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Abstract

Visual navigation tasks in real-world environments often require both self-motion and place recognition feedback. While deep

reinforcement learning has shown success in solving these perception and decision-making problems in an end-to-end manner,

these algorithms require large amounts of experience to learn navigation policies from high-dimensional data, which is generally

impractical for real robots due to sample complexity. In this paper, we address these problems with two main contributions.

We first leverage place recognition and deep learning techniques combined with goal destination feedback to generate compact,

bimodal image representations that can then be used to effectively learn control policies from a small amount of experience.

Second, we present an interactive framework, CityLearn, that enables for the first time training and deployment of navigation

algorithms across city-sized, realistic environments with extreme visual appearance changes. CityLearn features more than

10 benchmark datasets, often used in visual place recognition and autonomous driving research, including over 100 recorded

traversals across 60 cities around the world. We evaluate our approach on two CityLearn environments, training our navigation

policy on a single traversal. Results show our method can be over 2 orders of magnitude faster than when using raw images,

and can also generalize across extreme visual changes including day to night and summer to winter transitions.
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Abstract— Visual navigation tasks in real-world environments
often require both self-motion and place recognition feedback.
While deep reinforcement learning has shown success in solving
these perception and decision-making problems in an end-
to-end manner, these algorithms require large amounts of
experience to learn navigation policies from high-dimensional
data, which is generally impractical for real robots due to
sample complexity. In this paper, we address these problems
with two main contributions. We first leverage place recognition
and deep learning techniques combined with goal destination
feedback to generate compact, bimodal image representations
that can then be used to effectively learn control policies
from a small amount of experience. Second, we present an
interactive framework, CityLearn, that enables for the first time
training and deployment of navigation algorithms across city-
sized, realistic environments with extreme visual appearance
changes. CityLearn features more than 10 benchmark datasets,
often used in visual place recognition and autonomous driving
research, including over 100 recorded traversals across 60
cities around the world. We evaluate our approach on two
CityLearn environments, training our navigation policy on a
single traversal. Results show our method can be over 2 orders
of magnitude faster than when using raw images, and can also
generalize across extreme visual changes including day to night
and summer to winter transitions.

I. INTRODUCTION

The ability to sense location in time and space is key, for
both robots and living beings, to enable navigation in highly
dynamic real-world environments. For mobile robots, the
way they can create a particular, internal world representation
often depends on their perceptual limitations as well as how
they interact and make decisions with the environment [1].
Visual feedback provides high-dimensional information that,
when encoded properly, can be used to make sense of where
they are and where they need to go. Similarly, self-motion
feedback also provides information concerning the current
position within an environment. These two sensory input
modalities are concurrent, time-aligned and often comple-
mentary during goal-driven navigation tasks.

Recent deep reinforcement learning (RL) approaches have
successfully performed active navigation tasks on simulated
environments using real-world street imagery [2] or synthetic
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Fig. 1. The CityLearn framework. We leverage VPR and RL methods
to learn control policies for goal-driven navigation tasks. Our method is
efficient and can generalize across extreme environmental changes.

Fig. 2. Performance and compute characterization. RL training results
for (i) our approach using off-the-shelf VPR (NetVLAD) and deep learning
(ResNet-50) models with a number of feature dimensions (e.g. 64, 512,
2048, 4096), (ii) a baseline agent that uses 1-d position feedback instead of
images, and (iii) an agent trained end-to-end using raw images.

scenarios [3]–[5]. These algorithms, however, generally uti-
lize additional feedback data, e.g. the agent-relative velocity
or reward function values, that eventually increase their
network policy architecture and sample complexity.

Visual place recognition (VPR) models, on the other hand,
are required to successfully match two image sequences
of recorded data in real-world environments. While recent
improvements using deep learning [6]–[8] and algorithmic
methods [9] have contributed to state-of-the-art results on
city-sized datasets, whether those models can enable naviga-
tion capabilities on real robots is not well explored.

In this work, we leverage both VPR and RL techniques to
efficiently learn control policies for navigation tasks (Fig. 1).
Our resulting control policy is able to perform goal-driven
navigation tasks using only two sensory feedback modalities
(goal destination and visual representations). The results
demonstrate that our policy is able to generalize over a range
of extreme environmental changes on real-world datasets,
while drastically reducing the amount of training experience,
e.g. from 29h48m to 11m (Fig. 2). We also show how
our approach can achieve practical sample efficiency in an
interactive and diverse environment that we call CityLearn.1

1Project page: mchancan.github.io/projects/CityLearn



The main contributions of this paper are:
1) CityLearn: An interactive open framework with real-

world environments for perception and decision-
making to enable the evaluation of navigation algo-
rithms on more than 10 robotic benchmark datasets
with challenging environmental transitions (Fig. 3).

2) A new approach to sample-efficient RL training for
goal-driven navigation tasks. We use VPR and deep
learning models to encode our sensory input images
which, when combined with goal destination signals,
can generate compact, bimodal representations, from
which a navigation policy can be learned to generalize
across extreme visual changes such as day to night or
summer to winter cycles.

II. RELATED WORK

In robotics research, the use of probabilistic techniques
played an important role in solving robotic problems such
as how the robot’s sensory information should be integrated
to generate internal states and support the decision-making
process [1]. In the mid-1990s, these methods allowed the
deployment of navigation algorithms on real robots by using
conditional probability distributions, instead of deterministic
functions at a fixed time interval (as in classical control), to
compute more general control actions that govern the robot’s
states [10]–[12]. In the same decade, moreover, the field of
RL started to attract the interest of roboticists. RL agents
learn specific behavior through interactions with dynamic
environments only by reward and punishment signals [13].
Therefore, the use of RL to solve more complex robot-
learning problems started to be extended with the incorpo-
ration of neural networks to obtain broader generalization
capabilities. Ideas like hierarchical or curriculum learning
[14] were also proposed to reduce the learning time and
solve these complex, physically realistic robotic problems
in simulation environments.

A. Deep Reinforcement Learning based Navigation

The spread of convolutional neural networks (CNN) has
yielded impressive state-of-the-art results in computer vision,
natural language processing, and many other related domains
over the past eight years [15]. Similarly, recent research
incorporating deep neural networks to more advanced RL
algorithms for navigation tasks have shown promising results
in simulated environments.

Recent works have trained deep RL agents or deep-
learning-based models to perform navigation tasks using
real-world images [2], [16]–[24]; typically generalizing well
over different visual conditions with minimal additional
training and network architecture changes. Similarly, re-
searchers have used non end-to-end RL approaches with real
data that, when encoded via off-the-shelf deep learning mod-
els, can efficiently learn navigation policies in unstructured
environments [25]. Related deep RL approaches have also
shown success on target-driven navigation tasks but have
only been demonstrated in indoor [26]–[35] or synthetic
environments [3]–[5], [36].

Fig. 3. Five selected benchmark datasets that can be used in CityLearn.

These approaches, however, often use additional feedback
data such as reward function values or the agent-relative
velocity that further increase the policy network size and
training requirements. These factors also increase the number
of interactions required with the environment, typically to
the order of millions of episodes. These systems, more-
over, are often evaluated on the same environment used for
training, thus their generalization capabilities to different
visual conditions are often unknown; alternatively, it is
necessary to increase the complexity of their architectures
for them to successfully train and generalize to challenging
environmental conditions.

B. Visual Place Recognition

VPR methods for sequence-based localization tasks typi-
cally perform a multi-frame matching procedure between two
or more traversals (query and reference) on stationary real-
world datasets. Both query and reference sequence of images
often include challenging appearance and viewpoint changes
between them (e.g. different weather or seasonal conditions),
illumination changes due to time of day, and dynamic objects
(Fig. 3). A VPR algorithm for sequence-based datasets can
be broadly split into two main steps [8], [9], [37]–[54]:
(1) feature extraction process utilizing either hand-crafted
or deep-learning-based techniques to obtain compact image
representations, that can then be (2) matched via conven-
tional similarity metrics (e.g. cosine or L2 distance) or more
elaborate multi-frame temporal filtering algorithms such as
SeqSLAM [37] and many others [40], [55], [56]. Though
recent improvements using temporal filtering approaches
have shown state-of-the-art results [9], we note that those
methods need to have at least two traversals from the same
environment at the time of performing their final matching
procedure.

In this work, for the proposed goal-oriented navigation
task, we use a single traversal to train our control policy
network, which is then evaluated on the remaining traversals.
Consequently, we choose VPR and deep learning techniques
that are known to obtain better, compact visual representa-
tions from raw images, such as ResNet [57] or NetVLAD
[6]—which performs well compared to related VPR models
[58]—rather than full VPR models that use algorithmic
techniques on top of those deep learned representations.



TABLE I
CITYLEARN: DETAILED COMPARISON WITH RECENT REAL-WORLD ENVIRONMENTS

Environment region/dataset #trav #imgs av. step #sensors journey city country

StreetLearn

Wall Street 1 56k 9.8m

1×panoramic cam.

548.8km New York

USA
[59]

Union Square 1 9.8m

(360◦view)Hudson Rive 1

58k

9.9m
CMU 1 9.9m 574.2km PittsburghAllergheny 1 9.8m

South Shore 1 9.9m

CityLearn

Oxford RobotCar 133 20M 0.2m 6×stereo cam. (360◦view) 10km Oxford UK

[Ours]

1×3D and 2×2D LiDAR

Berkeley DeepDrive 100k 120M 30fps 1×cam. (front) 1100h multiple USA

Cityspaces 50 - - 1×cam. (front) 100h multiple (50) Germany
KITTI 22 - 10fps 4×cam. (front, rear) 6h Karlsruhe

Nordland Railway 4 3.6M 0.05m 1×cam. (front) 728km Trondheim–Bodø Norway

Multi-Lane Road 4 - - 1×cam. (front) 4km Gold Coast (GC)

AustraliaGold Coast Drive† 1 - - 1×cam. (front) 87km Brisbane–GC
UQ St. Lucia 1 - - 1×cam. (front) 9.5km Brisbane

St. Lucia Multiple Times 10 - 15fps 1×cam. (front) - Brisbane
Alderley Day/Night‡ 2 31.5k - 1×cam. (front) 16km Brisbane

†Provides frame correspondences or ‡reference trajectory instead of GPS data.

III. THE CITYLEARN ENVIRONMENT

VPR methods are often evaluated on variety-rich, real-
world datasets collected over long traversals across different
seasons, time of day or weather conditions, including dy-
namic objects, such as cars, traffic, and pedestrians, along
with longer-term changes such as construction or roadworks
[37], [44], [60]–[67] (Fig. 3). The data obtained typically
includes videos or sequences of images providing panoramic
or 360◦ views from stereo cameras, scans of 2D/3D Lidar
sensors, visual odometry data, and GPS/inertial data that can
then be used as ground truth labels.

We leverage those real-world datasets to create CityLearn,
an interactive open framework that enables, for the first time,
the training and testing of navigation algorithms on city-
sized, realistic environments. Our fully-configurable envi-
ronment runs on top of the Unity game engine and their
ML-Agents framework [68]. CityLearn is related to the
recent StreetLearn work [59] used in [2], [69], [70] but
has a range of useful differences. We propose the usage
of diverse environments across 5 countries and additionally
enable loading any other dataset including in-house recorded
data; see Tables I and II for a detailed comparison.

In Table I, each environment (region/dataset) also includes
GPS data; except for Goald Coast Drive and Alderley
Day/Nigth. Related frameworks for city-scale navigation
based on real-world images were not considered in Table I
as they interact differently with the environment via natural
language communication [21]–[23].

IV. PROBLEM STATEMENT AND METHODS

Our goal is to train a policy network to perform goal-
driven navigation tasks. To enable sample-efficiency, we use
either off-the-shelf VPR or deep learning models to encode
our sensory input images and obtain multi-dimensional fea-
ture vectors. Then, using RL, we combine these features with

TABLE II
STREETLEARN VS. CITYLEARN: SUPPORT AND FEATURES

Description StreetLearn [59] CityLearn [Ours]

Operating system Ubuntu 18.04 Windows/Linux/Mac
Environment engine StreetLearn Unity/ML-Agents
Language/ML frameworks C++, Python/TF C#, Python/TF
Min. RAM per env. 12GB 2GB
Number of public datasets 1 10+
Number of cities 2 60+
Number of traversals 1 100+
Min. average agent step 9.8m 0.05m
Multi-environment training 4 4
Feature public datasets 8 4
Appearance changes 8 4
Viewpoint changes 4 4
Multiple times of day 8 4
Multiple weather/seasons 8 4

compact goal destinations, resulting in compact, bimodal
representations that can then be used to train our policy using
a single traversal in our CityLearn environment.

We use a Markov Decision Process M with discrete state
st ∈ S and action at ∈ A spaces, and a transition operator
T : S × A → S to model our navigation tasks as a finite-
horizon T problem. Our goal is to find θ∗ that maximizes
the objective function:

J(θ) = Eτ∼πθ(τ)

[
T∑
t=1

γr(τ)

]
(1)

where πθ : S → P(A) is the stochastic navigation policy
we want to learn, and r : S ×A → R is the reward function
with discount factor γ. To optimize πθ, we parameterize it
with a neural network that learns θ, as described in Sec. IV-
B. S is defined by our compact, bimodal space representation
bt generated by combining the agent’s visual observation xt
and a 1-d goal destination gt, as also detailed in Secs. IV-
A and IV-B. A is defined over discrete action movements



in the agent’s action space at. We evaluate our approach on
two challenging CityLearn environments with extreme visual
changes such as day to night for Oxford RobotCar [60], and
summer to winter for the Nordland [71] dataset (Fig. 5).

A. Visual Observations

We encode our sensory input images – which are either
1920×1080 RGB for the Nordland dataset or 1280×960
RGB for the Oxford RobotCar dataset – using either off-
the-shelf VPR (NetVLAD) or deep learning (ResNet-50)
models. For NetVLAD [6], we use their best performing
network, based on VGG-16 [72] with PCA plus whitening,
to encode our images into a range of visual observations
consisting of 4096-d, 2048-d, 512-d and 64-d feature vectors.
For ResNet-50 [57], we use a network trained on ImageNet
[73] to extract image representations of 2048-d, which we
then reduce to more compact representations such as 512-
d and 64-d using the algorithm provided in NetVLAD for
dimensionality reduction.

Once we obtain our visual observations, xt, we com-
bine them with a 1-d goal destination, gt, to generate our
compact, bimodal representation, bt, that serves as input to
our navigation policy, see Fig. 4(b). gt is encoded as a 1-
d feature vector to preserve the compactness of our final
bimodal representation bt which are feature vectors of 65-d,
513-d, 2049-d, and 4097-d.

B. Policy Learning for Visual Navigation

Our objective is to learn a policy for goal-directed naviga-
tion tasks using a compact, bimodal representation such as
bt. While there has been some success using deep reinforce-
ment learning for navigation tasks from raw images [2], [3],
they require the addition of more feedback modalities (e.g.
reward values or agent’s velocity) that eventually increase
the number of interactions with the environment and training
time. We aim to investigate the performance of using bt,
obtained in Sec. IV-A, to train our policy.

Task setup: We design a navigation task where a success-
ful task requires reasoning using our visual observations and
goal destination bt to find a required target gt over a single
traversal in the CityLearn environment (Figs. 1 and 4).

Our approach: We choose the proximal policy optimiza-
tion (PPO) algorithm [74] to optimize our objective function
in Eq. (1). PPO is a variation of TRPO [75] that constraints
the policy update, while striking the balance between sample
complexity and hyperparameter tuning to achieve state-of-
the-art results on a range of benchmark RL problems. Our
agent network architecture, see Fig. 4(b), comprises of
a single linear multi-layer perceptron (MLP) of 512 units
that encodes bt, see Fig. 4(b). We then combine it with
the agent’s previous action, at−1, using a single recurrent
layer long short-term memory (LSTM) [76] of 256 units, to
estimate the required actions from the estimated policy π and
the value function V . Additionally, we implement two policy
networks for comparison purposes, also shown in Figs. 4(a)
and (c), whose details are provided in Sec. IV-C.

Fig. 4. Navigation baseline agents. Our approach (b) uses the goal
destination gt and compact visual observations xt to generate bimodal
representations bt which can then be combined with the agent’s previous
action at−1 to estimate a stochastic navigation policy π and value function
V . We also train a baseline (a) agent using its current position pt instead
of xt, and another agent using raw images (c) from scratch.

Reward design and curriculum learning: We use 7
levels of curriculum learning [14] to encourage the agent to
explore the environment gradually in order to find increas-
ingly distant destinations [2]. Our sparse reward function
gives the agent a reward of +1 only when it finds the
target, potentially receiving a punishment of −1/ms when
it heads away from the required destination, with ms being
the maximum number of agent steps per episode.

C. Baseline Agents

We compare our approach, described in Section IV-B,
against two additional agent architectures: baseline and
raw images, as shown in Figs. 4(a) and (c), respectively.
In all our experiments, the goal destination, gt, is encoded
using a 1-d feature vector for fair comparison (Fig. 4), but
it can easily be adapted to use more complex encoding
methods, as per previous work [2]. The code of the three
RL baseline agents including our approach, shown in
Fig. 4, is made publicly available along with CityLearn.

Baseline: This baseline agent is a relatively trivial
baseline, see Fig. 4(a), that uses a 1-d feature vector as its
current position pt, instead of xt. While this substantially
simplifies the problem, it is a competitive agent reference
since it achieves 100% completed tasks on deployment.

Raw images: Our raw images agent uses a CNN visual
module of 2 convolutional layers, see Fig. 4(c), as in previous
works [3], [77]. The first CNN layer has a kernel of size 8×8,
a stride of 4×4, and 16 feature maps. The second CNN layer
has a kernel of size 4× 4, a stride of 2× 2, and 32 feature
maps. The input consisted of RGB images of 84× 84.

D. Evaluation Metrics

Visual place recognition: VPR performance using our
encoded visual observations are reported via area under the
curve (AUC) metrics across a number of feature dimensions
(Fig. 6). We train a classifier on each reference traversal using
a single MLP that receives our encoded visual observations.
We then use this trained classifier to evaluate the remaining
query traversals. Once we have the scores for both query
and reference, we compute the precision-recall curves from
where we can obtain the overall AUC performance.

Goal-oriented navigation: We evaluate the RL training
performance on both the traversal used for training and other



Fig. 5. Two diverse real-world benchmark datasets used in our experiments. The Nordland dataset (left to right-center) including summer, fall, and
winter traversals. The Oxford RobotCar dataset (left-center to right) including day, overcast, and night traversals.

Fig. 6. AUC place recognition performance, on the Nordland (left) and Oxford Robotcar (right) datasets, evaluated under moderate and extreme
environmental changes. We use off-the-shelf place recognition (NetVLAD: NV) and deep learning (ResNet-50: RN) models to encode our RGB images
into a range of feature dimensions: 64-d, 512-d, 2048-d, 4096-d).

Fig. 7. RL training curves. Our approach uses NetVLAD and ResNet-50 models, with 64-d, 512-d, 2048-d, 4096-d feature representations, can
efficiently train our RL navigation policy compared to an agent trained end-to-end using raw images (light blue). We also show the results for a
baseline agent (blue) that uses simple 1-d goal and position representations.

two testing traversals with extreme visual changes (e.g. day
to afternoon/night for Oxford RobotCar, and summer to win-
ter/fall for Nordland). We also limit the maximum number of
agent steps in an episode to the number of images within the
traversal, measuring in this way how well the agent can find a
target destination with a moderate, environment-appropriate
number of steps. We provide statistics on the number of
navigation tasks that our policy can achieve by reporting
the percentage of the deployment results in two categories:
(1) completed tasks, when the agent reaches the target using
the minimum number of steps as defined above, or (2) failed
tasks, otherwise.

V. EXPERIMENTS: RESULTS

We first conduct conventional, single-frame VPR experi-
ments using our visual observations on two stationary real-
world datasets (Fig. 5). We then use these compact place
representations to train our policy network for efficiently
learning goal-driven navigation tasks using CityLearn.

A. Place Recognition Experiments

The trade-off of using compact visual observations for
VPR is shown in Fig. 6. We report the results of our single-
frame VPR experiments, as described in Secs. IV-A and IV-
D. AUC performance decreases as we decrease the feature
dimension from 4096-d all the way to 64-d in both NetVLAD
and ResNet-50 models. We can also observe how well these
networks generalize when facing small appearance variations
such as summer to fall for Nordland, see Fig. 6 (left).

For Oxford RobotCar, moderate viewpoint changes
Day/sunny to overcast results in lower global performance,
when compared to Nordland which does not include view-
point changes (see Fig. 6 (right)). In contrast, for extreme
appearance changes, such as summer to winter or day to
night, we can observe that the global AUC performance is
compromised, reducing to less than half for Nordland or
even to less than a quarter for Oxford RobotCar compared
to small appearance changes. It is worth noting we are
performing only a single-frame matching procedure here;
the results may not be as good as expected for these state-of-
the-art methods since multi-frame algorithmic techniques are
typically incorporated on top of those single-frame results,
as previously described in Sec. II-B.

B. Sample-Efficient Navigation Policy Training

We illustrate RL training curves in Fig. 7; complete-related
visualization as a function of the required training time is
presented in Fig. 2. In Fig. 7 (left), we observe that our
approach, with 64-d representations, achieves comparable
average reward performance compared to the baseline
agent; being 92% for NetVLAD, 80% for ResNet-50 and
99% for the baseline agent. This small difference be-
tween these three agents is reflected in Fig. 7 (right), where
the number of agent steps stabilizes slightly below 50 at
10,000 episodes for the baseline agent, while for the
remaining two agents (NetVLAD and ResNet-50 with 64-
d) this occurs slightly above 50 steps at 18,000 episodes.

This behavior is consequently observed again in Fig. 7,



Fig. 8. Navigation policy evaluation statistics on the traversal it was trained. Nordland (left): summer, Oxford RobotCar (right): day.

Fig. 9. Generalization results. Evaluation statistics over moderated (blue) and extreme (green) appearance environmental changes. For Nordland (left):
fall (blue) and winter (green) traversals. For Oxford RobotCar (right): overcast (blue) and night (green).

as we increase the visual feature dimensions from 512-d to
4096-d. The final average number of steps for these agents
is around 75 and the required number of training episodes
increases as we increase the feature dimension; except for
4096-d that stabilizes at 50,000 episodes, which is lower
than 2048-d that requires 60,000 episodes. We additionally
provide two training results for 4096-d, where this behavior
is again shown in curve 4096-d*. It is worth noting the
training curves in Fig. 7 were obtained by averaging 5 trials
each using different seed numbers, and then applying curve
smoothing with weight 0.9 to enable cleaner visualization of
our results. In all our experiments, we used 16 concurrent
agents for training our policy network using the CityLearn
framework.

C. Deployment and Generalization

We report evaluation statistics of our trained navigation
policy on both the reference traversal used for training (Fig.
8) and query traversals used to test their generalization
capabilities (Fig. 9) across our two datasets alongside with
the CityLearn environment using the Nordland (left) and
Oxford RobotCar (right) datasets. We evaluated our trained
stochastic policy every 100 episodes and calculated the
number of completed and failed navigation tasks. From
Figs. 8 and 9, it can be observed that when using compact
representations (64-d) we can achieve better generalization
results, even under extreme environmental changes such as
summer to winter for Nordland, shown in Fig. 9 (left), or
day to night for Oxford RobotCar, see Fig. 9 (right). While
increasing the feature dimension in VPR tasks results in
better AUC performance (see Fig. 6), the opposite seems to
occur for navigation tasks; smaller representations are better
for both final average performance and sample efficiency in
terms of training time or number of episodes, as well as in
generalization capabilities, at least in an RL context.

Fig. 10 shows deployment comparisons between our ap-
proach and an agent trained end-to-end using raw images
(using the policy network described in Sec. IV-C) in a route

Fig. 10. Deployment comparison. The policies were trained on the Oxford
RobotCar dataset (day: top-left) and evaluated under extreme visual changes
(night). Our approach completed the task using NetVLAD 64-d (center-
left), while the raw images agent failed (bottom-left).

of the Oxford RobotCar dataset. Both agents starting at the
same location with a common goal.

VI. CONCLUSIONS

We conducted comprehensive experiments applying VPR
and RL techniques to examine the value of using visual and
self-motion (in terms of the agent’s previous actions) sensory
feedback to learn navigation policies on diverse robotic
datasets. To enable efficient RL training, we use VPR models
to encode real sensory data that, when combined with the
goal destination, generates compact bimodal representations.
Once trained, we showed that smaller visual representations
such as 64-d generalized better than larger features over a
range of environmental transitions, while being around 2
orders of magnitude faster and requiring a small fraction of
the amount of experience in terms of training time.

The proposed interactive environment, CityLearn, can also
be used to load any other benchmark dataset (or even
custom in-house recorded data), such as those from drones
or underwater robots, to train and test many different types
of navigation algorithms as well as to further build and
investigate the performance of advanced RL algorithms using
realistic images. Future research could include other RL
algorithms such as [77], modular architectures for transfer
learning to new cities [78], and adding more functionality to
the environment such as creating 2D geometric maps.
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