
P
os
te
d
on

7
A
p
r
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
20
89
13
9.
v
1
—

e-
P
ri
n
ts

p
o
st
ed

on
T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Automating Software Development using Artificial Intelligence

Venkatasaideep Nagulapati 1, Sai Rohit Rapelli 2, and Jinan Fiaidhi 2

1Lakehead University
2Affiliation not available

October 30, 2023

Abstract

A paper exploring one of the applications of Artificial Intelligence in the field of Software Development

1



Automating Software Development using Artificial Intelligence

Nagulapati, Venkata Saideep
Lakehead University

vnagulap@lakeheadu.ca

Dr. Jinan, Fiaidhi
Professor

Lakehead University
jfiaidhi@lakeheadu.ca

Rapelli, Sai Rohit
Lakehead University
srapelli@lakeheadu.ca

Abstract— Developing software and maintaining software
requires a large amount of changes to the source code to be
made to a software repository. Any modification to a repository
can introduce new resource needs that will cost repository
owners more time and money. To help determine and allocate
resources, it is therefore useful to predict future code changes.
Hence, we proposed a technique to predict whether elements
within a repository will change in the near future, given the
repository’s development history and these are developed using
the machine learning approaches Support Vector Machine and
Random Forest algorithms and using previous commit data.
Current software development practices have been improved in
recent years by using Artificial Intelligence (AI) techniques that
include genetic algorithms, machine learning, and deep learn-
ing. The use cases for AI in software development ranged from
developer feedback to full automation of development tasks
for software developers. Software development and software
maintenance require a large amount of source code changes to
be made to a software repository. Any alteration to a repository
will add new resource needs that will cost repository owners
more time and money. Hence, forecasting possible code changes
is useful in an attempt to help assess and distribute resources.
To demonstrate the breadth of application, we will present
several recent examples of how AI can be leveraged to automate
software development[1].

I. INTRODUCTION

Creating and managing a software application can be time
consuming and resource intensive. Software application
development commonly integrates the use of the Version
Control Systems to manage the application by storing
both the current and previous versions in a repository.
Development of a repository is constrained by the resources
available to the application development team. Every
allocation of these limited resources can be the decisive
factor in whether or not the repository is going to be
successful. Predictions are made by identifying elements
that are associated through frequent co-changes inside the
repository. This helps to build a preceding research to
provide predictions of change to help improve resource
allocation for both repository developers and Version
control system managers. Software has become pervasive
and integrated with numerous platforms and applications
such as mobile devices, web sites, embedded systems,
safety critical systems. Creating and managing a software
application can be time consuming and resource intensive.

The software intensive systems we develop these days
are becoming much more complex in terms of the number
of functional and non-functional requirements they need

to support. In many vital applications, the impact of
poor quality may also have a devastating effect on the
purpose of those systems. In addition, software development
costs exceed the total cost of such program. Work in the
application of artificial intelligence techniques to software
engineering has evolved immensely over the past two
decades, generating several projects and publications.
A number of conferences and journals are dedicated to
publishing the research in this field. The AI strategies
are being introduced to reduce market time and increase
the efficiency of software systems. Yet many of these AI
techniques remain primarily used by the testing community
and have no influence on the software engineering practicing
processes and devices. The recent survey papers published
in this area are aimed primarily at the research community.
They are guided by the different AI techniques used instead
of the supporting software engineering activities. They often
concentrate on a common process of software engineering,
such as software design. If the current collection of AI
technologies is adequate to achieve intelligence at the
human level or not, it is clear that software systems will
progressively integrate them as components and sub-
systems. The shape of the solutions created from these AI
/ ML technologies often looks radically different from the
software which is normally developed and used. Thus, not
only does the AI technology itself change quickly and at an
increasing pace, the solutions it provides typically look very
different from what soft- ware organizations and engineers
are used to. This poses a new and unique set of risks and
opportunities for software organizations and they need to
understand and analyze these risks to select appropriate
strategies[2].
The latest AI-based software and applications are developed
using state-of - the-art machine learning models and
techniques through comprehensive data training to
incorporate various artificial intelligence functions and
capabilities. Current AI-based system functions and features
can be classified into the following categories:

• Natural language processing capability with language
understanding and translation.

• Detection and recognition function, for example, human
face detection, voice recognition and object detection.

• Recommendation features in e-commerce and advertis-
ing.

• Unmanned-controlled vehicles, robots, and UAVs



• Question and answer functions to assist users in mes-
saging, phone calling, search, and smart home appliance
control.

• Object identification and classification
• prediction and business decision-making.

II. LITERATURE REVIEW

A. Understanding and predicting change

• Developing and sustaining large-scale projects can
take years or even decades and require a significant
investment in time and money. Project managers will
make improvements to the project in the production
process. When a developer makes a modification to add
to a project, a new feature can be added, or bugs can
be addressed. A change can also involve unintended
bugs and allow them to be implemented.

• Tracing and tracking the improvements made by the
developers will ensure that the project follows the
correct course and aligns closely with the intended path
of the project after the modifications have been made.
Change forecasts are an attempt to theoretically know
what changes will occur before they are made. The
changes will be more conscious with the awareness
of what changes will occur. For example, if a section
of the source code is classified as likely to alter the
resources required, a developer working on that section
will be more likely to be tasked with updating it.
Likewise, understanding which changes are likely to
occur will help developers plan their resources based
on the value of what change.

• Prediction for software development includes various
fields of research that typically aim to enhance indi-
vidual projects by concentrating on their progress and
providing developers feedback and recommendations.

B. Change Analysis

• Changes happen to accomplish a particular purpose
or mission within a repository. The function may be
high-level, such as adding new system functionality,
or lower level, such as fixing a syntactic error.
Investigations into how improvements are implemented
or used will help to provide a deeper understanding
to make a better change or use the improvements better.

• Bieman, Andrews, and Yang are researching the change-
proneness of different organizations in a software
project [7]. Visualizations were also used to provide a
better understanding.

C. Software Development Prediction

• Predicting faults and changes in a software repository
will allow developers or managers to build strategies
to mitigate both faults and changes negative effects.

• Intuitively, detecting a flaw inside a library earlier will
help minimize maintenance costs and the number of
bugs found in the shipped version of the program. With
a software program less susceptible to error, end users
are less likely to find an error and can use the program
as intended. The advantages of anticipating change
are more closely linked to the development cycle
helping developers to formulate plans and successfully
introduce functional improvements with less faults than
anticipated.

• Moser, Pedrycz, and Succi analyse fault predictions
using static and shift metrics [9]. The transition metrics
used outperformed, and remembered, the static metrics
in precision. Instead, Sisman and Kak look directly
at shift indicators to make the forecasts using the
Information Retrieval (IR) system.

D. Machine Learning

Machine learning is a dynamic method of attempting
to avoid trends within the data for software algorithms.
One such example of a problem would be an algorithm
for detecting certain people within an image. For a human
such a task may seem trivial, but it is far more difficult
for a software system to detect it. When these patterns are
extremely complex, algorithms which can evaluate patterns
and replicate them from abstract data set are useful. There
are various algorithms that apply the techniques to machine
learning.
Each solution has both advantages and inconveniences.
Support Vector Machine, Random Forest, Artificial neural
networks are few examples of machine learning algorithms.
Bhattacharyya, Jha, Tharakunnel and Westland provide a
detailed description of Random Forest (RF) and Support
Vector Machine (SVM) [6] below:

• Support Vector Machines

– Based on a collection of features given, an SVM
is used to predict what form of change will occur.
A function is a data derived from a floating-point
number defined by the project. In order to be
useful a function must define the group to which
it is assigned in some way. Nor must the function
depend on the group it belongs to for calculation

– For example, given a change of method category
within the next 5 commit or not, then the features
must not depend on awareness of potential project
changes. Unless the features fail to describe
effectively the group to which they are assigned
then the SVM may have weak predictions. It is
also important for the features not to negatively
affect the categorization, to be independent of one
another.



– SVM includes encoding all of the function data
as floating-point numbers. Conversion to floating-
point is trivial for any numerical results. The
conversion is a little more complicated for more
complex data, though. Categorical data can be
translated by category into one single vector entry.

• Random Forests

– RF is a popular machine learning algorithm and
is used in many fields including software fault
predictions, software development effort, credit
card fraud, database indexing, malware detection
[8].

– Malhotra offers a detailed overview of the machine
learning studies to predict program faults [7]. RF
appeared to perform better than other tested
machine learning algorithms, the findings showed.
Moeyersoms, Fortuny, Dejaeger, Baesens and
Martens used RF and SVM, as well as a few other
approaches to data mining to predict program
faults and estimate effort [5].

– One problem with decision trees and more gen-
erally machine learning techniques is imbalanced
data sets for model training [10]. Therefore, the
data set used rarely provided even sample sizes
of each set without taking necessary precautions
the result will be biased by the algorithm. In the
worst case the model classifies any input data as
the broader classification of the data [11].

III. PROPOSED MODEL

• The goal is to predict whether a method within a
repository will change or not.

• The commit data is collected from open source reposi-
tory to make predictions.

• By predicting short term changes, we can focus on
impending changes rather than changes happening in
future.

Why Change prediction?

• Change predictions are an attempt to potentially know
what changes will occur prior to the changes taking
place.

• Developer who worked on this section can be assigned
to change code.

• Similarly, knowing which changes are likely to
happen, helps the developer to prioritize the resources
accordingly.

Data Distribution:

• Most of the time our dataset contains, samples in one
category.

• For example, a sample may contain 80 percent methods
with no change and 20 percent with change in next 5
commits.

• Hence, training the number of methods with changes
and without changes ideally, would be around 50 per-
cent in next 5 commits.

• This is more apparent when dataset distribution
category changes between training and testing’s.

Techniques of Data distribution

• Over sampling:

– Reducing the size difference between larger classi-
fication and smaller classification.

– Over sampling increases number of samples by cal-
culating each category and expanding the smaller
category by re-sampling values from the dataset
until both categories are equal.

– If the smaller category is still smaller, the larger
category will be reduced to size of smaller category.

– This is used to ensure the distribution of data is
preserved.

• Under sampling:

– It removes samples from larger classification to
reduce the difference in size with smaller classi-
fication.

– This is applied to the dataset by measuring number
of samples in each category.

– The larger dataset is reduced by discarding samples
until this dataset becomes same size as the small
dataset.

– This may reduce performance, hence under sam-
pling may not be ideal.

IV. COMMIT DATA

The commit data is obtained from target Open Source
Software repositories to make predictions. From this obtained
open source commit data, the goal is to predict whether
the code changes in the next commits or not. The different
types of changes that are possible are additions, deletions
and modifications. Below fig. 1 is generic structure of any
GIT repository.

• Data Training Range:

– The machine learning model which is used to
predict the changes requires the data to be trained
using train set. The training samples need to be cat-
egorized before providing them to machine learning
algorithms. This training allows to predict when a
new observation show up.



Fig. 1. GIT Repository Structure

– As the goal is to predict the changes occur in next
commits, samples are made in the commit data and
a sample of commit data is stored from the current
commit.

– The sample set is restricted by a variable value
sample window range (SWR) which deals with the
number of commits considered to form a sample.

Fig. 2. Sample Window Range

The data will be sample with in only the limit of the range of
dataset as show in the Fig. 2. Only 30 commits are considered
and a prediction gap of 5 is taken. The prediction gap of 5
is used for the following reasons:

• So that the data sampling will be balanced and also
improves the prediction capability in training model.

• Small prediction range will be more practical to obtain
best results compared to large range.

Details in Commit Data
• Developer related.
• Source files.
• Changes made in the commit.
• Project release information in the form of tags.

V. DATASET USED

The dataset used is the commit data which is obtained
from an opencv public repository from github. To obtain the
commit data, as a first step git is installed in our system.
All the commit logs from the opencv repository are pulled
using local git.

Process of colleting log data

• As intial step, the repository url obtained from github.
In our case it is https://github.com/opencv/opencv.

• This particular repository is cloned to our local system
using git commands. In our case we used the command,
git clone https://github.com/opencv/opencv

• After cloning the repository, we used to command
to retrive all the log information and made a comma
separated file (CSV) out of it. For that, we used the
command,
git log –after="2016-09-06" –before="2017-04-11"
–oneline> data.xls;
from the command, before and after are the date ranges
in between which we need the log information.

• So, the obtained log information is shown in the below
Fig. 3.

Fig. 3. Sample Data Set

• Commit data obtained contains the following details.

– Commit:It contains the information about the com-
mit id.

– Merge: It contains the hashcode or merge id if the
particular commit is a merge commit

– Author: This field contains the information about
the particular person which did the commit

– Date: This field contains the information about the
data on which particular commit occurred.

– Message: It is the detailed message which is writ-
ten which an author commits the data.

VI. IMPLEMENTATION

The log data obtained is in the format of string. This
log data undergoes different preprocessing steps to feed it
into any machine learning algorithm. Firstly, the data is split
into different rows and then these data is parsed to extract
features. The respective flow chart is given below in Fig. 4.
The respective main step which are splitting, and parsing are
explained below.



Fig. 4. Proposed Model Architecture

• Splitting of data: The commit data is divided between
multiple lines as shown in Fig. 3. So, these multiple files
are first split with respect to commit id. Following are
the steps involved in split method.

– Split the output of git log into separate entries per
commit.

– Parameters - whole_log: str A string containing the
entire git log.

– Returns - list(str) A list of log entries, with each
commit as its own string.

– Find the indices which separate each commit’s
entry.

– Split the lines from the whole log into subsets for
each log entry.

• Parsing the data: The lines split between the commit
contains features which are to be extracted to pass them
to the machine learning algorithms. The steps involved
in parsing the data are given below. The respective code
is shown in Fig. 6

– Extract features from the text of a commit log entry
– Parse the commit line, dateline, change lines, ad-

ditions and deletions.
– If this is a merge commit fill some fields with nan.

Following are the features to be extracted:
• Hash

Fig. 5. Code for Splitting commit data

• Day of week
• Hour
• Message Length
• Changed files
• Additions
• Deletions
The extracted features are fed into machine learning

model random forest in our case.

The steps performed after extracting. features are:
• The extracted features as shown in Fig. 7. are sent

to random forest tree algorithm. This uses ensemble
learning methods from classification.

• Train and test the extracted features from previous phase
• Visualizing and analyzing the results.

Its respective code is shown in the below Fig.8.

VII. CONCLUSION

In conclusion, We suggested a way to use the commit
history to predict potential changes in the repository. The
data used for predictions was obtained from the GitHub
repository of Open Source Software (OSS). Then, several
methods were used to simulate the data to help define key
features for use in the prediction model. The features have
been selected and a model has been developed to predict
whether the code changes in the future.
From our experiment we could predict code changes cor-
rectly with 50 % accuracy

REFERENCES

[1] https://www.sqrlab.ca/blog/2018/03/23/automating-software-
development-using-artificial-intelligence/

[2] https://ir.library.dc-uoit.ca/xmlui/handle/10155/730
[3] Alam, M. S., and Vuong, S. T. Random Forest Classification for

Detecting Android Malware. In Proceedings of the Green Computing
and Communications, IEEE Internet of Things, IEEE Cyber, Physical
and Social Computing (2013), pp. 663–669.



Fig. 6. Code for Parsing Commit Data

Fig. 7. Sample Features Data

Fig. 8. Code for Feeding into Network

[4] Anto n, J. C. A ., Nieto, P. J. G., Viejo, C. B., and Vila n, J. A.
V. Support Vector Machines Used to Estimate the Battery State of
Charge. IEEE Transactions on Power Electronics 28, 12 (2013), 5919
– 5926.

[5] Bantelay, F., Zanjani, M. B., and Kagdi, H. Comparing and combining
evolutionary couplings from interactions and commits. In Proceedings
of the Working Conference on Reverse Engineering, WCRE (2013),
pp. 311–320.

[6] Bhattacharyya, S., Jha, S., Tharakunnel, K., and Westland, J. C. Data
mining for credit card fraud: A comparative study. Decision Support
Systems 50, 3 (2011), 601–613.

[7] Bieman, J., Andrews, A., and Yang, H. Understanding change-
proneness in OO software through visualization. In Proceedings of
the 11th IEEE Interna- tional Workshop on Program Comprehension,
2003. (2003), pp. 44 – 53. 133

[8] Burbidge, R., Trotter, M., Buxton, B., and Holden, S. Drug design by
machine learning : support vector machines for pharmaceutical data
analysis. Computers and Chemistry 26, 1 (2001), 5 – 14.

[9] Canfora, G., Cerulo, L., and Di Penta, M. Identifying changed source
code lines from version repositories. In Proceedings of the 4th In-
ternational Work- shop on Mining Software Repositories, MSR 2007
(2007), pp. 14 – 22.

[10] Chaturvedi, K. K., Kapur, P. K., Anand, S., and Singh, V. B. Predict-
ing the complexity of code changes using entropy based measures.
International Journal of System Assurance Engineering and Manage-
ment 5, 2 (2014), 155–164.

[11] Collberg, C., Kobourov, S., Nagra, J., Pitts, J., and Wampler, K. A
system for graph-based visualization of the evolution of software. In
Proceedings of the 2003 ACM symposium on Software visualization
- SoftVis ’03 (2003), pp. 77 – 86.

[12] De Souza, C. R., Quirk, S., Trainer, E., and Redmiles, D. F. Sup-
porting collaborative software development through the visualization
of socio- technical dependencies. 2007 International ACM Conference
on Supporting Group Work, GROUP’07, November 4, 2007 - Novem-
ber 7, 2007 (2007), 147– 156.

[13] Dit, B., Holtzhauer, A., Poshyvanyk, D., and Kagdi, H. A dataset from
change history to support evaluation of software maintenance tasks.
In Proceedings of the 10th Working Conference on Mining Software
Repositories (2013), pp. 131–134. 134

[14] Erturk, E., and Sezer, E. A. A comparison of some soft computing
methods for software fault prediction. Expert Systems with Applica-
tions 42, 4 (2015), 1872–1879.

[15] Gall, H. C., and Lanza, M. Software Evolution : Analysis and
Visualiza- tion. In Proceedings of the 28th international conference
on Software engineering (2006), pp. 1055–1056.

[16] Giger, E., Pinzger, M., and Gall, H. C. Can we predict types of
code changes? An empirical analysis. In Proceedings of the 9th IEEE
Working Con- ference on Mining Software Repositories (MSR), 2012
(2012), pp. 217–226.

[17] Gilbert, E., and Karahalios, K. CodeSaw: A social visualization of dis-
tributed software development. In Proceedings of the 11th IFIP TC 13
interna- tional conference on Humancomputer interactionVolume Part
II (2007), pp. 303– 316.

[18] Gondra, I. Applying machine learning to software fault-proneness
prediction. Journal of Systems and Software 81, 2 (2008), 186–195.


