
P
os
te
d
on

4
A
p
r
20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
20
61
72
8.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

The Use of Reinforcement Learning in Gaming The Breakout Game

Case Study

Ao Chen 1, Taresh Dewan 2, Manva Trivedi 2, Danning Jiang 2, Aloukik Aditya 2, and
Sabah Mohammed 2

1Lakehead University
2Affiliation not available

October 30, 2023

Abstract

This paper provides a comparative analysis between Deep Q Network (DQN) and Double Deep Q Network (DDQN) algorithms

based on their hit rate, out of which DDQN proved to be better for Breakout game. DQN is chosen over Basic Q learning

because it understands policy learning using its neural network which is good for complex environment and DDQN is chosen as

it solves overestimation problem (agent always choses non-optimal action for any state just because it has maximum Q-value)

occurring in basic Q-learning.

1



The Use of Reinforcement Learning in Gaming:
The Breakout Game Case Study

Taresh Dewan
COMP5112WC Student

Lakehead University
tdewan@lakeheadu.ca

Aloukik Aditya
COMP5112WC Student

Lakehead University
aaditya@lakeheadu.ca

Manva Trivedi
COMP5112WC Student

Lakehead University
trivedim@lakeheadu.ca

Ao Chen
COMP5112WC Student

Lakehead University
achen11@lakededu.ca

Sabah Mohammed
COMP5112WC Supervisor

Lakehead University
mohammed@lakeheadu.ca

Danning Jiang
COMP5112WC Student

Lakehead University
djiang3@lakeheadu.ca

Abstract—Traditionally, reinforcement learning (RL) algo-
rithms are called trial and error learning methods that use
real task experience to develop an incremental management
policy. The reinforcement learning theory offers a viewpoint
in psychology, how agents can maximize their control of an
environment. The major difference of reinforcement learning
from supervised learning is that a partial feedback is provided
to the learner, regarding the learned experiences. An RL agent
learns how to map states to optimal action through trial-and-
error and over time practices and develops a strategy for long-
term rewards. In this paper, we are using an approach which
unifies artificial neural networks and reinforcement learning
architecture allowing the agent to learn the best possible actions
in a virtual environment to achieve their objectives for which
we have chosen Breakout – a classic arcade game. We have
chosen Breakout as it achieves superhuman play as compared
to other games such as Enduro, Time Pilot etc. This paper
provides a comparative analysis between Deep Q Network (DQN)
and Double Deep Q Network (DDQN) algorithms based on
their hit rate, out of which DDQN proved to be better for
Breakout game. DQN is chosen over Basic Q learning because
it understands policy learning using its neural network which is
good for complex environment and DDQN is chosen as it solves
overestimation problem (agent always choses non-optimal action
for any state just because it has maximum Q-value) occurring
in basic Q-learning.

Index Terms—Reinforcement learning (RL), Deep Q Network
(DQN), Double Deep Q Network (DDQN), arcade games, Break-
out, Atari, agent, action, state, environment, Q-value, rewards

I. INTRODUCTION

A. Overview

Reinforcement learning (RL) refers to goal-oriented algo-
rithms that learn how to accomplish a specific goal or how
to optimise over many steps along a dimension; for example,
over many moves, they can maximise the points earned in
a game. RL algorithms can start with a blank state and
achieve superhuman performance under the right conditions.
Such algorithms are penalised, like a pet incentivized through
scolding and punishment, when they make the wrong decisions

and are praised when they make the right ones – this is
reinforcement. Performance of RL degrades when the state-
action space is too large to be completely known. For this
reason, we are using Deep Reinforcement Learning to achieve
better performance.

Deep reinforcement learning integrates artificial neural net-
works with an architecture of RL that allows software-defined
agents to learn the best possible behaviours in a virtual
environment to achieve their objectives. Instead of using a
lookup table to store, index and update all possible states and

their values, which is difficult with very big problems, we
have trained a neural network on state-action space samples
to learn to determine how important those are relative to our
aim of enhancing learning.

B. Basic Definitions

Reinforcement Learning can be understood if we know the
concepts of agent, state, action, environment and rewards, that
is explained below:

Fig. 1. Reinforcement Learning Process

As shown in figure 1, agent and environment are the key
components in reinforcement learning process. Agent is an
entity that takes action (a set of moves which the agent can
make) in an environment (surroundings the agent is going
through and which responds to the agent). A state is a real
and immediate condition in which the agent finds himself; that
is, a position or a moment on the basis of which its Q-value is



updated and reward (input by which we measure the success
or failure of an agent’s action in each state) is assigned to the
agent which can be negative or positive which in turn impacts
the Q-value (Q-value takes the input of two parameters: state
and current action a. Qπ(s, a) refers to the long-term return of
an action taking action from the current state s under policy
π. Q maps the pairs of state action to rewards).

An agent sends feedback in the form of actions to the
environment from any given state, and the environment returns
the new state of the agent (which resulted from acting on the
prior state) as well as rewards if any. Rewards can be staggered
or immediate. Effectively they determine the behaviour of the
handler. Another term associated with rewards is discount
factor which can be computed by future rewards as discovered
by the agent to dampen the effect of that reward on the choice
of action by the agent.

In our customised breakout game environment, paddle plays
the role of an agent and environment includes wall, bricks and
ball. Actions which can be taken by the agent (paddle) are
moving the paddle to the left, moving the paddle to the right or
let it stay in idle position. States of the game will be, whether
the game is ongoing / lost / won, the x and y coordinates of
the ball, ball-velocity, the x position of the paddle, array of
the coordinates of the remaining bricks, the number of frames
since the game started, and the current score of the game.

Our customised breakout environment consists of a paddle,
a ball, a wall and a block which consists of bricks with
different colors. When a ball hits the paddle, 3 points are
rewarded to the agent and if it misses the paddle, 3 points are
penalised to the agent. When a ball hits the brick, rewards are
awarded to the agent as per the color of the brick (blue=8,
green=7, olive=6, yellow=5, orange=4, red=3). Q-value of
each (state, action) pair will be fed to the network which
will be helpful for learning. After achieving Q-values for
each distinct (state, action) pair which will be stored in the
network, the action with the best Q-value will be chosen for
the progression of the game.

One of the reasons to choose breakout is that for the start, it
is better to choose a game that can be altered as per the user
and for which different parts of the algorithms like states,
reward system can be modified into a better one. In this
paper, we have given a comparative analysis of two different
algorithms on a classic Atari arcade game - Breakout. We have
compared and evaluated the performances of different models
namely Conventional Deep Q-Network and Double Deep Q-
Network.

C. Asserting Thesis

The ”memory” is a key component of DQNs: the trials are
used to train the model continuously, as stated earlier. Instead
of training on the trials when they get in, however, we add
them to memory and train them on a random sample of that
memory. The gamma factor reflects this depreciated value for
the expected future returns on the state. Value defined for but
will vary between 0 and 1. We have followed Epsilon Greedy
Search in which value of gamma is 1 in initial stages as the

behavior of the paddle will be completely random and it will
start decreasing with the ongoing iterations with a value 0.95.
For each distinct (state, action) pair, it’s Q-value (which is
calculated by DQN and DDQN algorithms) will be updated,
and that Q-value will be used to take best possible action of
the paddle for the next state (velocity, ball co-ordinates).

We chose to implement Deep Reinforcement Learning on
Atari games because the environment of Atari games is quite
uncertain taking into consideration the states and actions
related to the environment which makes it relatable to real
life situations.

II. PROBLEM DEFINITION

The purpose of our project is to create virtual environment
of a game named “Breakout” that can prove out to be a close
replication of the real-life environment, learn the environment
with time as it happens in real life and act accordingly. To
duplicate a real-life environment and to act as per the changes,
the environment has to be learnt properly, which we are going
to do so, using the algorithms of Reinforcement Learning
mentioned above and showing comparisons which is better
for such situations.

First, Reinforcement learning is the problem that we have
studied. Reinforcement learning is a branch of machine learn-
ing, which is used to describe and solve the problem of agent’s
interaction with the environment through learning strategies to
achieve maximum reward [1]. A classic and standard model
of reinforcement learning is the Markov Decision Process
(MDP), which is simply a process where an agent takes
action to update its state to obtain reward and interact with
environment [2].

Second problem being the game itself. We have imitated
Breakout as our game. The building blocks of this game are
a moving ball, a paddle and 6 rows of bricks. The agent i.e.
paddle can move left and right to hit the ball. After hitting
the ball, the ball will rebound and then destroy the bricks
to achieve reward. This game needs to be able to receive
incoming actions and switch to the next frame. If the ball
is missed, the game will end and then reset the position of the
ball and paddle in the game. The bricks will disappear after
being touched by the ball. At the beginning of the game, the
ball and paddle are placed in the initial place and all 6 rows of
bricks are loaded. The game gives the total number of bricks
destroyed, the number of times the ball was missed, and the
ball’s hit rate.

Third problem is to create a network structure for both DQN
and DDQN in our simulated Breakout environment in terms of
reward acquisition, loss at each epoch and hit rate to conclude
which algorithm performs better.

III. RELATED RESEARCH WORK

Reinforcement learning can go back to the implementation
of TD-gammon, In 1992, IBM researcher Gerald Tesauro
developed an algorithm that combines time difference learning
and neural networks, and named it TD-Gammon, specializing
in playing backgammon. TD-gammon uses a three-layer neural



network. The backgammon position is represented by 198
units as the input, and there are 40-80 neurons in the middle-
hidden layer. The final output is an estimate of the value
function [3]. TD-gammon used a model-free reinforcement
learning algorithm like Q-learning and approximated the value
function using a multi-layer perceptron with one hidden layer.

However, the applications of TD-gammon into other board
games were less successful, which led to a widespread belief
that the TD-gammon method only worked in backgammon.
This perhaps because the randomness in the dice rolls helps
explore the state space and also makes the value function
particularly smooth [4].

Q learning is proposed by Watkins in 1989, which has
become the popular option for reinforcement learning-based
agents, however it is useless for the complicated and high
state space problem.

The combination of deep learning and reinforcement learn-
ing methods, mainly involving Q learning, was brought for-
ward in a sequence of papers [5]. From what we know that
previous reinforcement learning methods had trouble in select-
ing features, while the deep reinforcement learning approach
was found to handle complex tasks successfully, as it can learn
from data at different levels of features. Mnih successfully
trained a deep RL agent from visual inputs consisting of
thousands of pixels. This approach enabled it to reach beyond-
human capabilities in playing Atari games, Alpha Go and
so on [6]. The Deep Q network agent synthesized by Mnih
achieves human-like performance when playing Atari games
by using artificial neural networks to process sensory data. In
subsequent work, Van Hassel [7] improved the algorithm by
implementing double deep Q-Learning which helps generate
more accurate estimates by eliminating overestimation.

In the paper “Human-level control through deep reinforce-
ment learning” [5], researchers have shown that the deep Q-
network agent, obtaining only the pixels and the game score
as inputs, has been able to exceed the efficiency of all previous
algorithms and reach a level equal to that of a skilled human
games tester using the same algorithm, network architecture
and hyperparameters across a range of 49 games [5].

Paper [8], shows comparisons between RELU Neural Net-
work and Spiking Neural Network in terms of rewards
achieved for given number of epochs in breakout, using
Epsilon greedy approach and conventional greedy approach.
Furthermore, with additional benefits of SNNs can supplement
the working of DQN when data is noisy and incomplete [8].
Paper [9], shows comparisons of performances in terms of
training time, stability and higher score achieved using DQN
and Asynchronous Advantage Actor-Critic (A3C) algorithms
that too in breakout game. Rewards achieved using A3C
algorithm are higher as compared to DQN as A3C uses a
multi-core power CPU to work efficiently whereas, DQN
needs a powerful GPU to train faster and runs slowly on a
CPU [9]. Paper [10], shows a visual DQN approach which
helps to control the random actions of DQN and helps domain
experts to understand, diagnose, and improve DQN models
with four levels of details: overall training level, epoch-level,

episode-level, and segment-level. Basic overview of perfor-
mance results of different algorithms along with their criteria
in breakout game is briefly given in Table I.

TABLE I
OVERVIEW OF RELATED RESEARCH WORK IN BREAKOUT

SNo Criteria for Com-
parison

Algorithms
Com-
pared

Results

1. Rewards for
given number of
epochs

SNN |
DQN

SNN is better
especially
for noisy or
incomplete data.

2. High Score,
Stability and
rewards

DQN |
ARC

ARC
outperformed
DQN with a
high score of 79
and rewards
increasing
gradually.

3. Epoch level,
training level,
episode level and
segment level

Visual
DQN |
DQN

Visual DQN is
able to control
the random
actions taken by
DQN algorithm.

We have shown performance comparisons for DQN and
DDQN algorithms for the training phase, in terms of hit rate
which is calculated by taking the ratio of number of times the
ball hits the paddle to the sum of number of times ball hits
the paddle and number of times ball misses the paddle, for the
given number of episodes and which in our case is 100.

IV. METHODOLOGY

In order to compare the performance of the AI agent in
playing the breakout game based on different algorithms, we
decided to create our own environment to train the agent,
which imitates the environment of the OpenAI Atari game
Breakout-ram-v0. After setting up the environment, we built
the network for DQN and Double DQN algorithms respec-
tively. The specific steps are as follows:

1) Setting up the environment-Breakout, including the
background, the paddle and ball, defining bricks,
controlling paddle movement, handling collisions,
updating state and environment, using turtle library
which is a graphics library in python that can be used
to create various objects and shapes, provide animations
to them using penup() function, by adjusting the speed
during the process of object creation.

2) For defining bricks, controlling paddle movement,
handling collisions, updating state and environment, we
have defined separate functions namely reset() which
will reset the environment if the paddle misses the ball,
next iteration() which will compute the parameters for
next state, move positive x() will move the paddle to
the right and move negative x() which will move the
paddle to the left.



3) Creating DQN and Double DQN algorithm using the
Breakout environment and perform Hyper-parameter
tuning (like discount factor gamma, learning rate,
epsilon). Using libraries like random, numpy, keras,
collections, matplotlib and so on.

4) Training the Agent using environment, within the 1000
steps, calculating reward and loss for each 100 episodes,
then save the reward and data loss and plot them.

A. Deep Q Network

In traditional reinforcement learning like Q learning, we use
table to store Q value. But it has a limitation. The problem
today is too complicated to use tables to store the Q values
of each state and action. No matter how much memory the
computer has, it becomes time consuming to search for the
corresponding state in such a large table. When reinforcement
learning is combined with deep learning, neural network can
solve this problem. Because we can just input the state value,
output all the Q values of each action, and then directly
select the action with the maximum value as the next action
according to the principle of Q learning.

Table II describes the structure of Deep Q Network we use
in our project.

TABLE II
MODEL STRUCTURE

Layer (type) Output Shape Activation
function

Param #

dense 1 (Dense) (None, 64) RELU 384
dense 2 (Dense) (None, 64) RELU 4160
dense 3 (Dense) (None, 3) Linear 195

The input of this network is a state, the output is the Q
values of 3 actions. Neural network is what we use to process
the state and predict Q value. We also need to update the Q
value and train the network. Equation (1) below describes how
Deep Q Network update Q value.

Qnew = R+ γmaxQ(S, a) (1)

R means the current reward, γ means parameter gamma ,
max Q(S, a) means the action a with maximal Q value in
the state S, Qnew means the updated Q value. Then we can
use state S as input, updated Q value as output to train the
network.

B. Double DQN

The network structure of Double DQN is the same as Deep
Q Network. But Double DQN requires 2 networks. The one
is the main network which also has updated parameters, the
other one is target network which has old parameters.

In Double DQN, we use main network to get the Q value
using state as input. The equation (1) to update Q value has
changed to equation (2):

Qnew = R+ γQ(S, argmaxQ(S, a; θmain), θtarget) (2)

R means the current reward, γ means parameter gamma ,
Qnew means the updated Q value, S means the input state,
θmain means using the main network, θtarget means using
the target network. In equation (2), we use state S as input
and main network to select the action a which has the largest
Q value. Then use target network to get the Q value of the
selected action a. Then we can update the Q value and use
updated Q value and input state S to train the network.

V. PROTOTYPING

A. Detailed Design:

In our project, we have used three classes to implement the
code (Paddle, DQN and DDQN) as shown in figure 2.

Fig. 2. Class Diagram

B. Building the major classes:

As shown in figure 3, using the import turtle we are adding
the turtle library into our python environment. The turtle
module provides turtle graphics primitives, in both object-
oriented and procedure-oriented ways.

Fig. 3. Importing turtle

As shown in figure 4, we are adding the bricks using for
loop. We have assigned a variety of colors to the bricks. Using
x cor and y cor, we have assigned the coordinates of the
bricks, and each Brick is added after 110 pixels on the x-axis.



Fig. 4. Building Bricks

We have used Brick () function to provide its dimensions,
shape, colors, and coordinates.

As shown in figure 5, we then initialize the configuration of
the ball and paddle. Talking about the ball, we have decided
to take its shape as a circle and color to be red. dx and dy
are the coordinates of the ball, and the ball will be moving
so the values of its coordinates change accordingly. Using
setpostion() function, we set the initial position of the ball.

Fig. 5. Building Paddle and Ball

The paddle has some similar configuration to the ball,
but its movement is on the x-axis, and its shape is square.
Using shapesize() we stretched the square length and created
a rectangle. We decided to select its color as white; it is more
visible on black background.

Figure 6 shows how the final display screen is created.
Bgcolor() function selects the background color of the entire
game, which is black in our case. The screen resolution is
decided using win.setup() function, and we chose our screen
size to be 800 by 600.

In Paddle class, it has 3 functions:

1) Reset: The returned value of the function will be X value
of the paddle, X value of the ball, Y value of the ball.
This function is to reset the position of the paddle and
the ball in the game. After this function is called, the
paddle will return to the mid of the screen and the ball
will go back to the initial position and begins to fall.

Fig. 6. To create main screen

2) Run frame: This function is used to make the ball move
then check if any brick is touched by the ball and if the
ball is missed. If the brick is touched by the ball, the ball
will bounce and the brick will disappear. And the game
will record this ball hit and calculate the hit rate. If the
ball is missed, the game will call the reset function and
record the number of missed ball.

3) Next iteration: This function requires action as an input
and the input parameter action is an integer type. It
represents which action to take. In our game, we totally
have 3 actions. The range of action is from 0 to 2. 0
means paddle should move left; 1 means paddle should
do nothing; 2 means paddle should move right. After
the game receives the input action, the game will call
the run frame function to move to next frame.

In DQN class, parameters that have been used are:
• action space: It is an integer type; it represents how many

actions we have in the game. In our game, we totally
have 3 actions, which means paddle should move left, do
nothing and move right.

• state space: It is an integer type; it represents the dimen-
sion of the state.

• Epsilon: It is a float. When we choose an action, we will
randomly create a number to compare with it.

• Gamma: It is a float type. This number is one of the
parameters from the equation to update the Q value.

• Batch size: It is an integer type. This is the max batch
size of the batch.

• Epsilon min: It is a float. This is the minimal number of
epsilon.



• Epsilon decay:It is a epsilon. We will use epsilon *=ep-
silon decay to decrease the epsilon.

• Learning rate: It is a float. It is the learning rate for
updating the network.

• Memory: It is a deque. The max length is 100000. We
use it as the batch.

• Model: It is a keras.model class. This is the model of
Deep Q network.

Functions of this class used in our prototype are:
1) Build model: The output model is a model class we

import from keras and is to build the structure of the
Deep Q network. It has 3 layers. The input of the
network is the state. The state include the X value of
the paddle, X value of the ball, Y value of the ball. The
first and second hidden layers both have 64 n. The output
layer has 3 neuron, which represents the 3 Q values of
the 3 actions in the game. Because the agent will choose
the action which has the largest Q values.

2) Remember: We will store the state, action, reward,
next state and done in a batch. Because we will train
the network by batch.

3) Act: First, we randomly create a number from 0 to 1.
Then check this random number is larger than epsilon
or not. If its not, we random output an action. If it is
larger than epsilon, we let the input state go through the
Deep Q network and predict an action then output this
action.

4) replay: We train the network by batch and update the
weight in Deep Q network.

On the other hand in DoubleDQN class, parameters that
have been used are:

• action space: It is an integer type, it represent how many
action we have in the game.In our game, we totally have 3
actions, which means paddle should move left, do nothing
and move right.

• state space: It is an integer type, it represent the dimen-
sion of the state.

• Epsilon: It is a float. When we choose an action, we will
randomly create a number to compare with it.

• Gama: It is a float type. This number is one of the
parameter from the equation to update the Q value.

• Batch size: It is an integer type. This is the max batch
size of the batch.

• Epsilon min: It is a float. This is the minimal number of
epsilon.

• Epsilon decay:It is a epsilon. We will use epsilon *=ep-
silon decay to decrease the epsilon.

• Learning rate: It is a float. It is the learning rate for
updating the network.

• Memory: It is a deque. The max length is 100000. We
use it as the batch.

• Model: It is a keras.model class. This is the main network
of Double Deep Q network.

• targeted neural network: It is a keras.model class. This
is the target network of Double Deep Q network. Both

main network and target network have the same structure.

Functions of this class used in our prototype are:

1) Build model: The output model is a model class we im-
port from keras. The function is to build the structure of
the main network and target network. It has 3 layers.The
input of the network is the state. The state include the
X value of the paddle, X value of the ball, Y value of
the ball. The first and second hidden layers both have
64 n. The output layer has 3 neuron, which represents
the 3 Q values of the 3 actions in the game. Because
the agent will choose the action which has the largest Q
values.

2) Remember: We will store the state, action, reward,
next state and done in a batch. Because we will train
the network by batch.

3) Act: First, we randomly create a number from 0 to 1.
Then check this random number is larger than epsilon
or not. If its not, we random output an action. If it is
larger than epsilon, we let the input state go through the
main network of Double Deep Q network and predict
an action then output this action.

4) replay: We train the network by batch and update the
weight in main network.

5) updated taget neural network: Update the weights in
target network. Because the replay function only up-
dates the weights in main network. Double DQN use
2 different way to update the main and target network.
That is the difference between Deep Q network.

C. Design to train the network:

At first, we create the paddle class. We will train the network
for 1000 epochs. In each epoch, we will use reset function to
initialize the game and get the first state as the first observation.
Then we use act function in the DQN class or DDQN class
to predict which action to take. Then use this action as input
and call the next iteration function in paddle class to make
the game move to next frame. We will get a new state as a
new observation and the reward of this action. Then we use
memory function in the DQN class or DDQN class to store
the state, action , new state and reward and done in the batch.
If the batch is full , it means we have enough experience
to let the network learn knowledge from the batch. We use
replay function to train the network. If we use Double network,
replay function only train the main network, and we will use
updated target neural network of DDQN class to update the
target network in each 20 epochs. If the game is over we move
to next epoch. When the all epochs are finished, we save the
weights of the network as shown in figure 7.

D. Experiment Setting:

The code runs on Windows 10. The environment is Python
3.6 and Keras 2.24. Parameters setting is that epsilon is
1, gamma = .95, batch size = 64, epsilon min = .01, ep-
silon decay = .995, learning rate = 0.001.



Fig. 7. Flow diagram to train the network

E. Graphical User Interface(GUI - Breakout):

Graphical User Interface of our customized breakout envi-
ronment is shown in figure 8.

F. Results

After evaluating the performance, we found that the per-
formance of Double Deep Q-learning was better because It
uses two neural network models that are similar. During
the experience replay, the other one is a replica of the first
model’s last state. This second model calculates the Q-value.
In DQN, Q-value is determined with the reward added to
the cumulative Q-value of the next state. If each time the Q-
value determines a high number for a given state, the value
derived for that particular state from the performance of the
neural network will become higher each time. Every output
value of the neuron will become higher and higher until
the difference between each output value is high. DDQN is
better because it reduces overestimations by decoupling agent
selection function and target function.

The Conventional Deep Q-learning performance lacked be-
cause it is unable to prevent overfitting problems and because
the targets would be the Q-values of each of the actions for
training the neural network. As shown in Figure 9, the score

Fig. 8. GUI – customized environment of Breakout

and and Hits percentage of double DQN is higher (83.66 %)
than DQN (78.47 %).

Fig. 9. Performance Comparison (Hit Rate)

In Figure 10 graphs, the rewards are much higher in the
case double DQN compares to DQN. The left side shows the
highest reward as 10 whereas the right side shows 5 to be max.
The X-axis in graph represents episodes which 1000 in both
cases. In each episode, we have used reset function to initialize
the game and got the first state as the first observation. Then
we have used an act function in the DQN class or DDQN class
to predict which action to take.

Table III, shows the hyperparameters of both Double DQN
and DQN. Hyperparameters are vital because they directly
control the behaviour of the training algorithm and have a
significant impact on the performance of the model is being
trained. Hyperparameter can impact greatly on the model.



Fig. 10. Performance Comparison (Graph)

TABLE III
HYPER-PARAMETER TUNING

Hyper-parameter Value
Epsilon 1
gamma 0.95
batch size 64
epsilon min 0.01
epsilon decay 0.995
learning rate 0.001

VI. CONCLUSION

To put it into a nutshell, after running the game for both
models (Deep Q-learning and Double deep Q-learning) for
the training phase using hyper-parameters as mentioned in
Table III, DDQN performed better in terms of hit-rate which
is evident from figure 9. Hit rate is calculated by taking the
ratio of number of times the ball hits the paddle to the sum
of number of times ball hits the paddle and number of times
ball misses the paddle, for the given number of episodes and
which in our case is 100. In DDQN highest reward assigned
to a particular action was better as compared to DQN which
varied from (-10,10) for DDQN and (-5,5) for DQN which
states that DDQN explores the environment better than DQN
because of its target network which is evident from figure 10.

REFERENCES

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[2] Gagniuc, Paul A. Markov chains: from theory to implementation and
experimentation. John Wiley & Sons, 2017.

[3] Gerald Tesauro. Temporal difference learning and td-gammon. Commu-
nications of the ACM, 38(3):58–68, 1995.

[4] Jordan B. Pollack and Alan D. Blair. Why did td-gammon work. In
Advances in Neural Information Processing Systems 9, pages 10–16,
1996.

[5] Human-level control through deep reinforcement learning. Volodymyr
Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidje-
land, Georg Ostrovski, et al. Nature. 2015 Feb 26; 518(7540): 529–533.
doi: 10.1038/nature14236.

[6] Silver, David & Huang, Aja & Maddison, Christopher & Guez, Arthur
& Sifre, Laurent & Driessche, George & Schrittwieser, Julian &
Antonoglou, Ioannis & Panneershelvam, Veda & Lanctot, Marc &
Dieleman, Sander & Grewe, Dominik & Nham, John & Kalchbrenner,
Nal & Sutskever, Ilya & Lillicrap, Timothy & Leach, Madeleine &
Kavukcuoglu, Koray & Graepel, Thore & Hassabis, Demis. (2016).
Mastering the game of Go with deep neural networks and tree search.

Nature. 529. 484-489. 10.1038/nature16961. Van Hasselt, H., Guez, A.,
& Silver, D. Deep reinforcement learning with double qlearning. Paper
presented at the Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[7] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforce-
ment learning with double Q-Learning. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press,
2094–2100.

[8] Patel, Devdhar & Hazan, Hananel & Saunders, Daniel & Siegelmann,
Hava & Kozma, Robert. (2019). Improved robustness of reinforce-
ment learning policies upon conversion to spiking neuronal network
platforms applied to Atari Breakout game. Neural Networks. 120.
10.1016/j.neunet.2019.08.009.

[9] Jeerige, Anoop, Doina Bein, and Abhishek Verma. ”Comparison of
deep reinforcement learning approaches for intelligent game playing.”
In 2019 IEEE 9th Annual Computing and Communication Workshop
and Conference (CCWC), 2019.

[10] DQNViz: A Visual Analytics Approach to Understand Deep Q-
Networks.Junpeng Wang, Liang Gou, Han-Wei Shen, Hao Yang. In
IEEE Transactions on Visualization & Computer Graphics, 2019
Jan;25(1): 288-298.


	Introduction
	Overview
	Basic Definitions
	Asserting Thesis

	Problem Definition
	Related Research Work
	Methodology
	Deep Q Network
	Double DQN

	Prototyping
	Detailed Design:
	Building the major classes:
	Design to train the network:
	Experiment Setting:
	Graphical User Interface(GUI - Breakout):
	Results

	Conclusion
	References

