BSC: A Bitcoin Smart Contract Implementation

Hiro Midas !
IBSC team

October 30, 2023

Abstract

We propose BSC, a Bitcoin Smart Contract implementation. It integrates the functionality of smart contracts into the Bitcoin
system, giving developers the ability to build decentralized applications on Bitcoin. BSC will require a new hard fork, on which
Bitcoin holders can use their existing funds directly. BSC combines the unlimited creative space of smart contracts and the

vast network effect of Bitcoin, which will bring even more possibilities to the cryptocurrency world.

BSC: A Bitcoin Smart Contract Implementation

Hiro Midas

https://bsc.net/
hiro@bsc.net

March 24, 2020

Abstract. We propose BSC, a Bitcoin Smart Contract implementation.
It integrates the functionality of smart contracts into the Bitcoin system,
giving developers the ability to build decentralized applications on Bit-
coin. BSC will require a new hard fork, on which Bitcoin holders can
use their existing funds directly. BSC combines the unlimited creative
space of smart contracts and the vast network effect of Bitcoin, which
will bring even more possibilities to the cryptocurrency world.

1 Introduction

Bitcoin [1] has the highest market value, the largest number of users, and the
most influential network effect among all cryptocurrencies. In February 2020,
the price of Bitcoin once again reached above $10,000. There is a huge market
behind Bitcoin that supports this price. The market includes not only individuals
such as developers, speculators, and miners, but also institutions and enterprises
such as exchanges, mining pools, and mining machines. These roles participate
together and play against each other, bringing the overall market value of 180
billion U.S. dollars to the Bitcoin market and 115 EH/s computing power on the
blockchain. Bitcoin occupies a dominant position in the blockchain area and has
the largest ecosystem as well.

As the earliest blockchain solution, Bitcoin has some technical shortcomings,
such as low TPS (Transactions Per Second) and weak privacy. However, the most
important shortcoming is that the script of Bitcoin is not Turing complete; as
a result, smart contracts cannot be implemented. Bitcoin scripts cannot realize
complex control flows, such as loops and recursions. Satoshi’s conservative mini-
malist design for scripts prevents them from being used to build logic bombs such
as infinite loops, or other DDoS attacks on the Bitcoin network. However, be-
cause of these deliberate restrictions on the script, decentralized applications are
difficult to run on Bitcoin. If the Bitcoin network could support smart contracts,
it would greatly broaden the application scenarios for Bitcoin.

1.1 Related Work

The shortcomings of Bitcoin have caused research and improvement conducted
by many developers. Some improvements are directly adopted on Bitcoin. Oth-
ers are utilized in new blockchain systems. This progress has caused frequent

https://bsc.net/

updates of blockchain technology and the rapid growth of cryptocurrencies, but
we consider the improvements to Bitcoin are too conservative in terms of in-
novation. Updates to Bitcoin are too constrained by theoretical provability and
completeness, and thus ignore the requirements and expectations of users.

Several different approaches have been tried to improve Bitcoin. The first
type of improvement to Bitcoin was a hard fork with some consensus parame-
ters tweaked. In this way, the history of blocks and transactions of Bitcoin was
retained, while new blocks and transactions operated according to the changed
consensus protocol. This kind of hard fork can very well inherit Bitcoin’s users
and their funds, and make full use of the network effect of Bitcoin. But these
kinds of hard fork improvements, such as BCH [2] and BSV [3], are more of a
conceptual competition. No matter the block size is limited to 1IMB or 1GB,
Bitcoin is still essentially used as a distributed ledger, which cannot create more
advanced application scenarios. Although these hard forks solved some of the
existing problems of Bitcoin, they did not provide a substantial breakthrough in
terms of application.

There is also a second type of improvement that inherits Bitcoin’s infras-
tructure and extends it from the perspective of functionality and performance.
Unlike the first, this type of improvement usually makes substantial changes to
the system and even redesigns the underlying data structure. As a result, it is
difficult for them to take effect through a hard fork. Instead, they choose to
discard the Bitcoin history and launch a brand new blockchain. Existing inher-
itances, such as LTC [4] and Zcash [5], have respectively shortened transaction
confirmation time and increased transaction privacy. However, since they leave
the user ecosystem of Bitcoin, they are unable to take advantage of Bitcoin’s
network effect and cannot be compared with Bitcoin in terms of market value
or user adoption. Moreover, because these successors retain the Bitcoin’s UTXO
(Unspent Transaction Output) model, they have difficulties in being compatible
with smart contracts, which are based on the account model.

The third type of improvement is to completely refactor Bitcoin to support
smart contracts, for example, Ethereum [6]. This type changes the UTXO model
into the account model, so that virtual machines for smart contracts, such as
EVM, can run on the blockchain. Unlike scripts that can only perform limited
functions in Bitcoin, Turing-complete smart contracts can run complex logic on
the blockchain. Therefore, the blockchain is no longer only a distributed ledger,
but also a “world computer” and platform for various decentralized applications.
The introduction of smart contracts has broadened the application scenarios of
the blockchain to a large scale. On the other hand, it has also spawned new
decentralized application models such as decentralized exchanges, games, and
auctions. However, Ethereum is not compatible with the historical data of Bit-
coin, and its network effect is far less than that of Bitcoin. If we can bring
Ethereum’s smart contract technology to Bitcoin users, we believe that it would
have an incredible product-market fit and excellent opportunity to realize the
full promise of blockchain.

1.2 Owur Contribution

In this paper, we propose an important improvement to Bitcoin, BSC (Bitcoin
Smart Contract). It integrates the functionality of smart contracts to the Bit-
coin system, giving developers the ability to build decentralized applications on
Bitcoin. BSC will be implemented through a hard fork, and Bitcoin holders can
use their existing funds directly on the new fork. The fork will take place at the
height of the next Bitcoin halving, i.e., 630,000. To reduce the risk of 51% attack
on the fork, BSC will use a new SHA-3 + BLAKE2b hash algorithm for PoW
(Proof of Work).

BSC will combine the unlimited creative space of smart contracts and the
vast network effect of Bitcoin, which will be a very meaningful combination and
exploration. This means that developers can deploy and run smart-contract-
based decentralized applications on Bitcoin, which brings the whole application
ecosystem of Ethereum to Bitcoin users. These decentralized applications in-
clude, but are not limited to, games (CryptoKitties), assets (ERC-20), DEX
(Uniswap), Stablecoin (Dai), Layer-2 (cross-chain), and Privacy (AZTEC). The
substantial increase in user volume may trigger these decentralized applications
to change from quantitative to qualitative.

BSC brings more opportunities and possibilities to the blockchain area and
also brings the most favorable enhancement to the Bitcoin ecosystem. BSC
will adopt a relatively aggressive development approach to become a brand-
new testbed/sandbox for Bitcoin. In the end, it will surpass existing forks and
successors of Bitcoin in terms of deployed technology and platform capability.

2 System
Contract Ethereum Virtual Machine
Accounts
State Middleware
UTXOs
Data Transactions and Blocks
Consensus Proof of Work (SHA-3 + BLAKE2b)

Fig. 1. System Architecture

The system of BSC can be divided into 4 layers, as shown in Fig. 1. The
consensus layer still uses PoW, but the block hashing algorithm is changed to
SHA-3 + BLAKE2b to reduce the risk of 51% attack. The data layer keeps using
the same data structure as Bitcoin for compatibility, but some changes have been
made to the signature to prevent replay attacks. Through a newly introduced
middleware, the state layer converts UTXOs into accounts and interacts with the
contract layer. The contract layer uses the EVM running Solidity bytecode, which
links directly with the huge decentralized application ecosystem of Ethereum.

2.1 Data

BSC will be fully compatible with Bitcoin in addresses, transactions, and blocks,
so it will retain and support the historical data of Bitcoin. For Bitcoin holders,
the identical amount of BSC can be obtained by simply importing the private
keys of addresses from Bitcoin into the BSC wallet, or even importing the entire
Bitcoin wallet (the wallet.dat file) into the BSC wallet. In this way, Bitcoin users
can quickly start to use BSC, which fully takes advantage of the network effect
of Bitcoin.

The method for transaction signing is consistent with Bitcoin as ECDSA, but
parameters need to be modified to ensure the signature of BSC is incompatible
with Bitcoin, thereby preventing replay attacks. As shown in Fig. 2, we add a
modifier flag to SIGHASH to change its value under each hash type. In this
way, for the same transaction data and hash type, the generated transaction
hash is different. The signature is signing a different message (transaction hash),
guaranteeing the signatures of BSC and Bitcoin cannot be verified by each other.
It is similar to the method adopted in BCH [7]. But in BSC, the method is
mandatory after the hard fork, which means Bitcoin-compatible signatures are
no longer supported afterward.

Modifier Flag Hash Type

Transaction Data Transaction Data
i Bitwise OR i

Hash Function («— SIGHASH —>| Hash Function

i i

Transaction Hash Transaction Hash

i l

Public Key —|
Private Key —> Signature Generation Signature Verification — Valid/Invalid
— Signature —|

Fig. 2. Signature Generation and Verification

For the shortcoming of low TPS in Bitcoin, we believe that expanding the
block size is valuable. So, we increase the maximum for the block size from 1
MB to 2 MB to include more transactions in a block. Also, the block size can
be modified later on-chain through a smart contract, which will be explained in
detail at a later time.

2.2 State

Bitcoin uses the UTXO model, in which the balance of an address is composed
of one or more UTXOs. Whereas smart contracts are typically based on the
account model; that is, the state holds the balance and other attributes for
each address, which facilitates the reading and updating of smart contracts.
To integrate smart contracts into Bitcoin, in the state layer, we introduce a
middleware that converts UTXOs into accounts to enable interactions between
the data layer and the contract layer, as shown in Fig. 3.

EVM
R {= ===================
I I
ﬂ Accounts ﬂ
I I
| User Contract |
g Accounts Accounts ﬂ
I I
I I
I I
I I
ﬂ Middleware G
I I
I | I
I I
g UTXOs g
I I
g Coins Commands g
I I
I I
e ______ % =================== I
Blocks & Transactions

Fig. 3. Design of the State Layer

UTXOs UTXO is a data structure used to represent funds in Bitcoin. It has
two parameters, value and scriptPubKey. value stands for the amount of coin in-
cluded in the UTXO, and scriptPubKey (also called the locking script) is a piece
of script which determines the conditions required to spend the UTXO. If some-
one can provide an unlocking script that meets the conditions of scriptPubKey,

then the UTXO can be spent by another transaction with the unlocking script
as an input.

Although there are many types of scripts in Bitcoin, only some are supported
by the mainnet, called standard types. BSC extends the standard types and adds
two new ones to further support the interaction between UTXOs and EVM:
TX_CREATE and TX_CALL. They are respectively responsible for creating new smart
contracts and calling functions in existing contracts. All these types are recorded
in a txnouttype enum, as shown in Listing. 1.

enum txnouttype

{
TX_NONSTANDARD,
// standard types from Bitcoin:
TX_PUBKEY,
TX_PUBKEYHASH,
TX_SCRIPTHASH,
TX_MULTISIG,
TX_NULL_DATA, //!< unspendable OP_RETURN script that

carrtes data

TX_WITNESS_VO_SCRIPTHASH,
TX_WITNESS_VO_KEYHASH,
TX_WITNESS_UNKNOWN ,
// types added by BSC:
TX_CREATE,
TX_CALL

};

Listing 1. The txnouttype enum

Except for TX_NULL_DATA, all standard types from Bitcoin are spendable, so
we name these types of UTXOs as Coin. Coins are used for storage and transfer
of funds, so they demand value > 0. The two new types, TX_CREATE and TX_CALL,
are called Command since they contain the bytecodes running on the EVM. The
restrictions on parameters of Commands are as follows.

// For TX_CREATE

value == 0

// and scriptPubKey <s of the form

<Version> <Gas Limit> <Gas Price> <Data> OP_CREATE

// For TX_CALL

value >= 0

// and scriptPubKey ts of the form

<Version> <Gas Limit> <Gas Price> <Data> <Public Key Hash>
0P_CALL

Listing 2. Restrictions on Parameters of Commands

Accounts Account is a data structure that keeps an up-to-date state for each
address and provides interfaces for reading and updating the state. The state
for a User address only contains the balance and nonce, while the state for a
Contract address additionally contains the code and storage. The balance is
obtained by the middleware summing the value of UTXOs corresponding to the
address, and the nonce is increased by 1 for every transaction sent from the
address.

All accounts are saved in a data structure called MPT (Merkle Patricia Trie)
[8], which helps smart contracts to efficiently retrieve the state of each address.
Also, MPT generates a hash for all the data it stores, which can be used to
compare two MPTs to determine if they have the same data. We also save the
UTXOs of each address in another MPT to facilitate the calculation of the
state. Finally, hashes of the two MPTs, hashStateRoot and hashUTX0Root, will be
recorded in the block header, which can be used by blockchain nodes to verify
the correctness of the data in their MPTs, as shown in Fig. 4.

Block Header
- - hashPrevBlock Version Time Bits Nonce e -
hashMerkleRoot hashStateRoot hashUTXORoot

[A I T T TS T | P A S
! || || l
! P! P! I
l L L !
I Transaction : I Account : 1UTXO :
| Merkle Tree | IMPT | IMPT !

Fig. 4. Block Header

Middleware The middleware connects to four modules: EVM, Accounts, UTXOs,
Blocks & Transactions, providing interactive functions between these modules.
These interactive functions are explained as follows. We can see that the main
responsibility of the middleware is to update MPTs, handle requests to EVM,
and create new transactions and UTXOs according to code execution in the
EVM.

— Update UTXOs. The middleware continually monitors for new UTXOs
from the data layer and adding them to the UTXO MPT.

— Update Accounts. If a newly received UTXO belongs to the type of Coin,
then use it to update the account MPT directly.

— Request EVM. If the type is Command, use it to request the EVM.

e Create Contract. For TX_CREATE, the middleware asks EVM to create
a new contract based on the bytecode in the Data field and store the
contract into the account MPT.

e Call Contract. For TX_CALL, the middleware asks EVM to call an exist-
ing contract with parameters in the Data field and save the state changes
to the account MPT.

*x Deposit Funds. If the TX_CALL sends funds to the contract (value

> 0), the middleware will create a transaction that merges it with
the contract’s existing UTXO into a new UTXO.

* Withdraw Funds. If the TX_CALL withdraws funds from the con-
tract (calls address.transfer() or address.send() in Solidity), the
middleware will create a transaction that transfers funds out of the
contract.

e Process Gas. Finally EVM will return the gas cost of the Command.
Then the middleware will add a new UTXO to the coinbase transaction
to refund unused gas.

2.3 Initialization

We hope the concept of BSC will be supported by a threshold number of Bitcoin
holders and regard this as a precondition for launching the mainnet, to ensure
our work is recognized by the market and users. As a result, if you, like us, want
to see more interesting explorations in the Bitcoin ecosystem, you can support
this project on the official website [9] with signatures from addresses that hold
Bitcoin. Only when the total balance of all signed addresses reaches 50,000 BTC
will BSC make plans to launch its mainnet.

The launch of the mainnet would take place at the height of the next Bitcoin
halving, i.e., 630,000, and generate a new hard fork. As a Bitcoin holder, if you
manage the private keys yourself, you can import the private keys or the entire
wallet (e.g., the wallet.dat file) into the BSC wallet to obtain the same amount
of BSC coins. If your Bitcoin is kept in an exchange, you can ask the exchange
for the corresponding BSC.

2.4 Consensus

After the BSC mainnet is launched, the new fork may face the risk of 51% attack
due to a relatively low computing power on it. To reduce this risk, we selected
SHA-3 + BLAKE2b as the PoW block hashing algorithm for BSC instead of the
double iterated SHA-256 used in Bitcoin. This will also make the existing Bitcoin
ASIC miners unable to be directly applied to BSC, reducing the possibility of
being attacked. A pseudocode of the block hashing algorithm is shown in Listing.
3. The paddings in the pseudocode are arbitrary bit strings that act as salt to
the hash function, which makes the resulting output more unpredictable. If the
block hashing result is less than a target difficulty, the block is deemed valid.

function hash(block_header) {
left = blake2b(block_header) ;
right = sha3(block_header + padding_8);

return blake2b(left.substr (32, 32) + left.substr (0, 32) +
padding_32 + right);

Listing 3. Block Hashing Algorithm

Mining rewards, block intervals, difficulty adjustment algorithms, and other
details related to the consensus, will be consistent with Bitcoin to ensure com-
patibility with Bitcoin.

2.5 Governance

The upgrade scheme for BSC will be similar to BIP (Bitcoin Improvement Pro-
posal) [10] with some modifications. Anyone can initiate a BSC improvement
proposal, and the proposal will then be peer-reviewed. Only after the majority
reaches a consensus on the proposal, can development, testing, and merging be
undertaken. However, we will change the way of reaching consensuses to en-
sure that higher priority is given to the satisfaction of user requirements and
the improvement of user experience, rather than the preference of research and
development, as shown in Fig. 5. During the peer-review period, BSC holders
can vote on the proposal. When the period ends, if the total balance of voting
addresses exceeds a certain threshold, the proposal takes effect. This guarantees
the improvement direction is consistent with the intention of holders.

Holder 1

v

Sign —> Vote 1 —

Yes
Proposal Balance >
> <~_Threshold? Pass
Holder n v
v No Develop,
. . Test,
Sign — Vote n — Fail and Merge

Fig. 5. Improvement Proposal Voting

The modification of some system parameters, such as max block size and min
gas price, will be managed on-chain through smart contracts. When a parameter
needs to be modified, a proposal is first initiated through a smart contract. Then

community members can then vote on the proposal through smart contracts to
express their approval or opposition. When the proposal is agreed upon by the
majority, it takes effect directly in the system. This way of on-chain governance is
more transparent and efficient, and can effectively reduce the need for blockchain
hard forks for system upgrades.

3 Conclusion

We propose BSC, a Bitcoin Smart Contract implementation. It is a hard-fork
upgrade to Bitcoin, which will integrate smart contracts into Bitcoin and is
compatible with the history of Bitcoin blocks and transactions. It takes full ad-
vantage of the Bitcoin network effect while enabling the ability to build decen-
tralized applications on Bitcoin. BSC will become a brand new test and creative
development platform for Bitcoin.

References

1. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://
bitcoin.org/bitcoin.pdf.

Bitcoin Cash - Peer-to-Peer Electronic Cash. https://www.bitcoincash.org/.
BitcoinSV - Satoshi’s Vision for Bitcoin. https://bitcoinsv.io/.

Litecoin - Open source P2P digital currency. https://litecoin.org/.

Zcash: Privacy-protecting digital currency. https://z.cash/.

Ethereum: A next-generation smart contract and decentralized application plat-
form. https://github.com/ethereum/wiki/wiki/White-Paper.

7. BUIP-HF Digest for replay protected signature verification across hard
forks. https://github.com/bitcoincashorg/bitcoincash.org/blob/master/
spec/replay-protected-sighash.md.

8. Patricia Tree. https://github.com/ethereum/wiki/wiki/Patricia-Tree.

9. BSC official website. https://bsc.net/.

10. Bitcoin Improvement Proposals. https://github.com/bitcoin/bips.

S oA W

10

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.bitcoincash.org/
https://bitcoinsv.io/
https://litecoin.org/
https://z.cash/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/replay-protected-sighash.md
https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/replay-protected-sighash.md
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://bsc.net/
https://github.com/bitcoin/bips

	BSC: A Bitcoin Smart Contract Implementation

