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Abstract

Time-periodicity and non-linearity pose a challenge to the precise input impedance modeling of single-phase power converters.

In this study, a precise input impedance model with measurability of the single-phase voltage source rectifier (VSR), which

considers the frequency-coupling effect (FCE), is established. Meanwhile, it is revealed that the rectifier input impedance is

dependent of the grid impedance. In the proposed modeling approach, only Laplace transform and frequencyshifting operation

are required, which avoids the complicated convolution calculation in the frequency domain. In addition, the influence of grid

impedance on the input impedance is studied. Simulations are conducted to verify the effectiveness of the proposed method.
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Abstract—Time-periodicity and non-linearity pose a challenge 

to the precise input impedance modeling of single-phase power 

converters. In this study, a precise input impedance model with 

measurability of the single-phase voltage source rectifier (VSR), 

which considers the frequency-coupling effect (FCE), is 

established. Meanwhile, it is revealed that the rectifier input 

impedance is dependent of the grid impedance. In the proposed 

modeling approach, only Laplace transform and frequency-

shifting operation are required, which avoids the complicated 

convolution calculation in the frequency domain. In addition, the 

influence of grid impedance on the input impedance is studied. 

Simulations are conducted to verify the effectiveness of the 

proposed method. 

Keywords—Input impedance, single-phase voltage source 

rectifier, frequency-coupling effect. 

I. INTRODUCTION 

Single-phase voltage source converters have been widely 
employed in power systems, such as Distributed Generation 
(DG), High-Voltage DC (HVDC) transmissions, and electric 
railway traction [1]. The power systems integrated with a large 
share of power electronics converters may be unstable, due to 
the dynamic interactions between power converters and the ac 
source [2]-[3]. Especially, at the Point of the Common Coupling 
(PCC), the harmonics excited by the presence of the grid 
impedance often lead to system instability [4]. 

Since the operation trajectory of single-phase system is not 
a fixed point in steady state, the conventional modeling methods 
based on the Linear-Time-Invariant (LTI) theory are no longer 
suitable [5]-[6]. The time-periodicity is one main cause of 
introducing Frequency-Coupling Effect (FCE) [7]-[8]. 
Impedance model have the merits of clear physical meaning and 
measurability. Therefore, impedance modeling has become the 
focus in dealing with the time-periodicity challenges in single-
phase systems. 

Generally, due to the nonexistence of orthogonal signal in 
single-phase system, the methods designed for three-phase 
systems cannot be directly applied to analyze single-phase ones. 
In this case, a single-phase dq-decomposition method without 

the Park transformation is proposed [9], whereas the built model 
is only accurate in the regions under 15% of the fundamental 
frequency. In [10] the dynamic phasor approach is used to obtain 
the impedances, but the assumption that all state variables are 
dominated by fundamental-frequency components may lose 
some important information. Harmonic linearization is effective 
in developing a small-signal linear model for the non-linear time 
periodic systems [11], in which the overlook of frequency-
coupling dynamics limits the accuracy of this method in the low-
frequency regions. In order to improve the accuracy of the model, 
the frequency interactions up to twice the line frequency are 
taken into consideration, giving a mirror-frequency model [12]. 
However, only the fundamental perturbed frequency harmonic 
in dc-side is considered. The single-frequency impedance model 
of single-phase inverter is established in [13], where only the 
PLL will result in FCE and other parts are linear. In contrast, the 
topology of single-phase VSR features inherent nonlinearity. 
And the extra dc-link controller will also lead to FCE except for 
the PLL. These characteristics complicate the impedance 
modeling of single-phase VSR.  

In this paper, a single-frequency input impedance of single-
phase VSR with measurability is established with consideration 
of the FCE. Based on the established impedance model, it is 
revealed that the grid impedance has a shaping effect on the 
rectifier input impedance, whereas the influence analysis of grid 
impedance is missing in most literatures. And the proposed 
method only requires Laplace transform and frequency-shifting 
operation, which eliminate the complicated convolution 
calculation in the frequency domain. Simulation studies are 
carried out to verify the validity of the proposed method. 

II. INPUT IMPEDANCE MODELING 

A. System Description 

The circuit configuration and its equivalent Thevenin model 
of the studied single-phase VSR are depicted in Fig. 1. The main 
circuit is comprised of a power supply ug, a grid impedance Lg/Rg, 
an input inductance L, a H-bridge circuit, an output capacitance 
Cdc and a load resistance Rdc. A PLL is used to obtain the angle   
of the PCC voltage ui. And the dc-link voltage udc and input 
current ig are regulated by a voltage loop and a current loop. 

This work is supported by the National Natural Science Foundation of 

China under Grant 61933011. 
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Fig. 1. (a) Control block diagram and (b) equivalent Thevenin model of single-

phase voltage source rectifier. 

In this system, the sampling delay is modeled as 

 ( )
1

1
si

i

G s
s 

=
+

 (1) 

 ( )
1

1
sv

v

G s
s 

=
+

 (2) 

where ωi and ωv are the cutoff frequency of anti-aliasing filter 
for current and voltage measurement, respectively. In addition, 
a low-pass filter (LPF), two notch filters (NOTCH) and three 
proportional-integral (PI) controllers are given as 

 ( )
1

1
LPF s

s
=

+
 (3) 

 ( ) ( )
2 2

2 2
   1,  2n

m

n

s
NOTCH s m

s s



 

+
= =

+ +
 (4) 

 ( ) ( )   1,  2,  3im

m pm

k
PI s k m

s
= + =  (5) 

where τ is the time constant, σ is bandwidth coefficient, ωn is 
the center frequency, and kpm and kim are the corresponding 
controller parameters. The computational delay and the delay 
introduced by Zero-Order Hold (ZOH) of the PWM are taken 
into consideration as 

 ( )
1 s

s

sT
sT

d

s

e
G s e

sT

−
− −

=  (6) 

where Ts is the control period. 

B. Modeling of the PLL 

Assuming the input voltage and current in steady state are 

 ( ) ( )*

1 1cosiu t V t=  (7) 

 ( ) ( )*

1 1 1cosg ii t I t = +  (8) 

where V1 is the amplitude of the PCC voltage, ω1 is the angular 
frequency of the input voltage corresponding to fundamental 
frequency f1, and I1 and φi1 correspond to the magnitude and 
initial phase of the fundamental current, respectively. 

The PLL is used to track the phase of the PCC voltage ui as 
shown in Fig. 1(a). The time-domain expression of the nonlinear 
part in PLL can be obtained as 

 ( ) ( ) ( )sinpll isu t t u t= −   
. (9) 

By perturbing the variables in the time-domain, the linearized 
form of (9) is derived as 

 ( ) ( ) ( ) ( ) ( ) ( )* * *cos sinpll is isu t t u t t t u t     = − −   
 (10) 

where the superscript ‘~’ denotes the small-signal quantity, and 
Gsv(s) sampling at the fundamental frequency is neglected that 
Gsv(jω1)≈1 such that uis

*(t)=V1cos(ω1t) and θ*(t)=ω1t. 

Applying Laplace transform to (10) gives 

 
( ) ( ) ( ) ( )

( ) ( )

1 1

1 1

1 1

2 2
2 4

              
2

pll

is is

V V
u s s s j s j

j
u s j u s j

    

 

 = − − − + + 

+ − − +  

. 
(11) 

Based on the PLL diagram, the following relationships hold 

 ( ) ( ) ( )is sv iu s G s u s=  (12) 

 ( ) ( ) ( )PLL pllH ss u s =  (13) 

where 

 
( ) ( ) ( )1 1

1
PLLH s NOTCH s PI s

s
=    (14) 

Substituting (12) and (13) into (11), it is deduced in (15) shown 
at the bottom of the page, where GPLL(s) is 

 ( )
( )

( )12

PLL

PLL

PLL

H s
s

V H
G

s+
= . 

(16) 

It is worth noting that the perturbed phase ( )s  at a given 

frequency ω is related to not only the PCC voltage at the two 
coupled frequencies ω±ω1 but also the perturbed phase at 
frequencies ω±2ω1. 

C. Modeling of Voltage Loop 

According to the power balancing principle, the relationship 
between the input and the output can be described as 

 ( ) ( ) ( )
( ) ( ) ( )

2

g u udc

i g g

dc

di t dx t x tC
u t i t Li t

dt dt R
= + +  (17) 

where xu(t)=udc
2(t). Applying linearization to (17) gives (18), 

shown at the bottom of next page. Substituting (7) and (8) into  
(18) and performing Laplace transform, (19) is obtained, which 
is shown at the bottom of next page. And GL(s) is given by 

 ( )
2

dc

L

dc dc

R
G s

C R s
=

+

. 
(20) 

It can be seen that ( )ux s is dependent on ui and ig at two coupled 

frequencies ω±ω1. According to the voltage control scheme in 
Fig. 1(a), the small-signal term of I1

* is derived as 

 ( ) ( ) ( )*

1 v uI s H xs s=  (21) 

where 

 ( ) ( ) ( ) ( ) ( )2 2v vPI s LPF s NOTCH H ss s G= − . (22) 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

1 1 1 1 1 12 2
2

PLL sv i sv i

V
s G s s j s j j G s j u s j G s j u s j         = − − + + + − − − + +   

 
 
 

 (15) 



D. Modeling of Current Loop 

The input current reference is 

 ( ) ( ) ( )*

_ 1 cosg refi t I t t=   
. (23) 

Then, the small-signal form of (23) is given as 

 ( ) ( ) ( ) ( ) ( )* * *

_ 1 1sin cosg refi t I t t t I t     = − +   
. (24) 

Similarly, the s-domain expression of (24) can be deduced as 

 
( ) ( ) ( )

( ) ( )

1

_ 1 1

* *

1 1 1 1

2
1

               
2

g ref

jI
i s s j s j

I s j I s j

   

 

 = − − + 

 + − + + 

. 
(25) 

It can be seen from (21) and (25) that two perturbed 
components of output voltage at frequencies ω±ω1 contribute 
to the harmonic current at frequency ω. 

Frequency-shifting (15) to ω±ω1 yields (26) shown at the 
bottom of the page. Since the components of the perturbed 
phase are coupled with each other in different domains, a 
truncation is made that the harmonic components of perturbed 
phase with triple line frequency deviation are assumed to be 
zero. Therefore, after some mathematical manipulations, 

( )1s j −  and ( )1s j +  are extracted in (27) shown at the 

bottom of the page. And Δ(s) in (27) is given as 

 ( ) ( ) ( )
2

1
1 11

4
PLL PLL

V
s G s j G s j  = − − + . (28) 

Then, the difference of perturbed phase at frequencies ω±ω1 is 
provided as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 , 2 1

,0 ,2 1

2

              2

u i

u i u i

s j s j f s u s j

f s u s f s u s j



 
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

−− − + = −

+ + +

 
(29) 

where fθu,-2(s), fθu,0(s) and fθu,2(s) are given in (30) shown at the 
bottom of the page. 

In a similar way, frequency-shifting (21) to ω±ω1 and doing 
an addition yield (31) shown at the bottom of the page, where 
fIu,-2(s), fIu,0(s) and fIu,2(s) are given as 

 ( ) ( ) ( ) 1

, 2 1 1 1
ij

Iu L vf s G s j H s j I e  − − −=  (32.a) 

 ( )
( ) ( )

( ) ( )

1

1

1 1

,0 1

1 1

i

i

j

L v

Iu j

L v

G s j H s j e
f s I

G s j H s j e





 

  −

 + +
=  

+ − −  

 (32.b) 

 ( ) ( ) ( ) 1

,2 1 1 1
ij

Iu L vf s G s j H s j I e   −= + +  (32.c) 

And fIi,-2(s), fIi,0(s) and fIi,2(s) are given in (33) shown at the 
bottom of the page. 

E. Closed-Loop Impedance Derivation 

Based on the control scheme in Fig. 1(a), the converter 
voltage can be written as 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
3 _

3               

conv d g ref d sv i

d si g

u s G s PI s i s G s G s u s

G s PI s G s i s

= − +

+
  

(34) 

And the current dynamics in the average model is 

 ( ) ( ) ( )g i convLsi s u s u s= −  (35) 

Substituting (34) into (35) gives 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
3

3 _1

d si g

d sv i d g ref

Ls G s PI s G s i s

G s G s u s G s PI s i s

+  

= − +  

 
(36) 

Substituting (25) into (36), the input impedance which only 
considers the fundamental perturbed components is obtained in 
(37) shown at the bottom of the page. In order to include the 
interactions between different domains, frequency-shifting (36) 
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(19) 
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(26.a) 
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(26.b) 
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(27.a) 
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(27.b) 
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Fig. 2. Multi-frequency model diagram of the single-phase voltage source 

rectifier considering the grid impedance. 

to ω±2ω1, and then the perturbed current at frequencies ω±2ω1 
are solved as 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1

2 3

2 2

        

g x i

x i x g

i s j f s u s j

f s f s ss iu
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(38) 
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y i

y

g

iy g

s j f s s j

f s f ss i s

i u

u

 =

+ +

+ +  
(39) 

where the harmonic components with quadruple line frequency 
deviation are assumed to be zero. And fx1(s), fx2(s), fx3(s), fy1(s), 
fy2(s) and fy3(s) are given as (40) and (41) shown at the bottom 
of the page. 

Substituting (38) and (39) into (36), the harmonic current at 
frequency ω is provided as 
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g i i
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(42) 

where F-2(s), F0(s)and F2(s) are given as (43) shown at the 
bottom of the page. 
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Fig. 3. Single-phase voltage source rectifier model diagram with embedded 

frequency-coupling effects. 

If the effect of grid impedance is neglected, the input 
impedance is 

 ( ) ( )01opZ s F s= . (44) 

However, due to the presence of grid impedance, the harmonic 
currents would generate the voltage at the same frequency and 
thus constitute additional feedback loops, which are 
constructed as Fig. 2. It is observed that the order of harmonic 
would extend to infinite due to the interactions between the 
FCE and the grid impedance. 

Due to the low-pass characteristics of the system, only the 
components at frequencies ω and ω±2ω1 are considered here, 
as denoted by the dashed block in Fig. 2. The harmonic voltage 
at frequencies ω±2ω1 are derived as 

 ( ) ( ) ( )12i n iu s j G s u s− =  (45) 

 ( ) ( ) ( )12i p iu s j G s u s+ =  (46) 

where  

 ( )
( )

( ) ( )
2 1

1 0 1

2

2 2
n

g

F s j
G s

Y s j F s j



 

−
= −

− + −

 
(47) 

 ( )
( )

( ) ( )
2 1

1 0 1

2

2 2
p

g

F s j
G s

Y s j F s j



 

− +
= −

+ + +

. 
(48) 

And Yg(s) represents the grid admittance, i.e., Yg(s)=1/Zg(s). 
Thus, the single-frequency model at the analyzed frequency ω 
can be depicted as Fig. 3. 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( )1 1 1 1 3 1 1 , 0 1,0 12 2 2 2 2 2 2 2 2x d sv d u Iu xf s G s j G s j G s j PI s j jI f s j f ss j     + = − − − + − − − −    
 (40.a) 

 ( ) ( ) ( ) ( ) ( ) ( )2 1 3 1 1 ,1 2 2, 12 2 2 2 2x d u Iu xf s G s j PI s j jI f s sf sj j    = − − − + −       (40.b) 

 ( ) ( ) ( ) ( ) ( )3 1 3 21 1,2 2 2 2x d Ii xf s G s j PI s fj s j s  = − − −   
 (40.c) 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 3 1,1 01

1
2 2 2 2 2

2
x Iid siL s j G s j PI s j Gs s j sf j    

 
− + − − − − − 

 
=  (40.d) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 11 1 1 1 1 1 ,0 1, 02 2 2 22 2 2 2 2y Iu yd sv d uf G G G PI jI fs s j s j s j s j s j f s j s     −   = + + + + + + + +    
 (41.a) 

 ( ) ( ) ( ) ( ) ( ) ( )2 1 1 1 ,3 21 1, 22 2 2 2 2y uu I ydf s s j s j s j f s j sG PI jI f   −−
  = + + + +   + 

 (41.b) 

 ( ) ( ) ( ) ( ) ( )3 1 1 , 2 132 2 2 2y Ii ydf s s j s j f j sG PI s  −
 = + + +  

 (41.c) 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 ,0 13

1

2
2 2 2 2 2is Id iy L G PI Gs s j s j s j s j f s j    

 
 = + + + + − +


+ 



 (41.d) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 22 ,3 121 , 2 2Iu Iid u x FF s G s PI s jI f s ss f ff s s −− − −
 = + +    

 (43.a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),0 , 2 ,20 23 1 ,0 22 2 2d sv d Iu Ii Iiu x y Ff sF s G s G s G f s f ss PI s jI f s f s f s s −
 = − + + + +    

 (43.b) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),2 ,22 3 11 ,2 2Iu Iiu Fyd f sF s G s PI s jI f f ss fs s
 = + +    

 (43.c) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),0 , 2 ,2 33 3 3

1

2
Ii IiF d si d x Ii yf s fs Ls G s PI s G s G s PI s f fss f s s− = + ++−   

 (43.d) 
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Fig. 4. Modeled and simulated response of cos(θ). Solid lines: Model prediction; 

Dots: Numerical simulation results. 

From Fig. 3, the single-frequency rectifier input impedance 
considering the FCE at a certain grid impedance is derived as 

 ( )
( ) ( ) ( ) ( ) ( )0 2 2

1

n p

Z s
F s F s G s F s G s−

=
+ +

. 
(49) 

The built impedance model Z(s) is the conventional SISO type 
impedance, such that the stability analysis of the system can be 
determined by Nyquist Criterion rather than GNC, which 
reduces the complexity of the analysis. And the built input 
impedance can be directly measured. Moreover, it is revealed 
that the rectifier input impedance is dependent on the grid 
impedance, which is neglected in most literatures. Besides, the 
proposed modeling approach, which only requires Laplace 
transform and frequency-shifting operation, avoids he 
complicated convolution calculation in the frequency domain. 

III. SIMULATION STUDY 

Simulations are performed in MATLAB/Simulink to verify 
the validity of the proposed models. The specifications of this 
system are summarized in Table I. 

TABLE I 

THE SIMULINK PARAMETERS OF THE SYSTEM 

 

Symbol Description Value 

ug Grid voltage 100 V(rms) 

ω1 Input angular frequency 100π rad/s 
L Input filter inductance 2 mH 

Cdc Output capacitance 500 μF 

Rdc Load resistance 60 Ω 
ωi/ωv ADC cutoff frequency 9000π rad/s 

kp1 Proportional coefficient of the PLL 2.7207 

ki1 Integral coefficient of the PLL 49.348 

kp2 
Proportional coefficient of the 

voltage regulator 
0.0005 

ki2 
Integral coefficient of the voltage 

regulator 
0.008 

kp3 
Proportional coefficient of the 

current regulator 
14.215 

ki3 
Integral coefficient of the current 

regulator 
50532.37 

ωn Notch filter param. 200π 
σ Notch filter param. 4737.4 

τ Low-pass filter param. 0.00398 

𝑢𝑑𝑐
∗  Output voltage reference 200 V 

Ts Control period 50 μs 

 

In order to validate the small-signal model of PLL, the s-
domain expression of linearized synchronous signal is given as 

 ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

,2 1 ,0

, 2 1

2
cos

2 2

u i u i

u i

f s u s j f s u sj
s

f s u s j

 






−

 + + 
=    

+ −  

. 
(50) 

The modeled and simulated frequency response from perturbed 
voltage at different frequencies to synchronous signal at 
frequency ω are plotted in Fig. 4. The results show that the 
simulated response is matched well with the modeled response, 
which verifies the validity of the small-signal model of PLL. 

The impedance measurement scheme is depicted as Fig. 5. 
A perturbation voltage up is injected, which excites the 
perturbations of corresponding frequency on the PCC voltage 
and input current. Then the FFT is applied to the PCC voltage 
and input current for impedance calculation. In this scheme, the 
influence of grid impedance is taken into consideration. The 
frequency response characteristics of the built impedance 
models and its corresponding simulation results under different 
grid impedances are plotted as shown in Fig. 6. As observed, the 
impedance simulation results are in good accordance with Z(s), 
which validates the proposed impedance modeling approach is 
accurate. The impedance Zc(s) which only considers the 
fundamental perturbed components has a large deviation in the 
regions around the fundamental frequency. The Zop(s) achieves 
higher accuracy compared with Zc(s), but the accuracy will 
degrade as the grid impedance increases due to the neglect of 
grid impedance. It is suggested that the interactions between grid 
impedance and FCE should be considered in the input 
impedance modeling of single-phase VSR. 
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Fig. 5. Impedance measurement scheme for single-phase converters. 
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Fig. 6. Impedance responses. Solid lines: Model prediction; Dots: Numerical 

simulation results. 

IV. CONCLUSION 

In this paper, the single-frequency input impedance 
modeling of the single-phase voltage source rectifiers is 

presented, which considers the frequency-coupling effect. It is 
found that the established input impedance varies along with the 
grid impedance. In the proposed modeling method, only Laplace 
transform and frequency-shifting operation are required, 
avoiding the complicated convolution calculation in the 
frequency domain. In addition, the modeling method is also 
applicable to other power converters 
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