
P
os
te
d
on

6
A
p
r
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
20
84
74
4.
v
1
—

e-
P
ri
n
ts

p
o
st
ed

on
T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Security in Grid Based Robot Navigation using REST

Raja Mukhopadhyay 1

1Jadavpur University

October 30, 2023

1

American Journal of Software Engineering, 2016, Vol. 4, No. 1, 1-5
Available online at http://pubs.sciepub.com/ajse/4/1/1
©Science and Education Publishing
DOI:10.12691/ajse-4-1-1

Security in Grid Based Robot Navigation using REST

Raja Mukhopadhyay*, I Mukhopadhyay

Department of Information Technology, Institute of Engineering & Management, Kolkata, India
*Corresponding author: rjmkhrj@gmail.com

Abstract The essentiality of having a secure system is indispensable more importantly it is essential to keep that
system protected from outside intrusion. The implementation of one technology along with the other is useful to
strengthen the functioning of the former or latter. The severity of a breach in a system can compromise the system’s
integrity preventing users from its intended use. The unison of Networking with the Internet of Things brings about
the efficient working of smart systems and for a system that implements this technology a good build up of security
system is essential. This paper discusses about a security mechanism implemented within Representational State
Transfer (REST) architecture for a robot navigation system.

Keywords: REST, internet-of-things, HTTP, XML

Cite This Article: Raja Mukhopadhyay, and I Mukhopadhyay, “Security in Grid Based Robot Navigation
using REST.” American Journal of Software Engineering, vol. 4, no. 1 (2016): 1-5. doi: 10.12691/ajse-4-1-1.

1. Introduction

The Internet of Things (IoT) involves connecting
appliances to make them smarter or performance wise
better. In the domain of IoT a constant connection to a
network or a server is required for the large sets of
information to be stored into. The fusion of IoT and cloud
epitomizes the concept of a smart internet driven system.
To implement networking, the Representational State
Transfer (REST) architecture has been implemented.
Basic authentication and token based authentication has
been implemented in the paper.

In designing Grid Based Robot navigation an interface
is required for the control of the bot inside the room.
REST was found to be the most appropriate since it
provides a user-friendly environment. As a prototype, we
have made use of the Jersey framework. Since REST is
inherently associated with HTTP methods, we have used
REST methods to perform suitable operations in our paper
[1]. Representational State Transfer makes use of HTTP
methods to send, alter, and erase data. The return type
after a method call is in the form of hypertext (texts that
contain links to other texts). REST involves the presence
of resources each of which is identified by an URI
(Uniform resource Identifier). On making a request the
response received is either in JSON (JavaScript object
notation) or in XML format [3].

2. Background Study

Data collected from the client requires a storage space
that is commonly present in the servers. A server is a
computer hosted in one of a data centre in a different
location than that of the client machine that in some way
or the other serves the client. Cloud servers are generally

preferable for better resource allocation. In case of a cloud
server the storage space is typically spread over several
machines [2]. The concept of virtualizing a resource
comes into the picture in which a single physical machine
is divided into several virtual machines and each virtual
machine shares the resources of the physical machine.

The fusion of IoT and cloud computing has pervaded
all the areas in a modern system. The cloud serves as a
storage layer for the large amount of data generated from
the sensors connected to the cloud environment. Apart
from the cloud being a storage space it also benefits the
components of an IoT application through the processes of
data retrieval and modification. Resource optimization is
one significant benefit of the cloud. In an open source
cloud the storage space is shared by several users who
together consult a cloud vendor. In our paper, we have
used IaaS (Infrastructure as a Service) since the cloud is
being used only as a storage medium. A private cloud
environment has several advantages compared to a public
cloud or hybrid cloud. Private cloud provides a layer of
security since it is present behind a Firewall or DMZ. A
private cloud is dedicated for a single user because of
which the user can modify the environment per his needs
without interference from third parties. We have
specifically made use of own-cloud along with a storage
space of 4 gigabytes. The direct connection between the
cloud server and the client side API is done using the
Raspberry Pi that serves as a BOT collecting data in a
room [5]. The BOT functions to collect information
regarding obstacles in the room and transfers the
information to the cloud. Cloud storage security issues
regarding storage have been mentioned in this paper.
Using Advanced Encryption Algorithm (AES) for
encryption, hashing techniques are implemented [4].

The Internet of Things (IoT) may generate data that can
be different depending on the mode of generation [5].
Data can be restricted to simple logic operations or can be
encrypted to protect the identity of the data and preserve

2 American Journal of Software Engineering

integrity. Cloud IoT refers to the unison of cloud
computing and Internet of Things for a smarter system
encompassing all the characteristic of a closed system in
which intervention from foreign parties is strictly restricted.
For securing data several security implementation strategies
can be used, SSL (Secure Socket Layer), user based
authentication and token based authentication. This paper
discusses in the upcoming sections how securing data
generated from a Grid Mapping system can be done, the
paper also discusses the mechanism of token based
authentication using REST and user authentication.

3. Functioning of Cloud and IoT as Unit

Figure 1 shows that data generated from IoT enabled
devices vary in their type [7]. Data may be transferred
from databases, data collected from sensors like humidity,
temperature and weather conditions as well. Any data
requires a secure network for its transfer, we generally
encrypt data with popular encryption algorithms like AES,
DES etc.

Data security as well as storage security are interrelated
to each other- the encrypted data may represent user
identity that is stored in the system to be verified later
during access. In case of token based authentication, the
stored tokens may be transferred to the user in encrypted
format. The preconceived notion that there may not be any
intruders in the network is false for which Intrusion
Detection System (IDS) and Intrusion Prevention System
(IPS) must be installed in every system.

Figure 1. Functioning of cloud and IoT as a unit

3.1. HTTP Methods in REST
In this paper, we have made use of HTTP methods that

are inherently associated with REST.
GET Method:

The GET method is used to fetch data from the server.
The main characteristic of the GET method is it always
returns the same result, if used on the same resource URI.
However, there are some exceptions, which we have
shown in the paper.

POST Method:
Another method is POST which is used for update of a

resource or for creation of new resource. In this paper
POST, has been used to create resources. POST may
return same or different results depending on its use.
DELETE Method:

The DELETE Method is used to erase a resource using
its UID. The DELETE method should be used cautiously
as subsequent use of the DELETE operations may hamper
the entire system of resources. If the DELETE method is
used on a resource using a specific ID and then used again
on the same resource the results would vary since the
resource had already been deleted in the first call of
DELETE.
PUT Method:

The PUT method is used to modify an existing resource.
It is used when the user deals with a specific resource
unlike POST in which the user is unknown of the new
resource’s location.

3.1.1. Mechanism and Working
For this paper lets decide that the room is divided into

sixteen discrete regions each identified by a single ID. The
value of the ID starts from 1 and continues till 16. 1
denotes the first grid identified by the coordinates (0, 0)
and 16 refers to the last grid (4, 4). The Figure 2 gives a
graphical picture of the organization of the room.

Figure 2. Grid organization in a room

The BOT may start from any position in the room and
accordingly frame its path depending on the presence of
nearby obstacles or entities present in adjacent grid
positions. The data collected by the BOT is automatically
transferred to the cloud server and the client side
programming ensures that the BOT functions as instructed
by the user [10]. There may be the presence of two or
more obstacles in a single grid depending on the
functionality of the user.

From the perspective of client side interface using
RESTFUL web API, the retrieval process of the
information on grids has been implemented by the GET
request. We provide a resource API that helps to identify
the resource to be fetched, also mentioning the type of
format in which the aim is to get back the request. XML
format has been preferred over JSON because of several
reasons. Firstly, parsing in XML is quicker as compared to
JSON, XML provides support for namespaces and XML
unites well with HTML. We provide a graphical

 American Journal of Software Engineering 3

representation of the data retrieval process for GET
request. The status of the HTTP response indicates the
reply from the server. A 200 OK response indicates
success from the part of the server, whereas the status
code 400 represents that the request sent to the server was
erroneous and could not be understood.

Apart from the above basic application of GET request
the primary obstacle detection process has been brought
about by fetch information about individual blocks
we extend the resource ID with the individual resource
ID of a block. The coordinates (0,0) refers to the first grid
position.

Apart from the fetching of the information and
coordinates for a block using the above method it also
mentions whether a obstacle is present on that grid or not.
The GET request functions as an information retrieval
system as well as an obstacle detection query. The following
image shows the individual fetching of a grid via the GET
request. The content length is 84 and the server is Apache-
Coyote/1.1, content type is application/xml.

The user has the capability to post obstacles or
introduce obstacles in the room using the POST request.
For the POST request, it is important to mention the grid
in which the obstacle will be placed. The server responds
through the status report 200 indicating that the obstacle
or entity has been placed at the requested position.

The PUT is used to change the position of an obstacle
i.e. to place it from one grid to the other. We have
assumed that the all the entities in the room are dynamic
in nature, constantly changing positions with time.

4. Results and Analysis

The results of the simulation have been derived using
Jersey framework in Java web based API. The JAX-RS
used in Java web based API supported by Maven provided
the platform to set up the client side simulation. Individual
server requests were created by mapping the specific
resource URIs with the corresponding java methods. For

creating the database, a mock stub was created by using
hash maps.

Postman simulation tool was used to send the requests
for GET, POST, PUT after which the server replied with
the appropriate message. The 200 OK response meant that
the server could successfully process the request. The time
taken for a query to be processed along with server reply
depended on the HTTP method used and the number of
resources to be fetched. Thus, the user request to fetch the
entire set of grids localhost:8080/robot/webapi/grids would
take much more time compared to the request sent to fetch
information about one grid localhost:8080/robot/webapi/grids/.
Table 1 below shows the various retrieval of grid
information using HTTP methods.

To detect the position of obstacles we determine the
grids where the obstacles are present. We make use of
time intervals to indicate that all the entities in the room
are dynamic in nature. During the first user request at
T=2 the server responds through a series of numbers that
indicate the total number of obstacles present in the room
along with their positions. For example, 1 12 9 12 12
indicates that in the 12th grid there are three entities
present. If at the next time interval i.e. at time T=3 we add
one particular entity into the room through the POST
request POST: localhost:8080/robot/webapi/entities <a>8
and send the GET request for fetching the positions of the
entities at T=4 we would find the server would respond by
the output of the form (a1, a2, a3, a4, a5, a6) where an
denotes the grid position of the nth entity.

XML is used for the purpose of RPC (Remote
Procedural Calls) supported by XML [11]. Parsing time
for is high in XML when interconnection of client
machines RPC was deemed to be fitter. Any two machines
being present in different networks with different ip
addresses may be interconnected with each other in order
to act as the client interface. Thus the POST and DELETE
requests that change the overall arrangement of entities in
the room may be password protected and may be
accessible from a different machine. In Table 2 we show
the server responses at various tie intervals.

Table 1. Retrieval of Grid Information using HTTP Methods

HTTP Method User Request Server Response Status report Time

GET /grids/1 <x>0</x> <y>0</y> 200 OK 139ms

GET /entities <a>4 <a>5 <a>6 200 OK 99ms

GET /entities/2 <a>15 200 OK 48ms

POST /entities <a>8 200 OK 101ms

POST /entities <a>8 200 OK 101ms

POST /entities <a>9 200 OK 106ms

PUT /entities/2 <a>10 200 OK 57ms

PUT /entities/3 <a>10 200 OK 58ms

Table 2. Retrieval of Grids with Obstacles

Time of Response (T) User Request Server Response

T=2 /webapi/obs 1 12 9 12 12

T=4 /webapi/obs 12 10 0 3 5

T=6 /webapi/obs 8 14 11 12 10

4.1. Cloud Server Simulation
We used Raspberry Pi 2, a card-based computer to

create own cloud finally used to implement the cloud
simulation. The host IP 192.168.0.101 is provided in with
conjunction with output port 22. X11 forwarding was
enabled in putty and the Pi was logged in and connection
of Pi with the screen was created via tightvncserver in Pi

4 American Journal of Software Engineering

and VNC Viewer in client machine. The VNC Viewer
projected it on the laptop screen of the Raspberry Pi.

The Pi was configured for the cloud server by turning
the overclock settings to medium and splitting the
memory of the Pi to 16m. The SSH certificate was created
using the command sudo openssl req $@ -new -x509 -
days 730 -nodes -out /etc/nginx/cert.pem -keyout
/etc/nginx/cert.key. The nginx web server was set up for
the purpose of handling HTTP requests by using the
command sudo apt-get install nginx openssl [10]. The web
server configuration was altered using the command sudo
nano /etc/nginx/sites-available/default. The Pi’s ip was
input into the server file of the pi and the pi was rebooted.
After the reboot the Owncloud server was installed using
the following commands:

sudo mkdir -p /var/www/owncloud
sudo wget https://download.owncloud.org/community/

ownc loud -9.1.0.tar.bz2
sudo tar xvf owncloud-9.1.0.tar.bz2
sudo mv owncloud/ /var/www/
sudo chown -R www-data:www-data /var/www
rm -rf owncloud owncloud-9.1.0.tar.bz2.
The drive used for storing the data was set mounted to

the Pi in ntfs format. The hard disk drive was directly
connected to the pi following which the drive was booted
in the fstab file by the following command sudo nano
/etc/fstab. The owncloud server was then logged into from
the browser.

5. Implementing Security Mechanism

Basic authentication approach for securing web services
involves sending user credentials over a secure socket
layer (SSL) connection. The user credentials are stored on
a server and when the user wants to log in he uses those
credentials to identify himself and then continue the
operation. The server gives back a hypertext transfer
protocol (HTTP) 401 response if the credentials match [8].
The paper involves the examination of basic
authentication in the client side of Robot based grid
navigation through REST. Token based authentication is
also used where the user puts his credentials before using
the application. The server checks user credential provided
with a token.

A basic authentication system has been implemented to
retrieve information about the entities present in the room.
The third party is prevented from using this feature
because in that case it would spoil the integrity and
confidentiality of the data. Before fetching information
about the grids where the obstacles are present the user
puts his username and password as configured in the
web.xml file. If the credentials used by the user do not
match the information stored in the server, the server
returns a 401-error message signifying that the user is not
authorized. The username and password has been
allocated in the tomcat-users.xml file.

Once the user enters the valid credentials the server
doesn’t ask for further authentication in future transactions
as the user is already authorized. The basic authentication
has been implemented for the POST and PUT request. As
for the GET request while determining which grids
contain the obstacles we do not make use of basic

authentication as the third-party user has every right to use
this feature.

In token based authentication the user makes use of a
token to send requests. Initially the credentials are
matched with the information stored in the server after
which the server issues a token that the user uses for
further transaction.

5.1. Working of Token Based Authentication
In the system of robot based grid navigation system we

make use of two passwords namely “R” and “S” to send to
the server. Once the passwords are sent the server checks
the password entered by the user to the passwords stored.
If the passwords match the server returns a token that the
user uses for further operations otherwise if there is a
mismatch of passwords the server automatically closes.
Each token has a lifetime of 10 seconds after which the
token expires and no other transaction is possible.

5.1.1. Results of Token Based Authentication
The token based authentication security built for the

grid navigation system made use of an array-list that
stored the two passwords R and S. Individual password
objects were created and then added to the array-list. The
individual tokens that are provided by the server once the
user logs in with the correct password are mentioned by
default in a different file called sampler.java stored in a
different location. Thus, if the password mentioned by the
user does not match the password stored in the server the
server automatically closes after a brief interval of 5
seconds, whereas if the token supplied by the server does
not match the token input by the user access is denied for
that instance.

The GET request to fetch the individual passwords are
protected by the basic authentication system This is to
prevent third party intervention and to preserve the
confidentiality of the log in function. The basic
authentication system that is set up in the tomcatusers.xml
file makes use of the following piece of xml coding:

<role rolename="tomcat"/>
 <role rolename="role1"/>
<user username="tomcat" password="hello"

roles="tomcat"/>
<user username="both" password="hello"

roles="tomcat,role1"/>
<user username="role1" password="hello"

roles="role1"/>
Therefore, for the individual user to log in he must have

a valid role as well as know the password to the system.
With respect to basic authentication token based
authentication provides a higher level of security.

Table 3. Access and Retrieval using token Based Authentication

Time of Query Password Input Token Output

T=0 R token Access Granted

T=2 - token Access Granted

T=11 - token Access Denied

T=12 S key Access Granted

T=23 - key Access Denied

T=26 S token Access Granted

 American Journal of Software Engineering 5

The above Table 3 tells us that at time T=0 the
password inputted by the user was “R” and the server
returned the token as “token”. This token remained valid
till T=10 after which it became invalid, therefore when the
user makes use of this at T=11 access is not granted. The
user inputs the password “S” at T=12 and the server
returns the token “key”. The same time constraint applies
for this token as well.

Table 4. Results of wrong password input

Time of Query Password Input Token Output

T=0 S key Access Granted

T=2 - token Access Denied

T=11 - key Access Denied

T=12 W - -

According to the above table when the user inputs a

wrong password at T= 12 the server does not respond with
a token but instead closes down after a brief interval of 5
seconds. Before T=12 the server functions properly as the
user inputs the authentic password initially at T=0. At
T=11 seconds when the lifetime of the token has expired
the access is denied by the server.

The table below indicates a third case:

Table 5. Results depicting a third case

Time of Query Password Input Token Output

T=0 S key Access Granted

T=2 - token Access Denied

T=7 R token Access Granted

T=13 - token Access Granted

T=17 - token Access Granted

T=25 W - Access Denied

T=26 R key Access Granted

The table above depicts a third case of token- based

authentication approach in which the user initially inputs
the correct password S to receive the ‘key” token from the
server. The user then inputs a wrong token at T=2 where the
access is denied to the client interface. At T=7 the user inputs
a password to the server after which the server returns a
new token ‘token’ and the access is granted to the user till
T=17. At T=25 a wrong password is inputted by the user
and the access is once again denied by the server.

6. Conclusions

This paper does not discuss the drawbacks of the token
based authentication system implemented for the grid
navigation system. No matter what password is inputted
into the system the two tokens returned are “token” and
“key”. A third party can easily identify the pattern or the
two possibilities and disrupt the entire system. Therefore,
a digital signature is required to maintain the
confidentiality of the token so that only the authorized
user can make use of it. To bolster the security issues, we
can make use of Snort systems and Intrusion Detection
Systems in Cloud Server Virtualization Monitoring. In the

upcoming improvements, we hope to implement TOR
networks and Snort IDS system in Cloud monitoring
systems.

Acknowledgements

This paper was based on a project on Robot Based Grid
Navigation System using Eclipse IDE and Jersey
Framework.

References
[1] Snehal Mumbaikar, Puja Padiya “Web Services Based on SOAP

and REST Principles”, International Journal of Scientific and
Research Publications, Volume 3, Issue 5, May 2013, ISSN 2250-
3153.

[2] Anil Dudhe, S.S Sherekar “Performance Analysis of SOAP and
RESTful Mobile Web Services in Cloud Environment”,
International Journal of Computer Applications (0975-8887),
Second National Conference on Recent Trends in Information
Security, GHRCE, Nagpur, India, Jan-2014.
http://research.ijcaonline.org/rtinfosec/number1/rtinfosec1401.pdf.

[3] Tobias Fertig, Peter Braun “Model Driven testing of RESTful
APIs” May 18-22, 2015, Florence Italy.
http://www2015.wwwconference.org/documents/proceedings/com
panion/p1497.pdf.

[4] Announcing the Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication 197. United States
National Institute of Standards and Technology (NIST).
November 26, 2001. Retrieved October 2, 2012.

[5] Dominique Guinard, Iulia Ion, Simon Mayer. “In Search of an
Internet of Things Service Architecture: REST or WS-*? A
Developers’ Perspective, Institute of Pervasive Computing, ETH
Zurich Switzerland.

[6] Carsten BUSCHMANN, Florian MULLER, Stefan FISCHER
“Grid Based Navigation for Autonomous, Mobile Robots”,
Institute of Operating Systems and Networks, Technical
University of Braunschweig.

[7] Prithumit Deb, Nitin Singh, Saket Kumar, Nitish Rai, Dr. P. A. S
Naidu, N.Ch.Sriman Narayana Iyengar “Offline Navigation
System for Mobile Devices”, International Journal of Software
Engineering and Applications(IJSEA), Vol1, No.2, April 2010.
http://www.airccse.org/journal/ijsea/papers/0410ijsea3.pdf.

[8] Mohamed Ibrahim B, Mohamed Shanavas A R “Applying
Security for RESTful Web Services- Limitations and
Delimitations”, International Journal of Emerging Technology and
Advanced Engineering, Volume 4, Issue 9, September 2014 ISSN:
2250-2459.

[9] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter
and Radu Sion, Stony Brook University “SoK: Introspections on
Trust and Semantic Gaps” IEEE Security and Privacy Magazine
2015.

[10] Raja Mukhopadhyay, I Mukhopadhyay. “Home Automation and
Grid Mapping Technology Using IoT”, The 7th IEEE Annual
Information Technology. Electronics and Mobile Communication
Conference 13th – 15th October 2016, Pages 1-5.

[11] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, Clemente
Izurieta “Comparison of JSON and XML Data Interchange
Formats: A Case Study”, Department of Computer Science,
Montana State University, 2009.

[12] Raja Mukhopadhyay, I Mukhopadhyay “Data Encryption in
Virtual Machine Transfer Over Cloud Network”, The 7th IEEE
Annual Information Technology. Electronics and Mobile
Communication Conference 13th – 15th October 2016.

[13] Ganesh Z Bhade, Vikrant Chole, “Review on Self-Destructive
System for Data Privacy on Web Services”, International journal
of Computer Science and Mobile Computing, Volume 4, Issue 3,
March 2015.
http://www.ijcsmc.com/docs/papers/March2015/V4I3201599b.pdf.

[14] Raja Mukhopadhyay, I Mukhopadhyay et.al., “Study On Secure
Virtualization In The Cloud” published in IJACSCC Volume 4,
Issue 1, May 2016, PP 13-17.

