photos) owned by the attacker. This set of photos can be trivially obtained before the attack,

allowing the adversary to compute his camera fingerprint independently of the attack. The key to the success of our attack is

that the independently computed adversary’s camera fingerprint does not contain the probe signal embedded in the QR codes.

Therefore, when we subtract the adversary’s camera fingerprint and add the victim’s camera fingerprint, the embedded probe

signal will remain in place. For this reason, the proposed attack can successfully pass through the anti-forgery detection system

of the ABC protocol. In this paper, we also propose a potential fix based on analyzing signals from built-in motion sensors,

which are not typically shared on social media.
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Abstract. In this paper, we propose a simple and effective attack on the
recently introduced Smartphone Authentication with Built-in Camera
Protocol, called ABC. The ABC protocol uses the photo-response non-
uniformity (PRNU) as the main authentication factor in combination
with anti-forgery detection systems. The ABC protocol interprets the
PRNU as a fingerprint of the camera sensor built-in a smartphone device.
The protocol works as follows: during the authentication process, the user
is challenged with two QR codes (sent by the server) that need to be
photographed with a pre-registered device. In each QR code, the server
embeds a unique pattern noise (not visible to the naked eye), called
probe signal, that is used to identify potential forgeries. The inserted
probe signal is very similar to a genuine fingerprint. The photos of QR
codes taken by the user are then sent to the server for verification. The
server checks (i) if the photos contain the user’s camera fingerprint (used
to authenticate the pre-registered device) and (ii) if the photos contain
the embedded probe signal.
If an adversary tries to remove (subtract) his own camera fingerprint and
replace it with the victim’s camera fingerprint (computed from photos
shared on social media), then he will implicitly remove the embedded
probe signal and the attack will fail. The ABC protocol is able to detect
these attacks with a false acceptance rate (FAR) of 0.5%. However, the
ABC protocol wrongly assumes that the attacker can only determine his
own camera fingerprint from the photos of the presented QR codes. The
attack proposed in our work is able to get past the anti-forgery detec-
tion system with a FAR of 54.1%, simply by estimating the attacker’s
camera fingerprint from a different set of photos (e.g. five photos) owned
by the attacker. This set of photos can be trivially obtained before the
attack, allowing the adversary to compute his camera fingerprint inde-
pendently of the attack. The key to the success of our attack is that the
independently computed adversary’s camera fingerprint does not con-
tain the probe signal embedded in the QR codes. Therefore, when we
subtract the adversary’s camera fingerprint and add the victim’s camera
fingerprint, the embedded probe signal will remain in place. For this rea-
son, the proposed attack can successfully pass through the anti-forgery
detection system of the ABC protocol. In this paper, we also propose
a potential fix based on analyzing signals from built-in motion sensors,
which are not typically shared on social media.

Keywords: ABC protocol, PRNU fingerprint, camera fingerprint, im-
personation attack, forgery attack, authentication with built-in camera.
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1 Introduction

With the rapid growth of the online environments, e.g. social media plat-
forms, in which users generate content on a daily basis using their smartphones,
it becomes easier and easier for attackers to gather information about specific
individuals. The information collected can be used in different identity forgery at-
tacks, especially impersonation attacks. Since more than half of the smartphone
users are using mobile banking services [8], preventing identity forgery attacks
is critical. One possible approach to prevent such impersonation attacks (from
different devices) is to determine that the user is actually using a known (pre-
registered) device. Typical verification protocols are based on sending a confir-
mation code by SMS [17], tying the user to his mobile device. An alternative ap-
proach is the recently-proposed Smartphone Authentication with Built-in Cam-
era Protocol, called ABC [28], which represents the main focus of our work. The
ABC protocol uses the photo-response non-uniformity (PRNU) [21] signal as the
main authentication factor. The PRNU is a fixed pattern noise specific to a cam-
era sensor, and it can be estimated using different techniques [3,4,10,18,20,21].
The ABC protocol is mainly based on interpreting the PRNU as a fingerprint
of the camera sensor that is usually built-in any smartphone device.

Associating the information available on the Internet to a potential victim can
easily offer attackers access to a set of images (or at least an image) taken by the
victim, which in the context of PRNU-based verification, can be used to compute
the camera fingerprint of the victim. With this information, the attackers can
impersonate the victim and pursue transactions or other fraudulent activities in
that person’s name. As it is generally well known that the PRNU fingerprint
is vulnerable to such forgery attacks [24, 28], the ABC protocol is equipped an
anti-forgery detection mechanism. Indeed, the ABC protocol claims to solve the
fingerprint forgery problem along with other possible attacks, such as replay
attacks, with a total error rate lower than 0.5% [28]. The ABC authentication
process consists in a set of steps that require the user to take two photos of two
QR codes displayed on a screen and send the photos to a server for verification.
The server processes the images and identifies if the content from the QR codes
is legitimate, then it verifies the user’s camera fingerprint and checks for forgery
attacks. The forgery attack detection process scans the received image for a fixed
pattern noise (probe signal) included in the two QR codes, a noise that is very
similar to a device fingerprint (not visible to the naked eye). In case of an attack,
in which the fingerprint of the attacker is replaced with the victim’s fingerprint,
the forgery detection system detects that the fixed pattern noise added to the
initial QR code images is missing [28]. However, the ABC protocol assumes that
the attacker computes the camera fingerprint of his own device, using the photos
of the presented QR codes, taken during the authentication. As explained below,
this assumption is wrong.

We propose a different approach for the attack, in which the attacker (adver-
sary) uses an external set of photos (even a single photo is enough) to compute
his own camera fingerprint. Clearly, an external set of photos can be trivially
collected by the attacker before performing the attack, independently. Hence, the
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adversary’s camera fingerprint can also be computed in a completely indepen-
dent manner from the attack. More importantly, the independently computed
adversary’s camera fingerprint will no longer contain the fixed pattern noise em-
bedded in the QR codes by the verification system. Therefore, when we subtract
the adversary’s camera fingerprint and add the victim’s camera fingerprint dur-
ing the attack, the embedded fixed pattern noise will remain in place. For this
reason, the proposed attack can successfully pass through the anti-forgery de-
tection system of the ABC protocol. Since our attack requires several changes
to the photos sent for verification (subtracting attacker’s fingerprint, adding vic-
tim’s fingerprint), the fixed pattern noise can be deteriorated by these changes.
Therefore, our attack succeeds in about 50% of the cases. To estimate the num-
ber of successful attempts, we conduct experiments using 630 photos collected
from six different smartphone devices. During registration, we use either one or
five photos per device to compute the fingerprint of each device. While Zhongjie
et al. [28] use one photo during registration, we noticed that our attack has a
better success rate when using more photos, e.g. five. Since the attacker can
trivially take any number of photos with his own smartphone and the victim is
likely to post multiple photos on social media, we believe that using five photos
for PRNU estimation is realistic although different from Zhongjie et al. [28]. In
the experiments, one by one, each device is considered as being the victim’s de-
vice in order to be able to simulate attacks. We attack each victim’s device with
photos from the other devices, using 100 image samples per attacker’s device.
In total, we perform a set of 3000 attacks, achieving a successful attack rate
(false acceptance rate) of 54.1% when using five images for PRNU estimation
and a successful attack rate of 47.7% when using one image for PRNU estima-
tion, respectively. Since our attack is successful in about half of the cases, we
consider it as a viable threat to the ABC protocol. We thus conclude that the
anti-forgery detection system of the ABC protocol needs to be revised. In this
paper, we also propose a revised ABC protocol based on using signals captured
from built-in motion sensors, which are not typically shared on social media.
The false acceptance rate of the revised ABC protocol is 5.3%.

The rest of this paper is organized as follows. Recent related work on au-
thentication protocols and vulnerabilities is presented in Section 2. The ABC
protocol and our attack scheme are described in Section 3. Our comparative
experiments and results are presented in Section 4. Our revised ABC protocol
is described in Section 5. Finally, we draw our conclusions in Section 6.

2 Related Work

Aghili et al. [1] presented attacks for breaking into a lightweight machine-
to-machine (M2M) authentication protocol [12] used for communication in In-
dustrial Internet of Things (IIoT) environments. The authors showed that the
M2M authentication protocol [12] is vulnerable to Denial-of-Service (DoS) and
router impersonation attacks. In a different work, Aghili et al. [2] showed that
the untraceable and anonymous three-factor authentication scheme [6] for Het-
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erogeneous Wireless Sensor Networks is vulnerable to user impersonation, de-
synchronization and traceability attacks. Aghili et al. [2] also proposed an im-
proved protocol that is resilient to these kinds of attacks.

To our knowledge, there are no previous works that study attacks for PRNU-
based authentication protocols using the built-in camera of smartphone devices.
However, there are previous works that study the implementation of PRNU-
based fingerprinting methods as a single authentication protocol [28] or as a
component in a multifactor authentication scheme [27]. Different from the ap-
proach studied by Zhonjie et al. [28], which implemented the camera’s fingerprint
as the main component of an authentication protocol, Valsesia et al. [27] em-
ployed the PRNU of the built-in camera as a weak physical unclonable function
(PUF) [16] in a multifactor authentication scheme. Moreover, there are other
works that use multiple device sensor fingerprints, including PRNU, and com-
bine them with machine learning, to build strong authentication systems [5].

In this section, we provide a brief overview of commonly used smartphone
authentication approaches and some of their vulnerabilities. The most common
approach used in the recent user authentication systems is to employ a multi-
factor scheme. Systems based on multifactor authentication are composed of a
known secret, which is usually a password, that is complemented by one or more
hardware or software tokens [9]. One of the most commonly used tokens is the
One-Time Password [22], which consists of a token that is sent to the user via
e-mail or SMS, in order to better assess the possession of a hardware or software
element which identifies the user. Using the PRNU as an authentication system
or as a component in a multifactor scheme requires additional security measures.
Considering that PRNU fingerprints are vulnerable to forgery attacks [13,15], it
is not a secure option to rely on PRNU fingerprint authentication alone. Hence,
along with a fingerprint matching technique, other systems such as forgery de-
tection must be implemented [28].

In our paper, we study the vulnerability of the ABC Protocol [28], present-
ing a simple attack scheme that showcases the weakness of the ABC protocol
against forgery attacks and adversary fingerprint removal attacks. We also pro-
pose a revised ABC protocol that is based on multi-factor authentication, i.e. it
considers the signals captured by the built-in motion sensors, e.g. accelerometer
or gyroscope, along with the images captured by the built-in camera.

3 Method

In this section, we present in detail the ABC protocol [28] and the protection
methods implemented in this protocol. We then explain in detail our imperson-
ation attack scheme that is able to bypass the ABC protocol.

3.1 ABC Protocol

The ABC protocol [28] is composed of two main phases: registration and
authentication. In the registration phase, the user sends a sample image I(r)
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(taken with the smartphone camera) to the server (verifier) that implements
the ABC protocol. The process does not impose any constraint on the reference
image I(r). The image is used to register the smartphone device into the system.
More exactly, after the image is received, the sever extracts the PRNU fingerprint
K̂(c) from the image I(r) and builds a user profile for the specific device. As

Zhongjie et al. [28], we use the notation K̂(c) to denote an accurate estimation
of the actual PRNU fingerprint K(c). Once the user’s device is registered into
the system, we can perform one or more authentications.

The authentication process is composed of three main steps: Quick Re-
sponse (QR) codes generation by the server, pictures upload by the user and
pictures verification by the server.

In the first authentication step (i), in which the QR codes are generated,
the system embeds information about the transaction in progress. The transac-
tion details are accompanied by a timestamp Ti and a random string stri. Along
with this information, the QR code images also embed a non-related white Gaus-
sian noise Γi, called probe signal, with a variance equal to 5. In this step, the
verifier generates two images defined as:

Ii(s) = QR(stri, Ti) + Γi,∀i ∈ {1, 2}, (1)

which are displayed on a screen to the user.

In the second authentication step (ii), the user captures the above images
I1(s) and I2(s) with the registered smartphone’s built-in camera, and sends the
captured images securely back to the server. The captured images, denoted by
Ii(c), should contain a noise residue Wi(c) composed of the PRNU fingerprint of
the user and the probe signal Γi:

Ii(c) = QR(stri, Ti) +Wi(c),∀i ∈ {1, 2}, (2)

where the noise residue is formally defined as follows:

Wi(c) = Γi +K(c). (3)

We note that K(c) is present in Equation (3) only if the authentication is per-
formed by the registered user. Otherwise, the noise residue will contain an ad-
versary’s camera fingerprint K(a) instead of K(c).

The third authentication step (iii) of the protocol is composed of multiple
sub-steps: verification of the presented QR codes, fingerprint verification, forgery
detection and probe signal verification. The verification of the received QR codes
step checks the content of the QR codes to match with the ones generated in
the first authentication step (i). Then, the verifier detects if the images I1(c)
and I2(c) captured during the second authentication step (ii) contain the same

fingerprint K̂(c) as the reference image I(r) provided in the registration stage.
Proceeding forward, the forgery detection system tries to identify whether an
adversary’s camera fingerprint K̂(a) is present in the analyzed image. If an ad-

versary’s fingerprint K̂(a) is detected, the system rejects the transaction. In the
last sub-step, the protocol verifies if the probe signal Γi is present. If the unique
pattern noise was removed (subtracted) in the forgery process, or in a counterfeit
attempt, then the system rejects the transaction.
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3.2 ABC Protocol Defense Systems

Forgery detection: The anti-forgery detection system implemented in the
ABC protocol [28] protects the system from forged images in which an adver-
sary’s fingerprint, K(a), might be present. For each of the two images received
by the verifier, the noise residue Wi(c) is extracted. Next, the noise residue from
the first received image is compared with both the noise residue from the second
image and the noise residue (PRNU fingerprint) of the image sample provided
by the user during registration. The similarity value between the analyzed noise
residues W1(c) and W2(c) is given by:

PCE(W1(c),W2(c)), (4)

while the similarity value between the analyzed noise residue W1(c) and the

registered PRNU fingerprint K̂(c) is given by:

PCE(W1(c), K̂(c)), (5)

where PCE is the Peak to Correlation Energy [14].
If the images captured during authentication are forged, they should contain

the attacker’s fingerprint along with the victim’s fingerprint. Therefore, the sim-
ilarity between W1(c) and W2(c) is higher in comparison with the similarity of

the noise residue W1(c) and the registered PRNU fingerprint K̂(c), i.e.:

PCE(W1(c),W2(c)) > PCE(W1(c), K̂(c)) + t1, (6)

where t1 is a pre-established threshold. As noted in [28], the forgery detection
system can be bypassed if the adversary removes his own PRNU fingerprint K(a)

and replaces it with the victim’s PRNU fingerprint K(c). The removal detection
system proposed by Zhongjie et al. [28] and described below is used to prevent
this situation.

Removal detection: During the authentication procedure, the verifier sends
two images that contain a probe signal to the user. When the system receives the
verification photos back from the user, subsamples of the received images Ii(c)
are extracted, obtaining a larger set of images Îi(c) in which the presence of the
unique pattern noise Γi is verified. If the captured images Ii(c) are forged, the
similarity value between the known probe signal Γi and the noise residue Wi(c)

should be substantially lower, falling below a precisely chosen threshold t2:

PCE(Wi(c), Γi) < t2. (7)

If Equation (7) holds, then the transaction is rejected. We note that Equa-
tion (7) is based on the supposition that the adversary estimates his own PRNU
fingerprint from the captured images Ii(c). In this case, the estimated PRNU

fingerprint K̂(a) will contain the probe signal Γi. Consequently, removing the

PRNU fingerprint K̂(a) in order to pass forgery detection will implicitly remove
the probe signal. In this case, the attack is successfully stopped by the removal
detection system. However, as we are about to discuss in detail next, the ABC
protocol does not consider the trivial case in which the adversary estimates his
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own PRNU fingerprint from a different set of images than those photographed
during the authentication. We exploit this vulnerability in our attack described
below.

3.3 Proposed Attack Scheme

While the ABC Protocol assumes that the adversary computes his camera
fingerprint using the photos Ii(c) captured during the authentication phase, we
propose a different approach for the attack, in which the adversary uses a pre-
computed camera fingerprint K̂(a), obtained from an external set of photos Ij(x),
captured with the same device used for the attack. In our experiments described
in Section 4, we used either one or five images, i.e. j ∈ {1} or j ∈ {1, 2, 3, 4, 5}.
While the decision to use one image during registration is motivated by the fact
that Zhongjie et al. [28] do the same, the decision to use five images is motivated
by two facts: the attacker can easily take several images with his smartphone and
the victim is likely to post multiple images on social media. We thus believe that
it is realistic to consider that the attacker might use five images to compute his
PRNU fingerprint K̂(a) and another five images from social media to compute the

victim’s PRNU fingerprint K̂(c). We empirically observed that using five images
instead of one during registration increases the success rate of our attack.

When the verifier generates the two verification images defined as in Equa-
tion (1), the attacker takes pictures of those images in order to send them back to
the verifier. In this step, the images taken by the attacker are defined as follows:

Ii(c) = QR(stri, Ti) + Γi +K(a),∀i ∈ {1, 2}. (8)

We note that Equation (8) is similar to Equation (2), the only difference being
that the captured image contains the PRNU fingerprint K(a) of the attacker
instead of the PRNU fingerprint K(c) of the victim. In order to perform the

attack, we aim to remove K̂(a) and replace it with K̂(c), assuming (as Zhongjie
et al. [28]) that the attacker has access to a very small set of photos (or at least
a photo), e.g. shared on social media, that belong to the victim, which allows
the attacker to estimate the victim’s PRNU fingerprint denoted by K̂(c). At
this stage, Zhongjie et al. [28] assume that the attacker estimates the PRNU
fingerprint K̂(a) using the images Ii(c) defined in Equation (8), thus including

the probe signal Γi into the estimation. Hence, the attempt to remove K̂(a) will

also remove Γi. Since we compute the adversary’s camera fingerprint K̂(a) on

an independent set of images Ij(x), removing K̂(a) from the captured images
Ii(c) does not imply the removal of the probe signal Γi. Hence, the attacker can

proceed with the forgery by subtracting the estimated PRNU fingerprint K̂(a)

and by adding the victim’s fingerprint K̂(c) to the captured images Ii(c), resulting
in a set of forged images defined by:

Ii(f) = Ii(c) − K̂(a) + K̂(c),∀i ∈ {1, 2}. (9)

By replacing Ii(c) in Equation (9), we obtain:

Ii(f) = QR(stri, Ti) + Γi +K(a) − K̂(a) + K̂(c),∀i ∈ {1, 2}. (10)
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We note that K̂(a) and K̂(c) are estimated values of actual PRNU fingerprints
of the attacker’s and the victim’s smartphone built-in cameras, respectively.
Through the operations performed in Equation (9), the probe signal Γi can
be affected to some small extent. Therefore, the forged images Ii(f) are only
approximately equal to the results desired by the attacker:

Ii(f) ≈ QR(stri, Ti) + Γi + K̂(c),∀i ∈ {1, 2}. (11)

The forged images Ii(f), which contain the victim’s fingerprint, are sent
back to the verifier, easily passing the fingerprint verification process. Then,
the forgery detection and removal detection algorithms process the images re-
ceived by the verifier. The forgery detection algorithm processes the images and
computes the similarity values defined in Equations (4) and (5). Then, the veri-
fier applies Equation (6) to determine if the images are forged. Since the forged
images do not contain the attacker’s fingerprint K(a), the similarity values de-
fined in Equations (4) and (5) are roughly equal. Thus, our attack can bypass
the forgery detection system.

Since we compute the adversary’s camera fingerprint using an external set of
images, in the process of removing the attacker’s fingerprint K̂(a) and adding the

victim’s fingerprint K̂(c), the value of the probe signal Γi is only slightly altered,
but still present in the forged images. When the removal detection algorithm
checks for the presence of the probe signal Γi using Equation (7) against a
predefined threshold, the algorithm will find that Γi is included in the received
images. Therefore, our attack can bypass the removal detection system.

With the proposed attack scheme, we can bypass both protection systems
of the ABC protocol. Due to the approximation errors involved in the forgery
process, the attack only succeeds in about one in every two cases, as detailed in
the following experiments.

4 Experiments

4.1 Data Set

In order to test our attack scheme and estimate the number of successful
attempts in which the ABC protocol fails to detect our attack, we collect our
own data set of images. The data set consists of 630 images gathered from six
different smartphone devices: two iPhone X, two Samsung S8, one Huawei P20
Lite and one Huawei P10 Lite. We select the first 1000× 750 pixels to compute
the PRNU fingerprints, as recommended in previous works [24, 28]. For each
device we collect a number of 105 photos.

In the first set of experiments, we use the first five images to compute the
reference PRNU fingerprint of each device, which leaves 100 images to perform
authentications on the same device (simulating the actions of a registered user) or
attacks on the other devices (simulating the actions of an impersonator). In total,
we perform 600 authentications (100 per device) and, considering all possible
combinations of device pairs, 3000 attacks (500 per device). The justification for
using five images during registration is given by two facts: (1) the attacker can
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take any number of photos on his device and (2) the victim is likely to post at
least five photos on social media platforms.

In the second set of experiments, we use only the first image to compute
the reference PRNU fingerprint, as the method [21] used for PRNU estimation
can be applied on a single image and this is how Zhongjie et al. [28] conduct
their experiments. Our second set of experiments are aimed at demonstrating
that our attack can defeat the ABC protocol in the same setting as Zhongjie et
al. [28]. As in the first set of experiments, we use the last 100 images to perform
authentications on the same device or attacks on the other devices, resulting in
the same number of total authentications (600) and attacks (3000).

4.2 Evaluation Details

Evaluation Measures: We report the number of successful attacks (false ac-
ceptances) as well as the False Acceptance Rate (FAR), which is typically defined
as the ratio of the number of false acceptances divided by the number of authen-
tication attempts. A false acceptance is an instance of a security system, in our
case the ABC protocol, incorrectly verifying an unauthorized person, e.g. an
impersonator. We note that our attack does impact the False Rejection Rate
(FRR) of the ABC protocol, i.e. the FRR is similar to that reported in [28].
Therefore, we focus only on reporting the FAR.

Evaluation Protocol: The main goal of the experiments is to validate the
attack scheme proposed in this paper. While reporting the FAR values for our
attack is necessary, we also have to validate that the forgery detection (FD) sys-
tem and the removal detection (RD) system of the ABC protocol work properly.
For this reason, we need to perform attacks as described in [28]. Our aim is to
show that the protection systems of the ABC protocol are indeed able to reject
the attacks specified in [28], while not being able to detect our own attack.

One by one, each of the n smartphone devices is considered as being the
victim’s device. In order to perform attacks, the remaining n − 1 devices are
considered to belong to adversaries. Each adversary performs 100 attacks. Given
that our data set consists of n = 6 devices, we obtain a number of 3000 (6 ×
5 × 100) attacks. For each attack, we determine if it passes undetected by the
Forgery Detection system and by the Removal Detection system. We consider a
successful attack only if it succeeds to cross both Forgery Detection and Removal
Detection systems. We count the number of successful attacks and compute the
corresponding FAR at different PCE thresholds between 10000 and 50000, using
a step of 100. We note that the threshold values are generally higher than those
used in [28], because we compute the PRNU fingerprints on larger images. We
determine the optimal threshold as the threshold that provides a FAR of roughly
0.5% for the attack scheme detailed in [28], because Zhongjie et al. [28] report
a FAR of 0.5% in their paper. We note that they selected the threshold that
corresponds to equal FAR and FRR.
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Fig. 1. Number of false acceptances (on the vertical axis) bypassing both Forgery De-
tection and Removal Detection systems, for the attack scheme proposed in our paper
versus the attack scheme detailed in [28], when five images are used for PRNU esti-
mation. False acceptances are counted for multiple PCE thresholds (on the horizontal
axis) between 10000 and 50000, with a step of 100. Best viewed in color.

4.3 Results Using Five Images for PRNU Estimation

Figure 1 illustrates the number of false acceptances for the proposed attack
scheme versus the attack scheme considered by Zhongjie et al. [28], using five
images for PRNU estimation and multiple PCE thresholds between 10000 and
50000. Threshold values are taken at a step of 100. The false acceptance counts
represent attacks that bypass both Forgery Detection and Removal Detection
systems of the ABC protocol. Zhongjie et al. [28] reported a FAR of 0.5% for
their attack scheme. In our case, we obtain a similar FAR for their attack when
the PCE threshold is set to 22500. We thus select this value as the optimal
threshold. We note that for each and every threshold between 10000 and 50000,
our attack scheme provides significantly more successful attempts.

We present the number of false acceptances for the proposed attack scheme
versus the attack scheme considered by Zhongjie et al. [28] in Table 1, using
five different PCE thresholds between 10000 and 50000, additionally including
results for the optimal threshold (22500). For the optimal threshold, there are
1624 successful attacks from the total of 3000 attacks. Hence, we conclude that
more than half of the attacks are successful, rendering the ABC protocol unsafe
in scenarios where an impersonator could gain access to the victim’s photos.
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Table 1. Number of successful attempts (false acceptances) for the attack scheme pro-
posed in our paper versus the attack scheme detailed in [28], when five images are used
for PRNU estimation. Successful attempts are counted for five PCE thresholds between
10000 and 50000. Results (highlighted in bold) for the optimal PCE threshold (22500)
are also included. For each attack scheme, we report the number of false acceptances
for the Forgery Detection (FD) system, the Removal Detection (RD) system, and both
(FD+RD).

Threshold
Proposed attack ABC attack

FD bypass RD bypass FD+RD FD bypass RD bypass FD+RD
count count bypass count count count bypass count

10000 2235 2701 2122 2628 920 776

20000 1879 2517 1726 2487 73 45

22500 1800 2451 1624 2446 31 16

30000 1600 2292 1378 2350 0 0

40000 1444 2184 1219 2234 0 0

50000 1315 2090 1071 2150 0 0

Table 2. False acceptance rates (FAR) for the attack scheme proposed in our paper
versus the attack scheme detailed in [28], when five images are used for PRNU estima-
tion. False acceptance rates are computed for five PCE thresholds between 10000 and
50000. Results (highlighted in bold) for the optimal PCE threshold (22500) are also
included. For each attack scheme, we report the false acceptance rates for the Forgery
Detection (FD) system, the Removal Detection (RD) system, and both (FD+RD).

Threshold
Proposed attack ABC attack

FD FAR RD FAR FD+RD FAR FD FAR RD FAR FD+RD FAR

10000 74.5% 90.0% 70.7% 87.6% 30.7% 25.9%

20000 62.6% 83.9% 57.5% 82.9% 2.4% 1.5%

22500 60.0% 81.7% 54.1% 81.5% 1.0% 0.5%

30000 53.3% 76.4% 45.9% 78.3% 0.0% 0.0%

40000 48.1% 72.8% 40.6% 74.5% 0.0% 0.0%

50000 43.8% 69.7% 35.7% 71.7% 0.0% 0.0%

In Table 2, we provide the false acceptance rates for the proposed attack
scheme versus the attack scheme considered by Zhongjie et al. [28]. The values
essentially correspond to those presented in Table 1, each number being divided
by the total number of attacks (3000). Based on the results presented in Table 2,
we conclude that our attack can bypass the Forgery Detection and the Removal
Detection systems with a very high FAR (54.1%) at a PCE threshold of 22500.
We note that, at the same threshold, the ABC protocol achieves a FAR of 0.5%
for the attack scheme described in [28]. In the same time, we computed the False
Rejection Rate (FRR) for the ABC protocol, using 600 authentications. At the
respective threshold, the FRR is under 0.1%, further proving that the results
are consistent with the numbers reported in [28].
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We observe that the Forgery Detection and Removal Detection systems per-
form very well, but only for the attack scheme assumed by the ABC protocol [28].
Considering that in the respective attack scheme the adversary’s camera finger-
print is computed from the QR code images which include the probe signal Γi,
the value Γi is removed along with the attacker’s fingerprint K̂(a). This leads to
a better performance of the Removal Detection system. For instance, the attack
scheme considered in [28] is identified by the Removal Detection system with a
FAR of 1% at a PCE threshold of 22500.

In our attack scheme, the adversary computes his own PRNU fingerprint
by using an external set of five images. Due to the fact that the fingerprint is
computed without including the probe signal Γi, when the adversary’s fingerprint
K̂(a) removal (subtraction) and victim’s fingerprint K̂(c) addition occurs, the
probe signal is mostly unaffected. In this case, the Removal Detection system
is not able to identify our attack. For instance, our attack scheme is identified
by the Removal Detection system with a FAR of 81.7% at a PCE threshold of
22500.

While our attack can bypass the Removal Detection system with a much
higher FAR than the attack scheme considered in [28], it gives slightly lower FAR
values in trying to bypass the Forgery Detection system, because the attacker’s
PRNU fingerprint is computed on a different set of images than the two QR code
images used during the authentication. In other words, the lower FAR rates are
generated by the approximation errors between the PRNU estimation K̂(a) and
the actual PRNU fingerprint K(a) in the QR code images. Nevertheless, our
attack scheme achieves a much higher false acceptance rate even when the two
protection systems, Forgery Detection and Removal Detection, are considered
together.

Overall, the results presented in Table 1 and 2 prove that the ABC Protocol
is vulnerable to our attack scheme, since about one in every two attacks succeeds.

4.4 Results Using One Image for PRNU Estimation

Figure 2 illustrates the number of false acceptances for the proposed attack
scheme versus the attack scheme considered by Zhongjie et al. [28], using one
image for PRNU estimation and multiple PCE thresholds between 10000 and
50000. Threshold values are taken at a step of 100. It is important to mention
that in this setting, both the victim’s and the adversary’s PRNU are estimated
from single images. Therefore, this setting is slightly more difficult and the attack
is less likely to succeed. Although using five images during registration (as in
the previous setting) is realistic, we consider the setting with one image for an
apples to apples comparison with Zhongjie et al. [28].

Comparing the results presented in Figure 1 with those presented in Figure 2,
we observe that the number of attacks that bypass the ABC protocol is typically
lower when one image is used for PRNU estimation instead of five images. How-
ever, there are still enough successful attacks to pose a real problem for the ABC
protocol. At the optimal threshold (22500), the number of successful attacks is
1430, which translates to a FAR of 47.7% with respect to the total number of
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Fig. 2. Number of false acceptances (on the vertical axis) bypassing both Forgery
Detection and Removal Detection systems, for the attack scheme proposed in our paper
versus the attack scheme detailed in [28], when one image is used for PRNU estimation.
False acceptances are counted for multiple PCE thresholds (on the horizontal axis)
between 10000 and 50000, with a step of 100. Best viewed in color.

attacks (3000). These empirical results demonstrate that the ABC protocol can
still be easily bypassed, even when we use a single image for estimating the
PRNU.

Considering both experimental settings (with one or five images for PRNU
estimation) and the corresponding results, we conclude that the Removal Detec-
tion and Forgery Detection systems of the ABC protocol need to be revised to
prevent the attack scheme exposed in our work.

5 Discussion

In this section, we propose a revised ABC protocol that relies on additional
built-in sensors, e.g. the accelerometer and/or the gyroscope. We note that mo-
tion sensors contain similar fabrication defects as the camera [19], deeming them
recognizable based on the captured signals. The main advantage compared to
the camera sensor is that motion signals, unlike photographs, are not typically
shared on social media by people. Therefore, attackers cannot easily get their
hands on these signals. The only disadvantage of our augmented ABC protocol
is that it only works on devices that are equipped with motion sensors. However,
most smartphones available nowadays do have built-in motion sensors.



14 Cezara Benegui, Radu Tudor Ionescu

In addition to the PRNU fingerprint check, we employ a machine learning
system that classifies an authentication session as legitimate or not based on the
signals recorded by the built-in motion sensors, following the approach described
in [25]. The user is not required to perform any additional steps during authen-
tication, we just have to record the motion signals while the user is pressing the
button to take photos.

5.1 Data Set

In order to validate our revised protocol, we select a subset of motion signals
recorded on six devices from the data set provided by Sitova et al. [26]. We record
motion sensor values during screen taps (e.g. when the user taps the button to
take a photo) for 1.5 seconds, starting the recording with 0.5 seconds before
the tap event. The accelerometer and the gyroscope each provide 3-axis values
at about 100 Hz. For each tap event, we thus have six signals (two sensors ×
three axes) composed of 150 discrete values (1.5 seconds at 100 Hz). For each of
the six devices, we collect motion signals for 105 tap events. Each tap event is
matched with one and only one of the photos used in the experiments presented
in Section 4. The image and motion signal data sets are mixed and formatted
in a way that simulates a realistic scenario, as if the motion signals are recorded
during authentication with the ABC protocol.

5.2 Model

Since the signals recorded by the motion sensors contain noise and large
variations, a machine learning model will not be able to learn invariant features
from raw signal values. In order to obtain invariant features for each signal, we
follow the approach proposed by Shen et al. [25], which is based on extracting a
set of statistical features such as: the minimum value, the maximum value, the
mean, the variance, the skewness (the orientation of the peak), the kurtosis (the
width of the peak) and the quantiles (from 30% to 80%, with a step of 10%). The
feature vector corresponding to a tap event is thus composed of 72 statistical
features (six signals × 12 features). We take the feature vectors corresponding
to the first five tap events and use them to train a Support Vector Machines
(SVM) classifier [11] based on the Radial Basis Function (RBF) kernel. During
optimization, the SVM finds a hyperplane that separates the training samples
by a maximum margin. We use the SVM implementation from Scikit-learn [23],
setting the regularization parameter C = 100 and leaving the RBF parameter γ
to the default value (scale). Our motion-based verification system authorizes or
rejects sessions based on the positive or negative labels provided by the SVM.

5.3 Results

We conduct experiments to show how our motion-based verification system
performs by itself and in conjunction with the ABC protocol. When combining
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Table 3. False acceptance rates (FAR) and false rejection rates (FRR) for the attack
scheme proposed in our paper, when five images and/or motion signals are used during
registration. For the ABC protocol, the FAR and the FRR measures are computed for
the optimal PCE threshold (22500). For the motion-based verification system, the FAR
and the FRR measures are computed for the SVM regularization parameter C = 100.
We report results for the individual as well as the combined systems (i.e. for the revised
ABC protocol).

Authentication system FAR FRR

ABC protocol 54.1% 0.1%

Motion-based verification 12.4% 11.0%

Revised ABC protocol (ABC + motion-based verification) 5.3% 11.0%

the ABC system with the motion-based verification system, a session must be
validated by both systems, i.e. we use the AND operator. This reduces the FAR,
but increases the FRR. The corresponding results are presented in Table 3.

First, we notice that our motion-based verification system alone attains a
FAR of 12.4% and a FRR of 11.0%. Although the motion-based verification
system is able to withstand the attacks better than the ABC protocol, it has a
much higher FRR. The higher FRR can be caused by several factors: the number
of training samples (five) might not be sufficient to learn a good SVM model, the
chosen model (SVM based on statistical features) might not be the right choice
to capture the defects of motion sensors, the task of recognizing motion sensors
based on defects observed in output signals might simply be harder than the
task of recognizing camera fingerprints. We leave the search for an explanation
in this regard for future work.

By combining the ABC protocol with the motion-based verification system,
we obtain the revised ABC protocol, which relies on multi-factor (images and
motion signals) authentication. The revised protocol attains a lower FAR (5.3%),
since attacks have to bypass both the ABC protocol and the motion-based verifi-
cation system. However, the FRR stays at the same level as for the motion-based
verification system (11.0%).

We note that the revised ABC protocol is able to reduce the FAR from 54.1%
to 5.3%. However, we consider that the FAR and the FRR values of the revised
ABC protocol are still higher than acceptable. In future work, we aim to improve
or completely replace the motion-based verification system in order to further
reduce the FAR and the FRR values to acceptable thresholds, e.g. below 1%.
A better solution might require more than five training samples and end-to-end
training, e.g. by employing deep neural networks [7].

6 Conclusion

In this paper, we have presented a simple and effective attack for the ABC
protocol [28]. Our strategy is based on computing the adversary’s PRNU finger-
print on an external set of samples, which do not include the fixed probe signal
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used by the verifier to detect PRNU fingerprint removal. This allowed us to
remove the adversary’s fingerprint while preserving the probe signal, which led
to successful attempts in bypassing the Removal Detection and Forgery Detec-
tion systems of the ABC protocol. We have conducted experiments on six mobile
devices, performing 3000 attacks, in order to provide an empirical proof and vali-
dation of our attack. Our attack scheme provides a FAR of 54.1%, demonstrating
that the ABC protocol is not entirely secure. We thus conclude that the ABC
protocol is not suited as an authentication measure for high-risk applications,
such as applications where financial transactions are involved.

We also took important steps towards revising the ABC protocol. By analyz-
ing and verifying the authenticity of signals recorded by built-in motion sensors,
we were able to reduce the FAR from 54.1% to 5.3% when the protocol is ex-
posed to our attack. In future work, we aim to identify other solutions to further
reduce the FAR and the FRR values, since we believe that the ABC protocol
still has enough potential to become a reliable authentication protocol.
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